Representation categories of vertex algebras

ZMP Seminar

Vertex operator algebras and topological field theories from twisted QFTs in 3d and 4d

Overview

(1) Basic definitions
(2) The big picture of vertex algebra representation categories
(3) How to find representations

Definition: Vertex algebra (VA)

Data:

- vector space V
- vacuum vector $\Omega \in V$
- translation operator $T: V \rightarrow V$
- field $\operatorname{map} Y: V \otimes V \rightarrow V((z))$

Axioms:

- vacuum axiom:

$$
\begin{aligned}
& Y(\Omega, z)=\operatorname{id}_{V} \text { and } \\
& Y(A, z) \Omega=A+z V[[z]], \forall A \in V
\end{aligned}
$$

- translation axiom:
$T \Omega=0$ and
$[T, Y(A, z)]=\partial_{z} Y(A, z)$
- locality: $\forall A, B \in V, \exists n \in \mathbb{N}$ $(z-w)^{n}[Y(A, z), Y(B, w)]=0$

Consequence/Proposition

For all $A, B, C \in V$
$Y(A, z) Y(B, w) C \in V((z))((w))$
$Y(B, w) Y(A, z) C \in V((w))((z))$
$Y(Y(A, z-w) B, w) C \in V((w))((z-w))$

Expansion of same element in

$$
V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]
$$

The previous slide shows vertex algebras are close to associative commutative unital \mathbb{C}-algebras with a derivation. We also see that the fields $Y(A, z)$ are essentially an action of V on itself.

Definition: Vertex algebra module

Let (V, Ω, T, Y) be a vertex algebra. A V-module is a pair $\left(M, Y_{M}\right): M$ a vector space and $Y_{M}: V \otimes M \rightarrow M((z))$ such that

- $Y_{M}(\Omega, z)=\mathrm{id}_{M}$
- $Y_{M}(T A, z)=\partial_{z} Y_{M}(A, z)$
- For all $A, B \in V$ and $C \in M$ the expansions

$$
\begin{aligned}
& Y_{M}(A, z) Y_{M}(B, w) C \in M((z))((w)) \\
& Y_{M}(B, w) Y_{M}(A, z) C \in M((w))((z)) \\
& Y_{M}(Y(A, z-w) B, w) C \in M((w))((z-w))
\end{aligned}
$$

$$
\text { can be identified in } M[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right] .
$$

Many additional assumtions can be added to the above definition. E.g. bounded conformal weights, finite weight spaces, semi simplicity, etc.

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right), \ldots$ be V-modules. In order use V for conformal field theory, one needs to consider chiral correlation functions:
$\left\langle Y(A, z) \phi\left(m_{1}, x_{1}\right) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle$

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right), \ldots$ be V-modules. In order use V for conformal field theory, one needs to consider chiral correlation functions:
$\left\langle Y(A, z) \phi\left(m_{1}, x_{1}\right) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle$
$\left\langle\phi\left(Y\left(A, z-x_{1}\right) m_{1}, x_{1}\right) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle$

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right), \ldots$ be V-modules. In order use V for conformal field theory, one needs to consider chiral correlation functions:

```
\langleY(A,z)\phi(m},\mp@subsup{m}{1}{},\mp@subsup{x}{1}{})\phi(\mp@subsup{m}{2}{},\mp@subsup{x}{2}{})\cdots
\langle\phi(Y(A,z-\mp@subsup{x}{1}{})\mp@subsup{m}{1}{},\mp@subsup{x}{1}{})\phi(\mp@subsup{m}{2}{},\mp@subsup{x}{2}{})\cdots\rangle
\langle\phi(m},\mp@subsup{m}{1}{})Y(A,z)\phi(m2,\mp@subsup{x}{2}{})\cdots
```

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right), \ldots$ be V-modules. In order use V for conformal field theory, one needs to consider chiral correlation functions:

$$
\begin{aligned}
& \left\langle Y(A, z) \phi\left(m_{1}, x_{1}\right) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle \\
& \left\langle\phi\left(Y\left(A, z-x_{1}\right) m_{1}, x_{1}\right) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle \\
& \left\langle\phi\left(m_{1}, x_{1}\right) Y(A, z) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle \\
& \left\langle\phi\left(m_{1}, x_{1}\right) \phi\left(Y\left(A, z-x_{2}\right) m_{2}, x_{2}\right) \cdots\right\rangle
\end{aligned}
$$

