Universität Hamburg Fachbereich Mathematik Dr. Felix Schwenninger felix.schwenninger[ät]uni-hamburg.de

Fourier Analysis – Exercise sheet 6 (to be discussed on June 25)

Exercises 6.1 and partially 6.2 deal with proofs of rather elementary facts that we have already introduced in the lectures. Although this reads a bit lengthy most of them are very short. The other exercises are about Fourier series and are supposed to round-off this subject. Exercise 6.4 and 6.5 combine several results we derived on the convergence of Fourier series and should hence summarize many important facts we discussed.

<u>Ex 6.1</u>: (Basic properties of the Fourier transform) Show that for any $f \in L^1(\mathbb{R})$ the Fourier transform $\mathcal{F}(f)$

$$(\mathcal{F}(f))(s) = \int_{\mathbb{R}} f(t) \mathrm{e}^{-ist} dt$$

satisfies the properties listed below. Let us also use the following operators for fixed $\omega \in \mathbb{R} \setminus \{0\}$, $g \in L^1(\mathbb{R})$,

$$\tau_w f = f(\cdot + \omega), \qquad m_g f = fg, \qquad Rf = f(-\cdot), \qquad D_\omega f = f(w\cdot)$$

defined for $f \in L^p(\mathbb{R})$ for any $p \in [1, \infty]$.

- (a) $\mathcal{F}: L^1(\mathbb{R}) \to L^\infty(\mathbb{R})$ is linear, bounded
- (b) The range ran \mathcal{F} of \mathcal{F} lies in $C_0(\mathbb{R}) = \{f \in C(\mathbb{R}) : \lim_{x \to \pm \infty} f(x) = 0\}$
- (c) For $e_{i\omega}(s) := e^{i\omega s}$ we have

$$\begin{split} \mathcal{F}m_{\mathbf{e}_{-i\omega}} &= \tau_{\omega}\mathcal{F} & (Modulation) \\ \mathcal{F}\tau_{\omega} &= m_{\mathbf{e}_{i\omega}}\mathcal{F} & (Translation) \\ \mathcal{F}R &= R\mathcal{F} & (Reflection) \\ \mathcal{F} &\bar{\cdot} &= \overline{R\mathcal{F}} & (Conjugation) \\ \mathcal{F}D_{\omega} &= m_{1/|\omega|}D_{\frac{1}{\omega}}\mathcal{F} & (Dilation) \end{split}$$

considered on $L^1(\mathbb{R})$.

- (d) $\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$ (Convolution Theorem)
- (e) for any $f \in C^k(\mathbb{R})$ such that $f^{(\ell)} \in L^1(\mathbb{R})$ for all $\ell = 0, .., k$,

$$\mathcal{F}(f^{(k)}) = m_{(i\mathbf{s})^k} \mathcal{F}(f),$$

where is refers to the function $s \mapsto is$. Conversely, if $x \mapsto x^{\ell} f(x) \in L^1(\mathbb{R})$ for all $\ell = 0, ..., k$,

$$[\mathcal{F}(f)]^{(k)} = \mathcal{F}(m_{(-i\mathbf{s})^k}f)$$

<u>Ex 6.2</u>: (Schwartz functions and the Fourier transform)

- (1) Show that $x \mapsto e^{-x^2}$ and any $C^{\infty}(\mathbb{R})$ function with compact support are in the Schwartz class.
- (2) Show that convergence of a sequence in the Schwartz class $S(\mathbb{R})$ (as defined in the lectures, Def. 1.4)) implies that the sequence also converges in $L^p(\mathbb{R})$ for any $p \in [1, \infty]$.
- (3) Show that the Fourier transform leaves $S(\mathbb{R})$ invariant, i.e. $\mathcal{F}f \in S(\mathbb{R})$ for all $f \in S(\mathbb{R})$.
- (4) Show that with $f,g \in S(\mathbb{R})$ also fg and $f * g \in S(\mathbb{R})$. Conclude that \mathcal{F} is an algebra homomorphism on $S(\mathbb{R})$ (with respect to the group action *).
- (5) Show that \mathcal{F} is continuous as mapping from $S(\mathbb{R})$ to $S(\mathbb{R})$ in the sense that

$$f_n \xrightarrow{S} f \implies \mathcal{F} f_n \xrightarrow{S} \mathcal{F} f$$

- (6) Adapt the definition of an approximate identity to functions in $L^1(\mathbb{R})$ and show that for any continuous function $g \in L^1(\mathbb{R})$ with $\int_{\mathbb{R}} g = 1$, the family $(\lambda g(\lambda \cdot))_{\lambda>0}$ defines such approximate identity. Use this together with a version of the results on approximate identities from the lectures to show that the C^{∞} functions with compact support lie dense in $L^p(\mathbb{R})$ for any $p \in [1, \infty)$.
- (7) *(extra) Show that the sequential convergence we introduced on $S(\mathbb{R})$ corresponds to a metric with respect to which $S(\mathbb{R})$ is complete.

<u>Ex 6.3</u>: Hausdorff-Young inequality for Fourier series

- (a) Prove the following statement: For $(p,q) \in [1,\infty]^2$ such that $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$, and $f \in L^p(\mathbb{T})$, it holds that $\hat{f} \in \ell^q(\mathbb{Z})$ with $\|\hat{f}\|_{\ell^q(\mathbb{Z})} \leq C \|f\|_{L^p(\mathbb{T})}$ for some absolute constant C > 0.
- (b) Analogously to (a) prove the following similar statement: Let $(p,q) \in [1,\infty]^2$ such that $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$. For any $(a_n) \in \ell^p(\mathbb{Z})$ there
 - exists $f \in L^q(\mathbb{T})$ such that $\hat{f}(n) = a_n$ for all $n \in \mathbb{Z}$ with

$$||f||_{L^q(\mathbb{T})} \le C ||(a_n)_{n \in \mathbb{N}}||_{\ell^p(\mathbb{Z})}$$

for some absolute constant C > 0.

Hint: Interpolation.

Ex. 6.4: Discuss the convergence of the Fourier series of the function 2π -periodic function defined by

$$f(t) = \pi - t \quad \forall t \in (0, 2\pi) \text{ and } f(0) = f(2\pi) = 0$$

in $L^1(\mathbb{T})$. More precisely, consider convergence in the following sense

- (1) with respect to the norms $\|\cdot\|_{L^p}$ where $p \in [1, \infty]$
- (2) absolutely (for all $t \in \mathbb{T}$), that is, in the norm $\|\cdot\|_{A(\mathbb{T})}$, see Ex. 3.2.
- (3) pointwise for $t \in \mathbb{T}$ or for almost every $t \in \mathbb{T}$,

and derive the limit function if it exists.

You may also plot the first, say 5 to 10, partial sums of the Fourier series with matlab in order to get a feeling for the (uniform) convergence. *Hints: you may consider previous exercises on Fourier series, e.g. Ex. 5.1, Ex. 4.1, Ex. 3.2–3.3.*

Ex 6.5: Recapitulate what you can say about the convergence of Fourier series of the following (classes) of functions. Consider the same types of convergence as in Ex. 5.2.

- (a) $f \in C(\mathbb{T})$
- (b) $f: \mathbb{T} \to \mathbb{C}$ differentiable (and 2π -periodic)
- (c) $f \in C^1(\mathbb{T})$