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1 Introduction

1.1 Braided vector spaces

Let us study the following ad hoc problem:

Definition 1.1.1
Let K be a field. A braided vector space is a K-vector space V , together with an invertible
K-linear map

c : V ⊗ V → V ⊗ V
which obeys the equation

(c⊗ idV ) ◦ (idV ⊗ c) ◦ (c⊗ idV ) = (idV ⊗ c) ◦ (c⊗ idV ) ◦ (idV ⊗ c)

in End(V ⊗ V ⊗ V ).

Remark 1.1.2.
Let (vi)i∈I be a K-basis of V . This allows us to describe c ∈ End(V ⊗V ) by a family (cklij )i,j,k,l∈I
of scalars:

c(vi ⊗ vj) =
∑
k,l

cklijvk ⊗ vl .

If c is invertible, then c describes a braided vector space, if and only if the following equation
holds: ∑

p,q,y

cpqij c
yn
qk c

lm
py =

∑
y,q,r

cqrjkc
ly
iqc

mn
yr for all l,m, n, i, j, k ∈ I .

This is a complicated set of non-linear equations, called the Yang-Baxter equation. In this
lecture, we will see how to find solutions to this equation (and why this is an interesting
problem at all).

Examples 1.1.3.
(i) For any K-vector space V denote by

τV,V : V ⊗ V → V ⊗ V
v1 ⊗ v2 7→ v2 ⊗ v1

the map that switches the two copies of V . The pair (V, τ) is a braided vector space, since
the following relation holds in the symmetric group S3 for transpositions τi,i+1 exchanging
i and i+ 1:

τ12τ23τ12 = τ23τ12τ23 .

(ii) Let V be finite-dimensional with ordered basis (e1, . . . , en). We choose some q ∈ K× and
define c ∈ End(V ⊗ V ), by

c(ei ⊗ ej) =


q ei ⊗ ei if i = j
ej ⊗ ei if i < j

ej ⊗ ei + (q − q−1)ei ⊗ ej if i > j .

For n = dimK V = 2, the vector space V ⊗V has the basis (e1⊗e1, e2⊗e2, e1⊗e2, e2⊗e1)
which leads to the following matrix representation for c:

q 0 0 0
0 q 0 0
0 0 0 1
0 0 1 q − q−1

 .
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The reader should check by direct calculation that the pair (V, c) is a braided vector space.
Moreover, we have

(c− q idV⊗V )(c+ q−1idV⊗V ) = 0 .

For q = 1, one recovers example (i). For this reason, example (ii) is called a one-parameter
deformation of example (i).

1.2 Braid groups

Definition 1.2.1
Fix an integer n ≥ 3. The braid group Bn on n strands is the group with n − 1 generators
σ1 . . . σn−1 and relations

σiσj = σjσi for |i− j| > 1.
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2

We define for n = 2 the braid group B2 as the free group with one generator and we let
B0 = B1 = {1} be the trivial group.

Remarks 1.2.2.

(i) The following pictures explain the name braid group: the generators are depicted as

σi =

. . .
1 2 i i+ 1

. . .
n

σjσi =

. . .
1 2 i i+ 1

. . . . . .
j j + 1 n

= σiσj

σ1σ2σ1 = = = σ2σ1σ2

(ii) These pictures are made more precise by the following definition:
Definition 1.2.3

(i) A braid with n strands is a continuous embedding of n closed intervals [0, 1] into
C× [0, 1] whose image Lf has the following properties:

(i) The boundary of Lf is the set {1, 2, . . . n} × {0, 1}
(ii) For any s ∈ [0, 1], the intersection Lf ∩ (C× {s}) contains precisely n different

points.

(ii) Braids can be concatenated.

(iii) There is an equivalence relation on the set of braids, called isotopy such that the set
of equivalence classes with a composition derived from the concatenation of braids
is isomorphic to the braid group.
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(iii) There is a canonical surjection from the braid group to the symmetric group:

π : Bn → Sn
σi 7→ τi,i+1 .

There is an important difference between the symmetric group Sn and the braid group
Bn: in the symmetric group Sn the additional relation τ 2

i,i+1 = id holds. (For a description
of the symmetric group in terms of generators and relations, we refer e.g. to [JS, Example
I.A.10 (4)].) In contrast to the symmetric group, the braid group is an infinite group
without any non-trivial torsion elements, i.e. without elements of finite order. The kernel
of the surjection π is called the pure braid group.

Let (V, c) be a braided vector space. For 1 ≤ i ≤ n− 1, define a linear automorphism of the
n-th tensor power V ⊗n by

ci :=


c⊗ idV ⊗(n−2) for i = 1
idV ⊗(i−1) ⊗ c⊗ idV ⊗(n−i−1) for 1 < i < n− 1
idV ⊗(n−2) ⊗ c for i = n− 1 .

