FUSION 2-CATEGORIES

ALEXANDER MANG

Notes accompanying a talk given on Sections 2.1.1 and 2.1.2 of Christopher L. Douglas and David J. Reutter's "Fusion 2-categories and a state-sum invariant for 4-manifolds" [DR18] in Ingo Runkel and Christoph Schweigert's "Research Seminar Algebra and Mathematical Physics" at Hamburg University on Tuesday, January 24, 2023. None of this is my own work.

Objective of the talk. Defining fusion 2-categories and illustrating their graphical calculus.

The definition of fusion 2-categories

We now add a "<u>monoidal structure</u>" to the 2-categories studied so far. To that end, a short aside about "higher monoidality".

- **Remark.** (a) *"Higher monoidality":* (for all but finitely many *n* yet undefined notion that) a *k*-tuply monoidal *n*-dimensional category is one equipped with *k* additional binary operations, interchanging via specified *n*-morphisms. Examples:
 - 0-tuply monoidal 0-dimensional category: set
 - 1-tuply monoidal 0-dimensional category: monoid
 - 2-tuply monoidal 0-dimensional category: commutative monoid
 - 0-tuply monoidal 1-dimensional category: category
 - 1-tuply monoidal 1-dimensional category: monoidal category ...
 - (b) "Delooping hypothesis": (consistency condition for potential definitions of higher categories, demanding an) (n+k)-dimensional equivalence between ktuply monoidal n-dimensional categories and pointed (k - 1)-connected (n + k)-dimensional categories (i.e., with singled out 0-morphisms and such that for any j < k any two parallel j-morphisms are equivalent).</p>

Whereas we could afford to be fairly cavalier about distinguishing between weak and strict 2-categories, from now on we need to be more careful.

Remark. (a) *Fusion 2-categories* are to be **Vect**-enriched monoidal bicategories with certain special properties (not additional structure).

- (b) *Monoidal bicategories* are equivalent to pointed <u>0-connected</u> tricategories (see [Sch09, Section 2.1] for the significance of being pointed).
- (c) *Tricategories*, fully weak 3-dimensional categories, were defined in [GPS95, Definition 2.2].

ALEXANDER MANG

- (d) Optimal strictification result: Any tricategory is triequivalent to a Gray category ("strict (op-)cubical" tricategory) [GPS95, Theorem 8.1].
- (e) *Gray categories* are categories enriched in 2-categories but with respect to Gray monoidal structure (strong version of [Gra76]), as opposed to the Cartesian monoidal structure (which would yield 3-categories instead).

Gray categories are almost 3-categories. They are, and in a unique way, if their interchange 3-morphism is an identity.

Definition. [DR18, Definition 2.1.1] A *Gray monoid* is any quintuple $(\mathcal{C}, I, L, R, \phi)$ such that

- (i) \mathcal{C} is a (strict) 2-category, the underlying 2-category,
- (ii) I is a 0-morphism of \mathcal{C} , the monoidal unit,
- (iii) L and R are families of (strict) 2-endofunctors of C, each indexed by the 0-morphisms of C, with

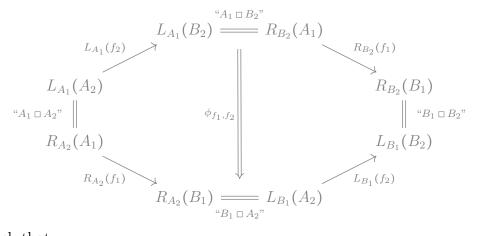
$$A_1 \square A_2 \coloneqq L_{A_1}(A_2) = R_{A_2}(A_1)$$

for any 0-morphisms A_1 and A_2 , the left and right monoidal products,

(iv) ϕ is a family of <u>invertible</u> 2-cells of C, indexed by pairs of 1-morphisms of C, such that for any 1-morphisms f_1 and f_2 , if $f_i: A_i \to B_i$ for each $i \in \{1, 2\}$, then

$$\phi_{f_1,f_2}: R_{B_2}(f_1) \circ L_{A_1}(f_2) \Rightarrow L_{B_1}(f_2) \circ R_{A_2}(f_1),$$

