
Representation categories of vertex algebras

ZMP Seminar

Vertex operator algebras and topological field theories from twisted QFTs in 3d and 4d
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Definition: Vertex algebra (VA)
Data:
• vector space V
• vacuum vector Ω ∈ V
• translation operator T : V → V
• field map Y : V ⊗ V → V((z))

Axioms:
• vacuum axiom:

Y(Ω, z) = idV and
Y(A, z)Ω = A + zV[[z]], ∀A ∈ V
• translation axiom:

TΩ = 0 and
[T,Y(A, z)] = ∂zY(A, z)
• locality: ∀A,B ∈ V, ∃n ∈ N

(z− w)n[Y(A, z),Y(B,w)] = 0

Consequence/Proposition
For all A,B,C ∈ V

Y(A, z)Y(B,w)C ∈ V((z))((w))

Y(B,w)Y(A, z)C ∈ V((w))((z))

Y(Y(A, z− w)B,w)C ∈ V((w))((z− w))

Expansion of same element
in
V[[z,w]][z−1,w−1, (z− w)−1].
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The previous slide shows vertex algebras are close to associative
commutative unital C-algebras with a derivation. We also see that the
fields Y(A, z) are essentially an action of V on itself.

Definition: Vertex algebra module
Let (V,Ω,T,Y) be a vertex algebra. A V-module is a pair (M,YM): M a
vector space and YM : V ⊗M → M((z)) such that
• YM(Ω, z) = idM

• YM(TA, z) = ∂zYM(A, z)
• For all A,B ∈ V and C ∈ M the expansions

YM(A, z)YM(B,w)C ∈ M((z))((w))
YM(B,w)YM(A, z)C ∈ M((w))((z))
YM(Y(A, z− w)B,w)C ∈ M((w))((z− w))
can be identified in M[[z,w]][z−1,w−1, (z− w)−1].

Many additional assumtions can be added to the above definition. E.g.
bounded conformal weights, finite weight spaces, semi simplicity, etc.
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Let (V,Ω,T,Y) be a vertex algebra and (M1,Ym1), (M2,YM2), . . . be
V-modules. In order use V for conformal field theory, one needs to
consider chiral correlation functions:

〈Y(A, z)φ(m1, x1)φ(m2, x2) · · · 〉
〈φ(Y(A, z− x1)m1, x1)φ(m2, x2) · · · 〉
〈φ(m1, x1)Y(A, z)φ(m2, x2) · · · 〉
〈φ(m1, x1)φ(Y(A, z− x2)m2, x2) · · · 〉
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Definition: Intertwining operator
Let (V,Ω,T,Y) be a vertex algebra and (M1,Ym1), (M2,YM2), (M3,YM3)
be V-modules. An intertwining operator of type

( M3
M1, M2

)
is a map

Y : M1 ⊗M2 → M3x such that for all mi ∈ Mi

• Y(m1, z)m2 truncates below.
• Y(Tm1, z) = ∂zY(m1, z).
• The expansions

YM3(A, z)Y(m1, x)m2 ∼ Y(YM1(A, z−x)m1, x)m2 ∼ Y(m1, x)YM2(A, z)m2
can be identified (via VA version of Jacobi identity).

Observations:
• The field map Y is an intertwining operator of type

( V
V, V

)
.

• The action YM is an intertwining operator of type
( M

V, M

)
.

• Intertwining operators are V-bilinear maps. All intertwining
operators of a given type form a vector space. The field map Y
and the action YM have a distinguished normalisation due to
Y∗(ω, z) = id∗.
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Tensor products pull multilinear algebra back to linear algebra!

Definition: Fusion product aka vertex algebra tensor product
Let (V,Ω,T,Y) be a vertex algebra and (M1,Ym1), (M2,YM2) be
V-modules. A fusion product is a triple (M1 � M2,YM1�M2 ,YM1,M2),
where (M1 � M2,YM1�M2) is a V-module and YM1,M2 is an intertwining
operator of type

(M1�M2
M1, M2

)
such that the following universal property

holds: For every V-module (X,YX) and intertwining operator YX of type( X
M1,M2

)
M1 ⊗M2 M1 � M2{z}

X{z}

YM1,M2

YX ∃!f

In contrast to linear algebra (or ring theory) constructing M1 � M2 and
decomposing into a direct sum of indecomposable modules is
extremely hard.
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Example: Heisenberg vertex algebra. Let Fµ, be the Fock space of
weight µ ∈ C. Then dim

( Fρ
Fµ, Fν

)
= δρ,µ+ν for all ρ, µ, ν ∈ C.( Fµ+ν

Fµ, Fν

)
is spanned by

YFµ,Fν (p|µ〉, z)q|ν〉 = zµνSµ
∏
m≥1

exp
(
µ

a−m

m
zm
)

YFν (p|0〉, z)

·
∏
m≥1

exp
(
−µam

m
z−m
)

q|ν〉,

where Sµ is the shift operator.
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Well chosen categories of modules are tensor categories with respect
to � with the following structures.
• For module homomorphimsm f : X → Z, g : U → W, f � g is

uniquely characterised by
(f � g)YX�U = YZ�W ◦ (f ⊗ g)

• V is the tensor identity and the unit isomorphisms are uniquely
characterised by
`M (YV,M(a, z)m) = YM(a, z)m and
rM (YM,V(m, z)a) = ezTYM(a,−z)m.
• associativity isomorphisms (hardest part!)