We deduce from the axioms of a braided vector space that this defines for any n ∈ N a linear
representation of the braid group Bn on the vector space V ⊗n:

Proposition 1.2.4.
Let (V, c) with c ∈ Aut (V ⊗ V ) be a braided vector space. We have then for any n > 0 a
unique homomorphism of groups

ρcn : Bn → Aut (V ⊗n)
σi 7→ ci for i = 1, 2, . . . n− 1 .

Proof.
The relation cicj = cjci for |i − j| ≥ 2 holds, since the linear maps ci and cj act on different
tensorands of the tensor product. The relation cici+1ci = ci+1cici+1 is part of the axioms of a
braided vector space in definition 1.1.1. 2

Let us explain one reason why the braid group is interesting: consider the subset Yn ⊂ Cn =
C× · · ·×C consisting of all n-tuples (z1, . . . , zn) ∈ Cn of pairwise distinct points, i.e. such that

zi 6= zj for all pairs i 6= j .

The symmetric group Sn acts on Yn by permutation of entries. The orbit space Xn = Yn/Sn
is called the configuration space of n different points in the complex plane C. Fix the point
p = (1, 2, . . . n) ∈ Yn and the quotient topology on Xn.

Theorem 1.2.5 (Artin1).
The fundamental group π1(Xn, p) of the configuration space Xn is isomorphic to the braid
group Bn.

Proof.
We only give a group homomorphism

Bn → π1(Xn, p) .

1Vienna 1989 - Hamburg 1962, Professor in Hamburg 1923-37 and 1958-62
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We assign to the generator σk ∈ Bn the continuous path in the configuration space Xn described
by the map

f = (f1, . . . , fn) : [0, 1]→ Cn

given by

fj(s) = j for j 6= k and j 6= i+ 1

fk(s) =
1

2
(2k + 1− eiπs)

fk+1(s) =
1

2
(2k + 1 + eiπs)

k + 1k

k + 1k s = 1

s = 0

Since we identified points, this describes a closed path in the configuration space Xn. Denote
the class of f in the fundamental group π1(Xn, p) by σ̂k. One verifies that the classes σ̂k obey
the relations of the braid group. Hence there is a unique homomorphism

Bn → π1(X, p) .

We omit in these lectures the proof that the homomorphism is even an isomorphism and refer
e.g. to [GM, Section 3]. 2

In physics, the braid group appears in the description of (quasi-)particles in low-dimensional
quantum field theories. In this case, more general statistics than Bose or Fermi statistics is
possible.

One of our goals is to present a general mathematical framework in which representations of
the braid group can be produced. This framework will incidentally allow to describe a variety
of physical phenomena:

• Universality classes of low-dimensional gapped systems.

• Candidates for implementations of quantum computing.

• Quantum groups also describe symmetries in a variety of integrable systems, including in
particular sectors of Yang-Mills theories.

It also produces representation theoretic structures that arise in many fields of mathematics,
ranging from algebraic topology to number theory. In particular, it is clear that when one closes
a braid, one obtains a knot, hence there is a relation to knot theory.
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2 Hopf algebras and their representation categories

2.1 Algebras and modules

Definition 2.1.1

1. Let K be a field. A unital K-algebra is a pair (A, µ) consisting of a K-vector space A and
a K-linear map

µ : A⊗ A→ A

such that there is a K-linear map
η : K→ A ,

called the unit, such that

(a) µ ◦ (µ⊗ idA) = µ ◦ (idA ⊗ µ) (associativity)
(b) µ ◦ (η ⊗ idA) = µ ◦ (idA ⊗ η) = idA (unitality)

In the first identity, the identification (A ⊗ A) ⊗ A ∼= A ⊗ (A ⊗ A) of tensor products
of vector spaces is tacitly understood. Similarly, in the second equation, we identify the
tensor products K⊗ A ∼= A ∼= A⊗K. We also write a · b := µ(a, b).

2. A morphism of algebras (A, µ, η)→ (A′, µ′, η′) is a K-linear map

ϕ : A→ A′ ,

such that
ϕ ◦ µ = µ′ ◦ (ϕ⊗ ϕ) and ϕ ◦ η = η′ .

3. Consider again the flip map

τA,A : A⊗ A → A⊗ A
u⊗ v 7→ v ⊗ u

The opposite algebra Aopp is the triple (A, µopp = µ ◦ τA,A, η). Thus a ·opp b = b · a.

4. An algebra is called commutative, if µopp = µ holds, i.e. if a · b = b · a for all a, b ∈ A.

Examples 2.1.2.

1. The unit η is unique, if it exists.

2. The ground field K itself is a commutative K-algebra. The polynomial algebra K[X] is a
commutative K-algebra.

3. For any K-vector space M , the vector space EndK(M) of K-linear endomorphisms of M
is a K-algebra. The product is composition of linear maps. For dimM > 1, it is not
commutative.