the (monoidal product) interchange,



and such that

- (a) $L_I = R_I$ and both are the identity 2-functor on \mathcal{C} ,
- (b) for any 0-morphisms A_1 , A_2 and A_3 , as compositions of 2-functors,

$$L_{A_1}L_{A_2} = L_{L_{A_1}(A_2)}$$
 and $R_{R_{A_2}(A_1)} = R_{A_2}R_{A_1}$

and also

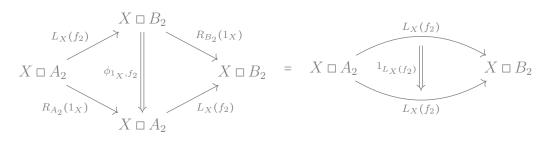
$$L_{A_1}R_{A_3} = R_{A_3}L_{A_1},$$

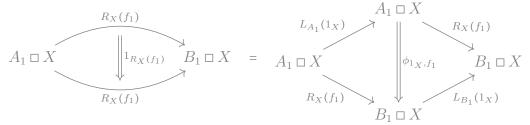
 $\mathbf{2}$

FUSION 2-CATEGORIES

(c) for any 1-morphisms f_1 and f_2 and any 0-morphism X,

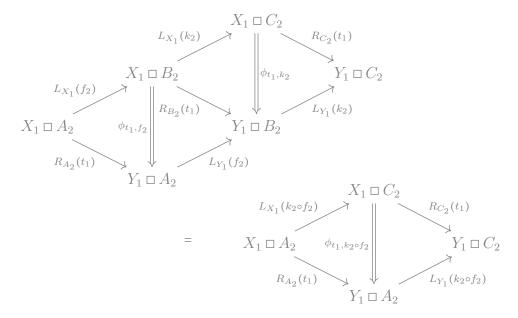
 $\phi_{1_X,f_2} = 1_{L_X(f_2)}$ and $1_{R_X(f_1)} = \phi_{f_1,1_X}$,





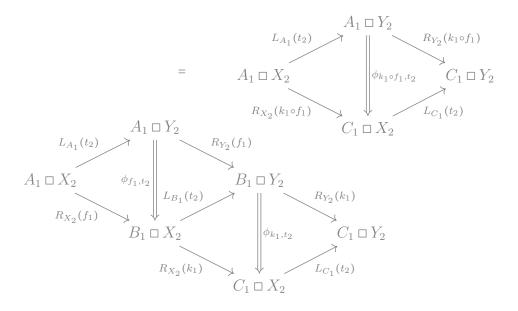
(d) given any 0-morphisms A_i , B_i , C_i , X_i and Y_i and any 1-morphisms $f_i: A_i \to B_i$ and $k_i: B_i \to C_i$ as well as $t_i: X_i \to Y_i$ for each $i \in \{1, 2\}$,

 $\phi_{t_1,k_2\circ f_2} = \left(\mathbf{1}_{L_{Y_1}(k_2)} \circ \phi_{t_1,f_2}\right) \cdot \left(\phi_{t_1,k_2} \circ \mathbf{1}_{L_{X_1}(f_2)}\right)$



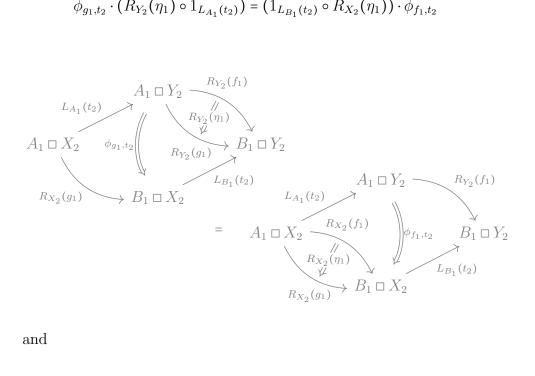
and

$$\phi_{k_1 \circ f_1, t_2} = (\phi_{k_1, t_2} \circ 1_{R_{X_2}(f_1)}) \cdot (1_{R_{Y_2}(k_1)} \circ \phi_{f_1, t_2}),$$

