Summer term 2018

Universität Hamburg Fachbereich Mathematik Dr. Felix Schwenninger felix.schwenninger[ät]uni-hamburg.de

Fourier Analysis – Exercise sheet 3 – part I

As indicated in the lectures, we will need the notion of absolute continuity. A function $f : [a, b] \to \mathbb{C}$ is called absolutely continuous if there exists $g \in L^1([a, b])$ such that $f(t) = f(a) + \int_a^x g(s) ds$ for all $x \in [a, b]$. It can be shown that this is equivalent to the property that

 $\forall \epsilon > 0 \exists \delta > 0 \forall n \forall disjoint \ subintervals \ \{(a_i, b_i)\}_{i=1}^n : \quad \left(\sum_{k=1}^n |b_i - a_i| < \delta \implies \sum_{k=1}^n |f(b_i) - f(a_i)| < \epsilon\right)$

(the latter is usually referred to as absolute continuity). Moreover, it then follows that f is differentiable almost everywhere in [a,b] and f' = g.

Ex 3.0: Show (using the above mentioned facts) that

- (a) any absolutely continuous function is uniformly continuous;
- (b) any Lipschitz-continuous function is absolutely continuous;
- (c) any absolutely continuous function f is of bounded variation, i.e.

$$\operatorname{Var}_{a,b}(f) := \sup\left\{\sum_{i=1}^{N} |f(a_{i+1}) - f(a_i)| \colon N \in \mathbb{N}, a = a_1 < a_2 < \dots < a_N = b\right\} < \infty$$

(d) there exists a continuous function which is not absolutely continuous.

<u>Ex 3.1</u>: (Decay of Fourier coefficients) Show the following.

- (1) If $f \in C^1(\mathbb{T})$, then $\hat{f}(n) \in o(n^{-1})$ $(n \to \pm \infty)$ and find a corresponding assertion for $f \in C^k(\mathbb{T})$.
- (2) If f is absolutely continuous, then

$$\widehat{f}(n) = \frac{1}{in}\widehat{f}'(n), \quad n \in \mathbb{Z}.$$

(3) If $g \in L^1(\mathbb{T})$ is such that $\hat{g}(n) = -\hat{g}(-n) \ge 0$ for all $n \in \mathbb{N}_0$, then $(\frac{\hat{g}(n)}{n})_{n \in \mathbb{N}} \in \ell^1(\mathbb{N})$. (Hint: Use (2) and the theorem on the pointwise convergence of the Fejér means $F_n * f$)

<u>Ex 3.2</u>: (The space $A(\mathbb{T})$) Let $A(\mathbb{T})$ denote the space of functions f in $L^1(\mathbb{T})$ with absolutely summable Fourier coefficients, i.e. $\hat{f} \in \ell^1(\mathbb{Z})$.

- (a) Show that $A(\mathbb{T}) \subset C(\mathbb{T})$ and argue why the inclusion is strict.¹
- (b) Let $A(\mathbb{T})$ be equipped with the norm $||f||_{A(\mathbb{T})} = ||\hat{f}||_{\ell^1(\mathbb{Z})}$. Argue why this is indeed well-defined and clarify on the relation to $|| \cdot ||_{C(\mathbb{T})}$.
- (c) Recall that $L^1(\mathbb{T})$ is an algebra with the convolution * and show that $A(\mathbb{T})$ is an ideal of $L^1(\mathbb{T})$ with respect to *.
- (d) Show that any absolutely continuous f with $f' = g \in L^2(\mathbb{T})$ lies in $A(\mathbb{T})$. Also show the existence of an absolutely continuous f such that $f' \notin L^2(\mathbb{T})$ (Hint: Ex. 3.1).
- (e) Is $A(\mathbb{T})$ a homogeneous Banach space?

Ex 3.3:

- (1) Let $f \in L^1(\mathbb{T})$ be defined by $f(x) = x \pi$. Compute the Fourier series of f and discuss its convergence (pointwise, in L^p , $C(\mathbb{T})$).
- (2) If $f \in L^1(\mathbb{T})$ is piecewise continuously differentiable, then the Fourier series of f converges to f pointwise ².

¹as usual for L^1 -functions (equivalence classes of functions equal λ -a.e.) we identify with the continuous representative if it exists.

²Here "piecewise continuously differentiable" means that except for finitely many points in $[0, 2\pi]$, f is differentiable with continuous derivative. At these finite points of exception the function the right and left limit of f and f' are assumed to exist (including the points 0 and 2π).

Ex 3.4: (revision from sheet 2)

(a) Let $f, g \in L^1(\mathbb{T})$ and $h \in L^{\infty}(\mathbb{T})$. Show that $\int_{\mathbb{T}} (f * g)(s)h(s) ds = \int_{\mathbb{T}} f(s)(g * R(h))(s) ds$. ³ Note that this identity can be linked to the "dual operator (also called "conjugate operator") of

$$M_g: L^1(\mathbb{T}) \to L^1(\mathbb{T}), f \mapsto f * g$$

Recall that the dual operator $T': Y' \to X'$ of a bounded linear operator $T: X \to Y$ (X, Y Banach spaces) is defined through

$$\langle Tx, x' \rangle_{X,X'} = \langle x, T'x' \rangle_{X,X'} \quad \forall x \in X, x' \in X'.$$

Hint: It suffices to consider simple functions h and moreover indicator functions on measurable subsets of \mathbb{T} .

- (b) Following the notation introduced in (a), determine the dual operator $(\mathcal{M}_q)'$ of \mathcal{M}_q .
- (c) Using (a) prove that C(T) is weak*-dense in L[∞]
 (this exercise was already given in Ex. 2.3, but as there was a typo in (a) then, we consider it here again. However, there is not a big difference in solving it. ⁴.)

³There was a TYPO in the original formulation of the exercise in Ex. 2.3: There, on the right-hand-side h should have been replaced by $R(h) = h(-\cdot)$.

 $^{^{4}}$ you may look at Ex. 2.3 and follow the hint there