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right), \ldots$ be V-modules. In order use V for conformal field theory, one needs to consider chiral correlation functions:
$\left\langle Y(A, z) \phi\left(m_{1}, x_{1}\right) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle$
$\left\langle\phi\left(Y\left(A, z-x_{1}\right) m_{1}, x_{1}\right) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle$
$\left\langle\phi\left(m_{1}, x_{1}\right) Y(A, z) \phi\left(m_{2}, x_{2}\right) \cdots\right\rangle$
$\left\langle\phi\left(m_{1}, x_{1}\right) \phi\left(Y\left(A, z-x_{2}\right) m_{2}, x_{2}\right) \cdots\right\rangle$
These are essentially V-multilinear maps.

Definition: Intertwining operator

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right),\left(M_{3}, Y_{M_{3}}\right)$ be V-modules. An intertwining operator of type $\binom{M_{1}}{M_{1}, M_{2}}$ is a map $\mathcal{Y}: M_{1} \otimes M_{2} \rightarrow M_{3} x$ such that for all $m_{i} \in M_{i}$

- $\mathcal{Y}\left(m_{1}, z\right) m_{2}$ truncates below.
- $\mathcal{Y}\left(m_{1}, z\right)=\partial_{z} \mathcal{Y}\left(m_{1}, z\right)$.
- The expansions

$$
Y_{M_{3}}(A, z) \mathcal{Y}\left(m_{1}, x\right) m_{2} \sim \mathcal{Y}\left(Y_{M_{1}}(A, z-x) m_{1}, x\right) m_{2} \sim \mathcal{Y}\left(m_{1}, x\right) Y_{M_{2}}(A, z) m_{2}
$$ can be identified (via VA version of Jacobi identity).

Observations:

Definition: Intertwining operator

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right),\left(M_{3}, Y_{M_{3}}\right)$ be V-modules. An intertwining operator of type $\binom{M_{1}}{M_{1}, M_{2}}$ is a map $\mathcal{Y}: M_{1} \otimes M_{2} \rightarrow M_{3} x$ such that for all $m_{i} \in M_{i}$

- $\mathcal{Y}\left(m_{1}, z\right) m_{2}$ truncates below.
- $\mathcal{Y}\left(\operatorname{Tm}_{1}, z\right)=\partial_{z} \mathcal{Y}\left(m_{1}, z\right)$.
- The expansions $Y_{M_{3}}(A, z) \mathcal{Y}\left(m_{1}, x\right) m_{2} \sim \mathcal{Y}\left(Y_{M_{1}}(A, z-x) m_{1}, x\right) m_{2} \sim \mathcal{Y}\left(m_{1}, x\right) Y_{M_{2}}(A, z) m_{2}$ can be identified (via VA version of Jacobi identity).

Observations:

- The field map Y is an intertwining operator of type $\binom{V}{V, V}$.

Definition: Intertwining operator

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right),\left(M_{3}, Y_{M_{3}}\right)$ be V-modules. An intertwining operator of type $\binom{M_{3}}{M_{1}, M_{2}}$ is a map $\mathcal{Y}: M_{1} \otimes M_{2} \rightarrow M_{3} x$ such that for all $m_{i} \in M_{i}$

- $\mathcal{Y}\left(m_{1}, z\right) m_{2}$ truncates below.
- $\mathcal{Y}\left(m_{1}, z\right)=\partial_{z} \mathcal{Y}\left(m_{1}, z\right)$.
- The expansions $Y_{M_{3}}(A, z) \mathcal{Y}\left(m_{1}, x\right) m_{2} \sim \mathcal{Y}\left(Y_{M_{1}}(A, z-x) m_{1}, x\right) m_{2} \sim \mathcal{Y}\left(m_{1}, x\right) Y_{M_{2}}(A, z) m_{2}$ can be identified (via VA version of Jacobi identity).