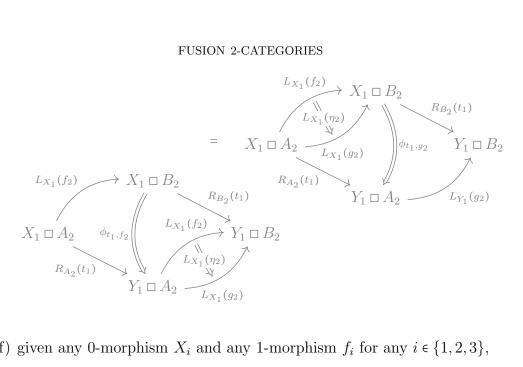


(e) given any 0-morphisms A_i , B_i , X_i and Y_i , any 1-morphisms $f_i: A_i \to B_i$ and $g_i: A_i \to B_i$ as well as $t_i: X_i \to Y_i$ and any 2-morphisms $\eta_i: f_i \Rightarrow g_i$ for each $i \in \{1, 2\},\$

$$\phi_{g_1,t_2} \cdot (R_{Y_2}(\eta_1) \circ 1_{L_{A_1}(t_2)}) = (1_{L_{B_1}(t_2)} \circ R_{X_2}(\eta_1)) \cdot \phi_{f_1,t_2}$$

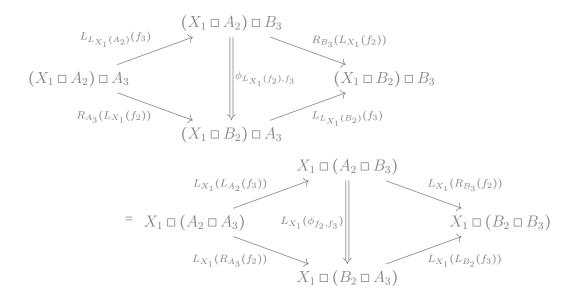


$$\phi_{t_1,g_2} \cdot (\mathbf{1}_{R_{B_2}(t_1)} \circ L_{X_1}(\eta_2)) = (L_{Y_1}(\eta_2) \circ \mathbf{1}_{R_{A_2}(t_1)}) \cdot \phi_{t_1,f_2},$$



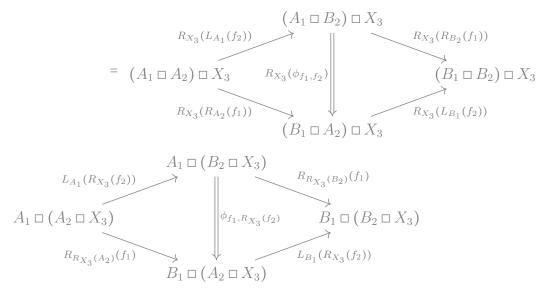
(f) given any 0-morphism X_i and any 1-morphism f_i for any $i \in \{1, 2, 3\}$,

$$\phi_{L_{X_1}(f_2),f_3} = L_{X_1}(\phi_{f_2,f_3})$$

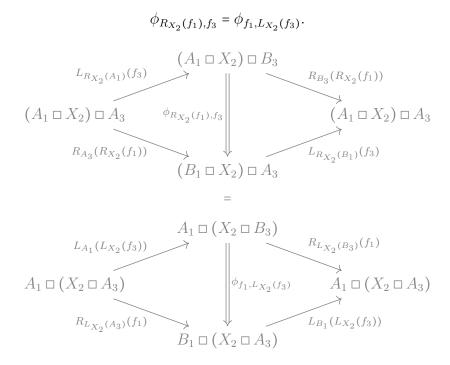


and

$$R_{X_3}(\phi_{f_1,f_2}) = \phi_{f_1,R_{X_3}(f_2)}$$



and also



It is not surprising that tricategories cannot be strictified to 3-categories, given the next example. After all, there are even symmetric monoidal categories which are not equivalent to one whose symmetry is an identity.

Examples. (a) In accordance with the delooping hypothesis, a *braided strict* monoidal category is evidently the same thing as a Gray monoid with a single 0-morphism. (In fact, the tricategory of pointed tricategories with (up to

FUSION 2-CATEGORIES

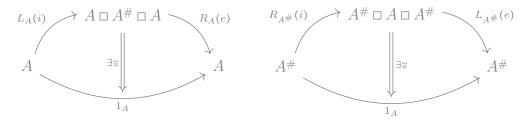
isomorphism) a single 0-morphism and a single 1-morphism and pointed trihomomorphisms etc. is triequivalent to the the category of braided monoidal categories and braided monoidal functors etc. [GPS95, Propositions 8.6, 8.7].)