AM1,M2,M3 (YM1,M2�M3(m1, x1)YM2,M3(m2, x2)m3) =
YM1�M2,M3(YM1,M2(m1, x1)m2, x2)m3
All analytic details hidden.
• Braiding isomorphisms uniquely characterised by

cM1,M2 (YM1,M2(m1, x1)m2) = ezTYM2,M1(m2, eiπz)m1
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If the vertex algebra V is conformal (a vertex operator algebra) and the
modules are chosen to be compatible with this conformal structure,
then there is also a twist θM = e2πiL0 |M, which satisfies the balancing
equation
θM1�M2 = cM1,M2 ◦ cM2,M1 ◦ (θM1 � θM2)

Tensor categories of vertex operator algebra modules depend only
very weakly on the conformal structure. Only the twist and the dual
(not discussed) depend on the conformal structure.
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Theorem [Huang ’04]: The Verlinde Conjecture
Let (V,Ω, ω, Y) be a vertex operator algebra and Adm V be the
category of admissible V-modules. If

1 dim V0 = 1,dim V−n = 0, dim Vn <∞, n ∈ N,
2 V is simple as a module over itself,
3 V ∼= V ′, self-dual,
4 dim V/c2(V) <∞,
5 Adm(V) is semisimple,

then Adm V is a modular tensor category. Further the action of the
modular group on the category (which determines Verlinde’s formula)
is equal (after a renormalisation) to the action of the modular group on
module characters.
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Summary of what we’ve discussed so far

• Vertex algebras are almost commutative unital algebras with
derivations.
• The conformal vector is a choice/structure: there can be 0, 1 or

many.
• Vertex algebras admit modules. “Good choices” of module

categories admit a tensor (aka fusion) product.
• With the exception of associators, the tensor structure morphisms

follow from natural constructions and are easy to obtain.
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Practical matters

• Nothing presented so far helps with actually finding modules.
• For commutative algebras, the regular module can be used to

present any finitely generated module.
• This fails for vertex (operator) algebras. The vertex algebra as a

module over itself is often assumed/required to be simple. In
general almost all modules cannot be presented from sums of the
vertex algebra.
• For vertex operator algebras (so with conformal structure) we can

use Zhu’s algebra.
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Definition/Proposition: Zhu’s associative algebra, [Zhu ’96]
Let (V,Ω, ω, Y) be a vertex operator algebra and consider the two
binary operations
a ◦ b = Res Y(a, z)b (1+z)ha

z2 , a ∗ b = Res Y(a, z)b (1+z)ha

z .
Let O(V) = span{a ◦ b|∀a, b ∈ V}. Then the following hold.

1 A(V) = V/O(V) is a unital associative algebra under the binary
operation ∗.

2 The class of the vacuum vector [Ω] = Ω + O(V) is the identity
element.

3 The class of the Virasoro vector [ω] = ω + O(V) lies in the centre.
4 Let M be a V-module with ground state space M. On M

(a ∗ b)0 = a0b0 for all a, b ∈ V.
5 If M is a (left) module over A(V) then it can be induced to a

V-module with M as the space of ground states.
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Virasoro algebra example:
• For the universal virasoro vertex operator algebra (Vc,Ω, ω, Y), of

central charge c ∈ C we have C[X] ∼= A(Vc), where the
isormophism is given by X 7→ [ω].
• At minimal model central charges

cp,q = 1− 6 (p−q)2

pq , p, q ≥ 2, gcd(p, q) = 1,
there is a singular vector χ ∈ Vcp,q at degree (p− 1)(q− 1).
Under the above isomorphism [χ] ∈ A(Vcp,q) corresponds to some
f (X) and A(Vcp,q/〈χ〉) ∼= C[X]/〈f (X)〉.
• For the Yang-Lee minimal model p = 2, q = 5
χ = (L2

−2 −
3
5 L−4)Ω

Y(χ; z) = : T(z)2 :− 3
10∂

2T(z)
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Affine example:
• Let g be a complex finite dimensional simple Lie algebra and let

Vk(g) be the universal affine vertex operator algebra (conformal
vector given by the Sugawara construction). Then
U(g) ∼= A(Vk(g)), where isomorphism is given by x 7→ [x−1Ω].

• If k ∈ Z≥0,
(
eθ−1

)k+1
Ω is singular and generates the maximal ideal.

A(Vk(g)/〈
(
eθ−1

)k+1
Ω〉) ∼= U(g)/〈

(
eθ
)k+1〉 is finite dimensional and

semi simple.
• sl2 at k = −4

3 . The singular vector
χ =

(
h−3 + 3e−2f−1 − 3e−1f−2 + 9

2 h−1e−1f−1 + 9
8 h3
−1 −

9
4 h−2h−1

)
Ω

generates the unique non-trivial ideal.
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Literature

• Vertex algebras as rings: Frenkel Ben-Zvi, Chapters 1-5,
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