Fourier Analysis - Exercise sheet 1

In the following let $L^p(\Omega, \mathcal{A}, \mu)$ always refer to the usual L^p spaces (of equivalence classes) of complex-valued μ -measurable functions with integrable p-th power of the modulus ((and the usual modification for $p = \infty$), where $(\Omega, \mathcal{A}, \mu)$ is a measure space. With the L^p -norm, these spaces are Banach spaces. Here, we will mainly be focused on the following choices; the torus $\Omega = \mathbb{T} = [0, 2\pi)$ — which we identify with $\mathbb{R}/2\pi\mathbb{Z}^{-1}$ — with the Lebesgue σ -algebra \mathcal{B} and Lebesgue measure λ , $L^p(\mathbb{T}) = L^p(\mathbb{T}, \mathcal{B}, \lambda)$. Similarly, $C(\mathbb{T})$ refers to the 2π -periodic, complex-valued continuous functions on \mathbb{R} . Furthermore, we consider $\Omega = \mathbb{Z}$ and its discrete σ -algebra, with the counting measure $|\cdot|$ leading to $\ell^p(\mathbb{Z}) = L^p(\mathbb{Z}, |\cdot|)$.

In Lecture 1 we have encountered the operator

$$T: L^1(\mathbb{T}) \to \ell^\infty(\mathbb{Z}), f \mapsto \hat{f}$$

which maps integrable functions to their Fourier coefficients $\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$. The following exercises continue our (first) investigations on properties of the relation between a function and its Fourier series.

Ex 1:

Show that the statement

If sequence
$$(f_n)$$
 converges to f in $L^p(\mathbb{T})$, it follows that $f_n \to f$ pointwise a.e.

is wrong for $p \in [1,\infty)$ and prove a suitable adaption of this statement which is true (hint: subsequence). What can we conclude for Fourier series of functions in $L^2(\mathbb{T})$ regarding pointwise convergence?

Ex 2:

Give an alternative proof of Theorem 1.6 (2), that is, the injectivity of the mapping $T: L^1(\mathbb{T}) \to \mathbb{T}$ $\ell^{\infty}(\mathbb{Z}), f \mapsto \hat{f}$. Do this along the following steps

(1) Given that $\hat{f} = 0$ show that $\int_0^{2\pi} f(t)g(t) dt = 0$ for all $g \in L^{\infty}(\mathbb{T})$. (2) Use fundamental result(s) from functional analysis to conclude that f = 0.

From the injectivity of T conclude that the following statement holds.

 $\hat{f} \in \ell^1(\mathbb{Z})$ implies that the Fourier series of f,

$$S(f) = \sum_{n = -\infty}^{\infty} \hat{f}(n) e^{int},$$

converges to f(t) for almost every $t \in \mathbb{T}$. Hence, f is equal to a continuous function a.e..

Ex 3:

Consider the operators

$$\tilde{S}_N : \ell^{\infty}(\mathbb{Z}) \to L^1(\mathbb{T}), (a_n)_{n \in \mathbb{Z}} \mapsto (t \mapsto \sum_{n = -N}^N a_n \mathrm{e}^{int})$$

with $N \in \mathbb{N}$ and show that they are bounded, but not uniformly bounded, i.e. $\sup_{N \in \mathbb{N}} ||T_N|| = \infty$. Conclude that the operator $T: L^1(\mathbb{T}) \to \ell^\infty(\mathbb{Z}), f \mapsto \hat{f}$ is not surjective.

Ex 4:

Compute the (complex) Fourier series of the following functions $f : \mathbb{T} \to \mathbb{C}$

(a) f(x) = |x|

¹That particularly means that we regard functions on \mathbb{T} has 2π -periodic and defined on the whole of \mathbb{R} !

(b) $f = \chi_{[0,\pi]} - \chi_{[\pi,2\pi]}$, where χ_E denotes the indicator function on the set $E \subset \mathbb{R}$

(c)
$$f(x) = \cos^2(x) - \sin^2(x)$$

<u>Ex 5:</u>

For $s \in \mathbb{T}$ let τ_s denote the shift operator

$$\tau_s: X \to X, f \mapsto f(\cdot + s)$$

which we consider for the following choices of spaces X:

$$X = L^p(\mathbb{T}) \text{ and } p \in [1, \infty], \quad C(\mathbb{T})$$

- (a) Convince yourself that τ_s is a bounded linear operator from X to X. Moreover, show that τ_s an isometric isomorphism (of Banach spaces).
- (b) Let $p \in [1, \infty)$ and let X be either $L^p(\mathbb{T})$ or $C(\mathbb{T})$. Show that for any fixed $f \in X$, $s \mapsto \tau_s f$ is continuous as mapping from \mathbb{T} to X (*hint: first consider* $X = C(\mathbb{T})$ and reduce the other case to that one).
- (c) Show that the continuity in (b) is not *uniform* in f. In other words, show that $s \mapsto \tau_s$ is not continuous as operator from \mathbb{T} to $\mathcal{B}(X)^2$
- (d) Show that the assertion in (b) is not true for $X = L^{\infty}(\mathbb{T})$.
- (e) Show that $(\widehat{\tau_s f})(n) = e^{ins} \widehat{f}(n)$ and $(\widehat{e^{i(\cdot)k}f}) = (\tau_k \widehat{f})$ for $s \in \mathbb{T}$ and $k \in \mathbb{Z}$.

²here $\mathcal{B}(X)$ denotes the bounded linear operators from X to X.