Observations:

- The field map Y is an intertwining operator of type $\binom{V}{V, V}$.
- The action Y_{M} is an intertwining operator of type $\left(\begin{array}{c} \\ V, M\end{array}\right)$.

Definition: Intertwining operator

Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right),\left(M_{3}, Y_{M_{3}}\right)$
be V-modules. An intertwining operator of type $\left(\begin{array}{c}M_{1}, M_{2}\end{array}\right)$ is a map
$\mathcal{Y}: M_{1} \otimes M_{2} \rightarrow M_{3} x$ such that for all $m_{i} \in M_{i}$

- $\mathcal{Y}\left(m_{1}, z\right) m_{2}$ truncates below.
- $\mathcal{Y}\left(T_{1}, z\right)=\partial_{z} \mathcal{Y}\left(m_{1}, z\right)$.
- The expansions $Y_{M_{3}}(A, z) \mathcal{Y}\left(m_{1}, x\right) m_{2} \sim \mathcal{Y}\left(Y_{M_{1}}(A, z-x) m_{1}, x\right) m_{2} \sim \mathcal{Y}\left(m_{1}, x\right) Y_{M_{2}}(A, z) m_{2}$ can be identified (via VA version of Jacobi identity).

Observations:

- The field map Y is an intertwining operator of type $\binom{V}{V, V}$.
- The action Y_{M} is an intertwining operator of type $\left(\begin{array}{c} \\ V, M\end{array}\right)$.
- Intertwining operators are V-bilinear maps. All intertwining operators of a given type form a vector space. The field map Y and the action Y_{M} have a distinguished normalisation due to $Y_{*}(\omega, z)=\mathrm{id}_{*}$.

Tensor products pull multilinear algebra back to linear algebra!
Definition: Fusion product aka vertex algebra tensor product Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right)$ be V-modules. A fusion product is a triple ($M_{1} \boxtimes M_{2}, Y_{M_{1} \boxtimes M_{2}}, \mathcal{Y}_{M_{1}, M_{2}}$), where ($M_{1} \boxtimes M_{2}, Y_{M_{1} \boxtimes M_{2}}$) is a V-module and $\mathcal{Y}_{M_{1}, M_{2}}$ is an intertwining operator of type $\binom{M_{1} \mathbb{\otimes} M_{2}}{M_{1}, M_{2}}$ such that the following universal property holds: For every V-module (X, Y_{X}) and intertwining operator \mathcal{Y}_{X} of type $\binom{X}{M_{1}, M_{2}}$

$$
M_{1} \otimes M_{2} \underbrace{\substack{\mathcal{Y}_{1}, M_{2}}}_{\substack{\mathcal{Y}_{X}}} M_{1} \boxtimes M_{2}\{z\}
$$

Tensor products pull multilinear algebra back to linear algebra!
Definition: Fusion product aka vertex algebra tensor product Let (V, Ω, T, Y) be a vertex algebra and $\left(M_{1}, Y_{m_{1}}\right),\left(M_{2}, Y_{M_{2}}\right)$ be V-modules. A fusion product is a triple ($M_{1} \boxtimes M_{2}, Y_{M_{1} \boxtimes M_{2}}, \mathcal{Y}_{M_{1}, M_{2}}$), where ($M_{1} \boxtimes M_{2}, Y_{M_{1} \boxtimes M_{2}}$) is a V-module and $\mathcal{Y}_{M_{1}, M_{2}}$ is an intertwining operator of type $\binom{M_{1} \boxtimes M_{2}}{M_{1}, M_{2}}$ such that the following universal property holds: For every V-module (X, Y_{X}) and intertwining operator \mathcal{Y}_{X} of type $\binom{X}{M_{1}, M_{2}}$

$$
M_{1} \otimes M_{2} \underbrace{\substack{y_{M_{1}, M_{2}}}}_{\substack{\nu_{x}}} M_{1} \boxtimes M_{2}\{z\}
$$

In contrast to linear algebra (or ring theory) constructing $M_{1} \boxtimes M_{2}$ and decomposing into a direct sum of indecomposable modules is extremely hard.

