
FUSION 2-CATEGORIES

ALEXANDER MANG

Notes accompanying a talk given on Sections 2.1.1 and 2.1.2 of Christopher L. Douglas and David J.

Reutter’s “Fusion 2-categories and a state-sum invariant for 4-manifolds” [DR18] in Ingo Runkel and

Christoph Schweigert’s “Research Seminar Algebra and Mathematical Physics” at Hamburg University on

Tuesday, January 24, 2023. None of this is my own work.

Objective of the talk. Defining fusion 2-categories and illustrating their graph-
ical calculus.

The definition of fusion 2-categories

We now add a “monoidal structure” to the 2-categories studied so far. To that
end, a short aside about “higher monoidality”.

Remark. (a) “Higher monoidality”: (for all but finitely many n yet undefined
notion that) a k-tuply monoidal n-dimensional category is one equipped with
k additional binary operations, interchanging via specified n-morphisms. Ex-
amples:
− 0-tuply monoidal 0-dimensional category: set
− 1-tuply monoidal 0-dimensional category: monoid
− 2-tuply monoidal 0-dimensional category: commutative monoid
− 0-tuply monoidal 1-dimensional category: category
− 1-tuply monoidal 1-dimensional category: monoidal category . . .

(b) “Delooping hypothesis”: (consistency condition for potential definitions of
higher categories, demanding an) (n+k)-dimensional equivalence between k-
tuply monoidal n-dimensional categories and pointed (k − 1)-connected (n+

k)-dimensional categories (i.e., with singled out 0-morphisms and such that
for any j < k any two parallel j-morphisms are equivalent).

Whereas we could afford to be fairly cavalier about distinguishing between weak
and strict 2-categories, from now on we need to be more careful.

Remark. (a) Fusion 2-categories are to be Vect-enriched monoidal bicategories
with certain special properties (not additional structure).

(b) Monoidal bicategories are equivalent to pointed 0-connected tricategories (see
[Sch09, Section 2.1] for the significance of being pointed).

(c) Tricategories, fully weak 3-dimensional categories, were defined in [GPS95,
Definition 2.2].
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(d) Optimal strictification result: Any tricategory is triequivalent to a Gray

category (“strict (op-)cubical” tricategory) [GPS95, Theorem 8.1].
(e) Gray categories are categories enriched in 2-categories – but with respect

to Gray monoidal structure (strong version of [Gra76]), as opposed to the

Cartesian monoidal structure (which would yield 3-categories instead).

Gray categories are almost 3-categories. They are, and in a unique way, if their
interchange 3-morphism is an identity.

Definition. [DR18, Definition 2.1.1] A Gray monoid is any quintuple (C, I,L,R,φ)
such that

(i) C is a (strict) 2-category, the underlying 2-category,
(ii) I is a 0-morphism of C, the monoidal unit,

(iii) L and R are families of (strict) 2-endofunctors of C, each indexed by the 0-
morphisms of C, with

A1 ◻A2 ∶= LA1(A2) = RA2(A1)

for any 0-morphisms A1 and A2, the left and right monoidal products,
(iv) φ is a family of invertible 2-cells of C, indexed by pairs of 1-morphisms of C,

such that for any 1-morphisms f1 and f2, if fi∶Ai → Bi for each i ∈ {1,2},
then

φf1,f2 ∶RB2(f1) ○LA1(f2)⇒ LB1(f2) ○RA2(f1),

the (monoidal product) interchange,

LA1(B2) RB2(A1)

LA1(A2) RB2(B1)

RA2(A1) LB1(B2)

RA2(B1) LB1(A2)

“A1 ◻B2”

RB2
(f1)LA1

(f2)

“A1 ◻A2” “B1 ◻B2”

RA2
(f1)

“B1 ◻A2”

LB1
(f2)

φf1,f2

and such that
(a) LI = RI and both are the identity 2-functor on C,
(b) for any 0-morphisms A1, A2 and A3, as compositions of 2-functors,

LA1LA2 = LLA1
(A2)

and RRA2
(A1)

= RA2RA1

and also

LA1RA3 = RA3LA1 ,
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(c) for any 1-morphisms f1 and f2 and any 0-morphism X,

φ1X ,f2 = 1LX(f2) and 1RX(f1) = φf1,1X ,

X ◻B2

X ◻A2 X ◻B2

X ◻A2

RB2
(1X)

φ1X,f2

LX(f2)

RA2
(1X) LX(f2)

= X ◻A2 X ◻B2

LX(f2)

LX(f2)