(b) On any (strict) 2-category the strict 2-endfunctors, pseudonatural transformations and modifications can be assembled into a Gray monoid, where the monoidal product comes from the composition of 2-functors.

The delooping hypothesis also motivates a definition of dual 0-morphisms in Gray monoids.

- **Remark.** (a) "Higher dual": (for all but finitely many n undefined notion that) any 0-morphism $A^{\#}$ in a 1-tuply monoidal n-dimensional category is a right n-dimensional dual of any given 0-morphism A if $A^{\#}$ is a right (n + 1)dimensional adjoint to A in the delooping.
 - (b) "Higher adjoints": (for all but finitely many m undefined notion that) any 1-morphism g in any m-dimensional category is a right m-dimensional adjoint to any 1-morphism f if there are 2-morphisms ε: f ∘ g ⇒ 1 and η: 1 ⇒ g ∘ f which satisfy the unit-co-unit equations up to 3-morphisms which are (m-2)-dimensional equivalences.

Definition. In any Gray monoid $(\mathcal{C}, I, L, R, \phi)$, any 0-morphism $A^{\#}$ is called a *right* dual of any 0-morphism A (or, equivalently, A a *left* dual of $A^{\#}$) if there exist 1-morphisms $e: L_A(A^{\#}) \to I$ and $i: I \to R_A(A^{\#})$ such that $R_A(e) \circ L_A(i)$ is 2-isomorphic to 1_A and $L_{A^{\#}}(e) \circ R_{A^{\#}}(i)$ to $1_{A^{\#}}$.



Remark. If the underlying 2-category of a Gray monoid admits left adjoints and right adjoints for any 1-morphisms, then also the evaluation and co-evaluation 1-morphisms e and i have "duals".

GRAPHICAL CALCULUS OF FUSION 2-CATEGORIES

Versions of a graphical calculus based on stratified 3-dimensional manifolds for Gray categories were developed independently in [Hum12] ("surface diagrams") and [BMS12]. A similar approach applicable to Gray monoids was pursued in [Bar14] ("wire diagrams").

NEXT TIME ...

Vect-enriched Gray monoids, possibly with duals, can be defined in the usual way.

ALEXANDER MANG

Definition. A fusion 2-category is any Vect-enriched Gray monoid with <u>duals</u> and the property that the underlying Vect-enriched 2-category is <u>finite semisimple</u> and that there the monoidal unit is simple.

A range of examples will be presented by David Jaklitsch on January 25, 2023.

References

- [Bar14] Bruce Bartlett. Quasistrict symmetric monoidal 2-categories via wire diagrams. 2014. DOI: 10.48550/ARXIV.1409.2148. URL: https://arxiv. org/abs/1409.2148.
- [BMS12] John W. Barrett, Catherine Meusburger, and Gregor Schaumann. Gray categories with duals and their diagrams. 2012. DOI: 10.48550/ARXIV. 1211.0529. URL: https://arxiv.org/abs/1211.0529.
- [DR18] Christopher L. Douglas and David J. Reutter. Fusion 2-categories and a state-sum invariant for 4-manifolds. 2018. DOI: 10.48550/ARXIV.1812.
 11933. URL: https://arxiv.org/abs/1812.11933.
- [GPS95] Robert Gordon, Anthony John Power, and Ross Street. *Coherence for tricategories*. Vol. 558. American Mathematical Soc., 1995. DOI: 10.1090/memo/0558.
- [Gra76] John Walker Gray. "Coherence for the tensor product of 2-categories, and braid groups". In: *Algebra, Topology, and Category Theory*. Elsevier, 1976, pp. 63–76. DOI: 10.1016/B978-0-12-339050-9.50011-0.
- [Hum12] Benjamin Taylor Hummon. "Surface diagrams for gray-categories". PhD thesis. UC San Diego, 2012. URL: https://escholarship.org/uc/item/ 5b24s9cc.
- [Sch09] Christopher John Schommer-Pries. The classification of two-dimensional extended topological field theories. University of California, Berkeley, 2009. URL: https://arxiv.org/abs/1112.1000.

8