Example: Heisenberg vertex algebra. Let F_{μ}, be the Fock space of weight $\mu \in \mathbb{C}$. Then $\operatorname{dim}\binom{F_{\rho}}{F_{\mu}, F_{\nu}}=\delta_{\rho, \mu+\nu}$ for all $\rho, \mu, \nu \in \mathbb{C}$. $\binom{F_{\mu}+\nu}{F_{\mu}, F_{\nu}}$ is spanned by

$$
\mathcal{Y}_{F_{\mu}, F_{\nu}}(p|\mu\rangle, z) q|\nu\rangle=z^{\mu \nu} S_{\mu} \prod_{m \geq 1} \exp \left(\mu \frac{a_{-m}}{m} z^{m}\right) Y_{F_{\nu}}(p|0\rangle, z)
$$

$$
\prod_{m \geq 1} \exp \left(-\mu \frac{a_{m}}{m} z^{-m}\right) q|\nu\rangle
$$

where S_{μ} is the shift operator.

Well chosen categories of modules are tensor categories with respect to \boxtimes with the following structures.

- For module homomorphimsm $f: X \rightarrow Z, g: U \rightarrow W, f \boxtimes g$ is uniquely characterised by $(f \boxtimes g) \mathcal{Y}_{X \boxtimes U}=\mathcal{Y}_{Z \boxtimes W} \circ(f \otimes g)$

Well chosen categories of modules are tensor categories with respect to \boxtimes with the following structures.

- V is the tensor identity and the unit isomorphisms are uniquely characterised by

$$
\begin{aligned}
& \ell_{M}\left(\mathcal{Y}_{V, M}(a, z) m\right)=Y_{M}(a, z) m \text { and } \\
& r_{M}\left(\mathcal{Y}_{M, V}(m, z) a\right)=e^{z T} Y_{M}(a,-z) m .
\end{aligned}
$$

Well chosen categories of modules are tensor categories with respect to \boxtimes with the following structures.

- associativity isomorphisms (hardest part!)
$A_{M_{1}, M_{2}, M_{3}}\left(\mathcal{Y}_{M_{1}, M_{2} \boxtimes M_{3}}\left(m_{1}, x_{1}\right) \mathcal{Y}_{M_{2}, M_{3}}\left(m_{2}, x_{2}\right) m_{3}\right)=$ $\mathcal{Y}_{M_{1} \boxtimes M_{2}, M_{3}}\left(\mathcal{Y}_{M_{1}, M_{2}}\left(m_{1}, x_{1}\right) m_{2}, x_{2}\right) m_{3}$ All analytic details hidden.

Well chosen categories of modules are tensor categories with respect to \boxtimes with the following structures.

- Braiding isomorphisms uniquely characterised by $c_{M_{1}, M_{2}}\left(\mathcal{Y}_{M_{1}, M_{2}}\left(m_{1}, x_{1}\right) m_{2}\right)=e^{z T} \mathcal{Y}_{M_{2}, M_{1}}\left(m_{2}, e^{i \pi} z\right) m_{1}$

Well chosen categories of modules are tensor categories with respect to \boxtimes with the following structures.

- For module homomorphimsm $f: X \rightarrow Z, g: U \rightarrow W, f \boxtimes g$ is uniquely characterised by $(f \boxtimes g) \mathcal{Y}_{X \boxtimes U}=\mathcal{Y}_{Z \boxtimes W} \circ(f \otimes g)$
- V is the tensor identity and the unit isomorphisms are uniquely characterised by

$$
\begin{aligned}
& \ell_{M}\left(\mathcal{Y}_{V, M}(a, z) m\right)=Y_{M}(a, z) m \text { and } \\
& r_{M}\left(\mathcal{Y}_{M, V}(m, z) a\right)=e^{z T} Y_{M}(a,-z) m .
\end{aligned}
$$