1LX (f2)

A1 ◻X B1 ◻X

RX(f1)

RX(f1)

1RX (f1) =

A1 ◻X

A1 ◻X B1 ◻X

B1 ◻X

RX(f1)

φ1X,f1

RX(f1)

LA1
(1X)

LB1
(1X)

(d) given any 0-morphisms Ai, Bi, Ci, Xi and Yi and any 1-morphisms fi∶Ai → Bi

and ki∶Bi → Ci as well as ti∶Xi → Yi for each i ∈ {1,2},

φt1,k2○f2 = (1LY1
(k2) ○ φt1,f2) ⋅ (φt1,k2 ○ 1LX1

(f2))

X1 ◻C2

X1 ◻B2 Y1 ◻C2

X1 ◻A2 Y1 ◻B2

Y1 ◻A2

RC2
(t1)

φt1,k2

LX1
(k2)

RB2
(t1)

φt1,f2

LX1
(f2)

RA2
(t1)

LY1
(k2)

LY1
(f2)

=

X1 ◻C2

X1 ◻A2 Y1 ◻C2

Y1 ◻A2

RC2
(t1)

φt1,k2○f2

LX1
(k2○f2)

RA2
(t1) LY1

(k2○f2)

and

φk1○f1,t2 = (φk1,t2 ○ 1RX2
(f1)) ⋅ (1RY2

(k1) ○ φf1,t2),
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=

A1 ◻ Y2

A1 ◻X2 C1 ◻ Y2

C1 ◻X2

RY2
(k1○f1)

φk1○f1,t2

LA1
(t2)

RX2
(k1○f1) LC1

(t2)

A1 ◻ Y2

A1 ◻X2 B1 ◻ Y2

B1 ◻X2 C1 ◻ Y2

C1 ◻X2

RY2
(f1)

φf1,t2

LA1
(t2)

RX2
(f1)

RY2
(k1)

φk1,t2

LB1
(t2)

RX2
(k1) LC1

(t2)

(e) given any 0-morphisms Ai, Bi, Xi and Yi, any 1-morphisms fi∶Ai → Bi and
gi∶Ai → Bi as well as ti∶Xi → Yi and any 2-morphisms ηi∶ fi ⇒ gi for each
i ∈ {1,2},

φg1,t2 ⋅ (RY2(η1) ○ 1LA1
(t2)) = (1LB1

(t2) ○RX2(η1)) ⋅ φf1,t2

A1 ◻ Y2

A1 ◻X2 B1 ◻ Y2

B1 ◻X2

φg1,t2

RY2
(f1)

RY2
(g1)

LA1
(t2)

RX2
(g1)

LB1
(t2)

RY2
(η1)

=

A1 ◻ Y2

A1 ◻X2 B1 ◻ Y2

B1 ◻X2

φf1,t2

RY2
(f1)

LA1
(t2)

RX2
(f1)

RX2
(g1)

LB1
(t2)

RX2
(η1)

and

φt1,g2 ⋅ (1RB2
(t1) ○LX1(η2)) = (LY1(η2) ○ 1RA2

(t1)) ⋅ φt1,f2 ,
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=

X1 ◻B2

X1 ◻A2 Y1 ◻B2

Y1 ◻A2

RB2
(t1)

φt1,g2

LX1
(f2)

LX1
(g2)

RA2
(t1)

LY1
(g2)

LX1
(η2)

X1 ◻B2

X1 ◻A2 Y1 ◻B2

Y1 ◻A2

RB2
(t1)

φt1,f2

LX1
(f2)

RA2
(t1)

LX1
(f2)

LX1
(g2)

LX1
(η2)

(f) given any 0-morphism Xi and any 1-morphism fi for any i ∈ {1,2,3},

φLX1
(f2),f3 = LX1(φf2,f3)

(X1 ◻A2) ◻B3

(X1 ◻A2) ◻A3 (X1 ◻B2) ◻B3

(X1 ◻B2) ◻A3

RB3
(LX1

(f2))

φLX1
(f2),f3

LLX1
(A2)

(f3)

RA3
(LX1

(f2)) LLX1
(B2)

(f3)

=

X1 ◻ (A2 ◻B3)

X1 ◻ (A2 ◻A3) X1 ◻ (B2 ◻B3)

X1 ◻ (B2 ◻A3)

LX1
(RB3

(f2))

LX1
(φf2,f3)

LX1
(LA2

(f3))

LX1
(RA3

(f2)) LX1
(LB2

(f3))

and

RX3(φf1,f2) = φf1,RX3
(f2)
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=

