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Fourier Analysis – Exercise sheet 3 – part I

As indicated in the lectures, we will need the notion of absolute continuity. A function f : [a, b] → C
is called absolutely continuous if there exists g ∈ L1([a, b]) such that f(t) = f(a) +

∫ x

a
g(s) ds for all

x ∈ [a, b]. It can be shown that this is equivalent to the property that

∀ε > 0∃δ > 0∀n∀disjoint subintervals {(ai, bi)}ni=1 :

(
n∑

k=1

|bi − ai| < δ =⇒
n∑

k=1

|f(bi)− f(ai)| < ε

)
(the latter is usually referred to as absolute continuity). Moreover, it then follows that f is differentiable
almost everywhere in [a, b] and f ′ = g.

Ex 3.0: Show (using the above mentioned facts) that

(a) any absolutely continuous function is uniformly continuous;

(b) any Lipschitz-continuous function is absolutely continuous;

(c) any absolutely continuous function f is of bounded variation, i.e.

Vara,b(f) := sup

{
N∑
i=1

|f(ai+1)− f(ai)| : N ∈ N, a = a1 < a2 < .. < aN = b

}
<∞

(d) there exists a continuous function which is not absolutely continuous.

Ex 3.1: (Decay of Fourier coefficients) Show the following.

(1) If f ∈ C1(T), then f̂(n) ∈ o(n−1) (n→ ±∞) and find a corresponding assertion for f ∈ Ck(T).
(2) If f is absolutely continuous, then

f̂(n) =
1

in
f̂ ′(n), n ∈ Z.

(3) If g ∈ L1(T) is such that ĝ(n) = −ĝ(−n) ≥ 0 for all n ∈ N0, then ( ĝ(n)n )n∈N ∈ `1(N).
(Hint: Use (2) and the theorem on the pointwise convergence of the Fejér means Fn ∗ f)

Ex 3.2: (The space A(T)) Let A(T) denote the space of functions f in L1(T) with absolutely summable

Fourier coefficients, i.e. f̂ ∈ `1(Z).
(a) Show that A(T) ⊂ C(T) and argue why the inclusion is strict.1

(b) Let A(T) be equipped with the norm ‖f‖A(T) = ‖f̂‖`1(Z). Argue why this is indeed well-defined
and clarify on the relation to ‖ · ‖C(T).

(c) Recall that L1(T) is an algebra with the convolution ∗ and show that A(T) is an ideal of L1(T)
with respect to ∗.

(d) Show that any absolutely continuous f with f ′ = g ∈ L2(T) lies in A(T). Also show the
existence of an absolutely continuous f such that f ′ /∈ L2(T) (Hint: Ex. 3.1).

(e) Is A(T) a homogeneous Banach space?

Ex 3.3:

(1) Let f ∈ L1(T) be defined by f(x) = x − π. Compute the Fourier series of f and discuss its
convergence (pointwise, in Lp, C(T)).

(2) If f ∈ L1(T) is piecewise continuously differentiable, then the Fourier series of f converges to
f pointwise 2.

1as usual for L1-functions (equivalence classes of functions equal λ-a.e.) we identify with the continuous representative
if it exists.

2Here “piecewise continuously differentiable” means that except for finitely many points in [0, 2π], f is differentiable
with continuous derivative. At these finite points of exception the function the right and left limit of f and f ′ are assumed

to exist (including the points 0 and 2π).
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Ex 3.4: (revision from sheet 2)

(a) Let f, g ∈ L1(T) and h ∈ L∞(T). Show that
∫
T(f ∗ g)(s)h(s) ds =

∫
T f(s)(g ∗R(h))(s) ds.

3

Note that this identity can be linked to the “dual operator (also called “conjugate operator”) of

Mg : L1(T)→ L1(T), f 7→ f ∗ g.
Recall that the dual operator T ′ : Y ′ → X ′ of a bounded linear operator T : X → Y (X, Y
Banach spaces) is defined through

〈Tx, x′〉X,X′ = 〈x, T ′x′〉X,X′ ∀x ∈ X,x′ ∈ X ′.
Hint: It suffices to consider simple functions h and moreover indicator functions on measurable
subsets of T.

(b) Following the notation introduced in (a), determine the dual operator (Mg)
′ of Mg.

(c) Using (a) prove that C(T) is weak*-dense in L∞

(this exercise was already given in Ex. 2.3, but as there was a typo in (a) then, we consider it
here again. However, there is not a big difference in solving it. 4.)

3There was a TYPO in the original formulation of the exercise in Ex. 2.3: There, on the right-hand-side h should

have been replaced by R(h) = h(−·).
4you may look at Ex. 2.3 and follow the hint there