- associativity isomorphisms (hardest part!)
$A_{M_{1}, M_{2}, M_{3}}\left(\mathcal{Y}_{M_{1}, M_{2} \boxtimes M_{3}}\left(m_{1}, x_{1}\right) \mathcal{Y}_{M_{2}, M_{3}}\left(m_{2}, x_{2}\right) m_{3}\right)=$
$\mathcal{Y}_{M_{1} \boxtimes M_{2}, M_{3}}\left(\mathcal{Y}_{M_{1}, M_{2}}\left(m_{1}, x_{1}\right) m_{2}, x_{2}\right) m_{3}$
All analytic details hidden.
- Braiding isomorphisms uniquely characterised by $c_{M_{1}, M_{2}}\left(\mathcal{Y}_{M_{1}, M_{2}}\left(m_{1}, x_{1}\right) m_{2}\right)=e^{z T} \mathcal{Y}_{M_{2}, M_{1}}\left(m_{2}, e^{i \pi} z\right) m_{1}$

If the vertex algebra V is conformal (a vertex operator algebra) and the modules are chosen to be compatible with this conformal structure, then there is also a twist $\theta_{M}=\left.e^{2 \pi i L_{0}}\right|_{M}$, which satisfies the balancing equation

$$
\theta_{M_{1} \boxtimes M_{2}}=c_{M_{1}, M_{2}} \circ c_{M_{2}, M_{1}} \circ\left(\theta_{M_{1}} \boxtimes \theta_{M_{2}}\right)
$$

If the vertex algebra V is conformal (a vertex operator algebra) and the modules are chosen to be compatible with this conformal structure, then there is also a twist $\theta_{M}=\left.e^{2 \pi i L_{0}}\right|_{M}$, which satisfies the balancing equation

$$
\theta_{M_{1} \boxtimes M_{2}}=c_{M_{1}, M_{2}} \circ c_{M_{2}, M_{1}} \circ\left(\theta_{M_{1}} \boxtimes \theta_{M_{2}}\right)
$$

Tensor categories of vertex operator algebra modules depend only very weakly on the conformal structure. Only the twist and the dual (not discussed) depend on the conformal structure.

Theorem [Huang '04]: The Verlinde Conjecture

Let (V, Ω, ω, Y) be a vertex operator algebra and Adm V be the category of admissible V-modules. If
(1) $\operatorname{dim} V_{0}=1, \operatorname{dim} V_{-n}=0, \operatorname{dim} V_{n}<\infty, n \in \mathbb{N}$,
(2) V is simple as a module over itself,
(3) $V \cong V^{\prime}$, self-dual,
(4) $\operatorname{dim} V / c_{2}(V)<\infty$,
(5) $\operatorname{Adm}(V)$ is semisimple,
then $\operatorname{Adm} V$ is a modular tensor category. Further the action of the modular group on the category (which determines Verlinde's formula) is equal (after a renormalisation) to the action of the modular group on module characters.

Summary of what we've discussed so far

- Vertex algebras are almost commutative unital algebras with derivations.
- The conformal vector is a choice/structure: there can be 0,1 or many.
- Vertex algebras admit modules. "Good choices" of module categories admit a tensor (aka fusion) product.
- With the exception of associators, the tensor structure morphisms follow from natural constructions and are easy to obtain.

Practical matters

- Nothing presented so far helps with actually finding modules.

Practical matters

- Nothing presented so far helps with actually finding modules.
- For commutative algebras, the regular module can be used to present any finitely generated module.

Practical matters

- Nothing presented so far helps with actually finding modules.
- For commutative algebras, the regular module can be used to present any finitely generated module.
- This fails for vertex (operator) algebras. The vertex algebra as a module over itself is often assumed/required to be simple. In general almost all modules cannot be presented from sums of the vertex algebra.

Practical matters

- Nothing presented so far helps with actually finding modules.
- For commutative algebras, the regular module can be used to present any finitely generated module.
- This fails for vertex (operator) algebras. The vertex algebra as a module over itself is often assumed/required to be simple. In general almost all modules cannot be presented from sums of the vertex algebra.
- For vertex operator algebras (so with conformal structure) we can use Zhu's algebra.