(A1 ◻B2) ◻X3

(A1 ◻A2) ◻X3 (B1 ◻B2) ◻X3

(B1 ◻A2) ◻X3

RX3
(RB2

(f1))

RX3
(φf1,f2)

RX3
(LA1

(f2))

RX3
(RA2

(f1)) RX3
(LB1

(f2))

A1 ◻ (B2 ◻X3)

A1 ◻ (A2 ◻X3) B1 ◻ (B2 ◻X3)

B1 ◻ (A2 ◻X3)

RRX3
(B2)

(f1)

φf1,RX3
(f2)

LA1
(RX3

(f2))

RRX3
(A2)

(f1) LB1
(RX3

(f2))

and also

φRX2
(f1),f3 = φf1,LX2

(f3).

(A1 ◻X2) ◻B3

(A1 ◻X2) ◻A3 (A1 ◻X2) ◻A3

(B1 ◻X2) ◻A3

RB3
(RX2

(f1))

φRX2
(f1),f3

LRX2
(A1)

(f3)

RA3
(RX2

(f1)) LRX2
(B1)

(f3)

=

A1 ◻ (X2 ◻B3)

A1 ◻ (X2 ◻A3) A1 ◻ (X2 ◻A3)

B1 ◻ (X2 ◻A3)

RLX2
(B3)

(f1)

φf1,LX2
(f3)

LA1
(LX2

(f3))

RLX2
(A3)

(f1) LB1
(LX2

(f3))

It is not surprising that tricategories cannot be strictified to 3-categories, given
the next example. After all, there are even symmetric monoidal categories which
are not equivalent to one whose symmetry is an identity.

Examples. (a) In accordance with the delooping hypothesis, a braided strict
monoidal category is evidently the same thing as a Gray monoid with a sin-
gle 0-morphism. (In fact, the tricategory of pointed tricategories with (up to
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isomorphism) a single 0-morphism and a single 1-morphism and pointed tri-
homomorphisms etc. is triequivalent to the the category of braided monoidal
categories and braided monoidal functors etc. [GPS95, Propositions 8.6,
8.7].)

(b) On any (strict) 2-category the strict 2-endfunctors, pseudonatural transfor-
mations and modifications can be assembled into a Gray monoid, where the
monoidal product comes from the composition of 2-functors.

The delooping hypothesis also motivates a definition of dual 0-morphisms in Gray
monoids.

Remark. (a) “Higher dual”: (for all but finitely many n undefined notion that)
any 0-morphism A# in a 1-tuply monoidal n-dimensional category is a right
n-dimensional dual of any given 0-morphism A if A# is a right (n + 1)-
dimensional adjoint to A in the delooping.

(b) “Higher adjoints”: (for all but finitely many m undefined notion that) any 1-
morphism g in any m-dimensional category is a right m-dimensional adjoint
to any 1-morphism f if there are 2-morphisms ε∶ f ○ g ⇒ 1 and η∶1 ⇒ g ○ f
which satisfy the unit-co-unit equations up to 3-morphisms which are (m−2)-
dimensional equivalences.

Definition. In any Gray monoid (C, I,L,R,φ), any 0-morphism A# is called a right
dual of any 0-morphism A (or, equivalently, A a left dual of A#) if there exist 1-
morphisms e∶LA(A#)→ I and i∶ I → RA(A#) such that RA(e)○LA(i) is 2-isomorphic
to 1A and LA#(e) ○RA#(i) to 1A# .

A ◻A# ◻A

A A

RA(e)LA(i)

1A

∃≅

A# ◻A ◻A#

A# A#

L
A#(e)R

A#(i)

1A

∃≅

Remark. If the underlying 2-category of a Gray monoid admits left adjoints and
right adjoints for any 1-morphisms, then also the evaluation and co-evaluation 1-
morphisms e and i have “duals”.

Graphical calculus of fusion 2-categories

Versions of a graphical calculus based on stratified 3-dimensional manifolds for
Gray categories were developed independently in [Hum12] (“surface diagrams”) and
[BMS12]. A similar approach applicable to Gray monoids was pursued in [Bar14]
(“wire diagrams”).

Next time . . .

Vect-enriched Gray monoids, possibly with duals, can be defined in the usual way.
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Definition. A fusion 2-category is any Vect-enriched Gray monoid with duals and
the property that the underlying Vect-enriched 2-category is finite semisimple and
that there the monoidal unit is simple.

A range of examples will be presented by David Jaklitsch on January 25, 2023.
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