Definition/Proposition: Zhu's associative algebra, [Zhu '96]

 Let (V, Ω, ω, Y) be a vertex operator algebra and consider the two binary operations$a \circ b=\operatorname{Res} Y(a, z) b \frac{(1+z)^{h_{a}}}{z^{2}}, \quad a * b=\operatorname{Res} Y(a, z) b \frac{(1+z)^{h_{a}}}{z}$. Let $O(V)=\operatorname{span}\{a \circ b \mid \forall a, b \in V\}$. Then the following hold.
(1) $A(V)=V / O(V)$ is a unital associative algebra under the binary operation $*$.
(2) The class of the vacuum vector $[\Omega]=\Omega+O(V)$ is the identity element.
(3) The class of the Virasoro vector $[\omega]=\omega+O(V)$ lies in the centre.
4. Let M be a V-module with ground state space \bar{M}. On \bar{M} $(a * b)_{0}=a_{0} b_{0}$ for all $a, b \in V$.
5. If \bar{M} is a (left) module over $A(V)$ then it can be induced to a V-module with \bar{M} as the space of ground states.

Virasoro algebra example:

- For the universal virasoro vertex operator algebra $\left(V_{c}, \Omega, \omega, Y\right)$, of central charge $c \in \mathbb{C}$ we have $\mathbb{C}[X] \cong A\left(V_{c}\right)$, where the isormophism is given by $X \mapsto[\omega]$.
- At minimal model central charges
$c_{p, q}=1-6 \frac{(p-q)^{2}}{p q}, p, q \geq 2, \operatorname{gcd}(p, q)=1$,
there is a singular vector $\chi \in V_{c_{p, q}}$ at degree $(p-1)(q-1)$.
Under the above isomorphism $[\chi] \in A\left(V_{c_{p, q}}\right)$ corresponds to some $f(X)$ and $A\left(V_{c_{p, q}} /\langle\chi\rangle\right) \cong C[X] /\langle f(X)\rangle$.
- For the Yang-Lee minimal model $p=2, q=5$

$$
\begin{aligned}
& \chi=\left(L_{-2}^{2}-\frac{3}{5} L_{-4}\right) \Omega \\
& Y(\chi ; z)=: T(z)^{2}:-\frac{3}{10} \partial^{2} T(z)
\end{aligned}
$$

Affine example:

- Let \mathfrak{g} be a complex finite dimensional simple Lie algebra and let $V_{k}(\mathfrak{g})$ be the universal affine vertex operator algebra (conformal vector given by the Sugawara construction). Then $U(\mathfrak{g}) \cong A\left(V_{k}(\mathfrak{g})\right)$, where isomorphism is given by $x \mapsto\left[x_{-1} \Omega\right]$.
- If $k \in \mathbb{Z}_{\geq 0},\left(e_{-1}^{\theta}\right)^{k+1} \Omega$ is singular and generates the maximal ideal. $A\left(V_{k}(\mathfrak{g}) /\left\langle\left(e_{-1}^{\theta}\right)^{k+1} \Omega\right\rangle\right) \cong U(\mathfrak{g}) /\left\langle\left(e^{\theta}\right)^{k+1}\right\rangle$ is finite dimensional and semi simple.
- $\mathfrak{s l}_{2}$ at $k=-\frac{4}{3}$. The singular vector
$\chi=\left(h_{-3}+3 e_{-2} f_{-1}-3 e_{-1} f_{-2}+\frac{9}{2} h_{-1} e_{-1} f_{-1}+\frac{9}{8} h_{-1}^{3}-\frac{9}{4} h_{-2} h_{-1}\right) \Omega$ generates the unique non-trivial ideal.

Literature

- Vertex algebras as rings: Frenkel Ben-Zvi, Chapters 1-5, http://dx.doi.org/10.1090/surv/088
- Fusion/tensor product theory: Huang Lepowsky Zhang 8 Part Series: arXiv:1012.4193, arXiv:1012.4196, arXiv:1012.4197, arXiv:1012.4198, arXiv:1012.4199, arXiv:1012.4202, arXiv:1110.1929, arXiv:1110.1931
- Zhu algebra theory: Zhu '96 JAMS https://www.jstor.org/stable/2152847
- Zhu algebra specialised to affine VOAs DOI: 10.1215/S0012-7094-92-06604-X