4. Let K be a field and G a group. Denote by K[G] the vector space freely generated by G.
It has a basis labelled by elements of G which we denote by a slight abuse of notation by
(g)g∈G. The multiplication on basis elements g ·h = gh is inherited from the multiplication
of G. It is thus associative, and the neutral element e ∈ G of the group G provides a unit
for the group algebra K[G].
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We introduce a graphical calculus in which associativity reads

=

Our convention is to read such a diagram from below to above. Lines here represent the al-
gebra A, trivalent vertices with two ingoing and one outgoing line the multiplication morphism
µ. The diagram is progressive, i.e. lines are not allowed to “go back” downwards. The juxta-
position of lines represents the tensor product. We have identified again the tensor products
(A⊗ A)⊗ A ∼= A⊗ (A⊗ A).

Similarly, we represent unitality by ==

where we identified again the tensor products K ⊗ A ∼= A ∼= A ⊗ K. Invisible lines denote the
ground field K. Note that we have required that the unit element 1A := η(1K) ∈ A is both a
left and a right unit element. If it exists, such an element is unique.

A morphism ϕ of unital algebras obeys
=

ϕ ϕ

ϕ

and
=ϕ = η

Alternatively, we can characterize associativity by the following commutative diagram

A⊗ A⊗ A µ⊗id //

id⊗µ
��

A⊗ A
µ

��
A⊗ A µ

// A

while unitality reads

K⊗ A η⊗id //

��

A⊗ A
µ

��
A A

6



Examples 2.1.3.

1. We give another important example of a K-algebra: let V be a K-vector space. The
tensor algebra over V is the associative unital K-algebra

T (V ) =
⊕
r≥0

V ⊗r.

with the tensor product as multiplication:

(v1 ⊗ v2 ⊗ · · · ⊗ vr) · (w1 ⊗ · · · ⊗ wt) := v1 ⊗ · · · ⊗ vr ⊗ w1 ⊗ · · · ⊗ wt .

The tensor algebra is a Z+-graded algebra: with the homogeneous component T (r) := V ⊗r

we have
T (r) · T (s) ⊂ T (r+s) .

The tensor algebra is infinite-dimensional, even if V is finite-dimensional. In this case,
obviously

dimT (r) = dimV ⊗r = (dimV )r .

On the homogenous subspace V ⊗r, it carries an action of the symmetric group Sr.

2. Denote by I+(V ) the two-sided ideal of T (V ) that is generated by all elements of the form
x⊗ y − y ⊗ x with x, y ∈ V . The quotient

S(V ) := T (V )/I+(V )

with its natural algebra structure is called the symmetric algebra over V . Since the two-
sided ideal I+(V ) is a graded ideal, the symmetric algebra is a Z+-graded algebra, as
well. It is infinite-dimensional, even if V is finite-dimensional. Note that in S(V ) the
multiplciation is commutative.

3. Similarly, denote by I−(V ) the graded two-sided ideal of T (V ) that is generated by all
elements of the form x⊗ x with x ∈ V . The quotient

Λ(V ) := T (V )/I−(V )

with its natural algebra structure is called the alternating algebra or exterior algebra
over V . The alternating algebra is a Z+-graded algebra, as well. If V is finite-dimensional,
n := dimV , it is finite-dimensional. The dimension of the homogeneous component is

dim Λr(V ) =

(
n
r

)
The notion of a module is central for these lectures:

Definition 2.1.4
Let A be a (unital) K algebra. A left A-module is a pair (M,ρ), consisting of a K-vector space
M and a (unital) morphism of K-algebras

ρ : A→ EndK(M) .

Remark 2.1.5.
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1. We also write
a.m := ρ(a)m for all a ∈ A and m ∈M

and thus obtain a K-linear map which by abuse of notation we also denote by ρ:

ρ : A⊗M → M
a⊗m 7→ a.m

such that for all a, b ∈ A and m,n ∈M and λ, µ ∈ K the following identities hold:

a.(λm+ µn) = λ(a.m) + µ(a.n)
(λa+ µb).m = λ(a.m) + µ(b.m)

(a · b).m = a.(b.m)
1.m = m

(The first two lines just express that ρ is K-bilinear.) For the properties of this map, one
can again use a graphical representation and write down the two commuting diagrams:

A⊗ A⊗M µ⊗idM //

id⊗ρ
��

A⊗M
ρ

��
A⊗M ρ

// A

while unitality reads

K⊗M η⊗idM //

��

A⊗M
ρ

��
M M

2. A right A-module is a left Aopp-module (M,ρ) with ρ : Aopp → End(M). We write
m.a := ρ(a)m and find the relations:

(λm+ µn).a = λ(m.a) + µ(n.a)
m.(λa+ µb) = λ(m.a+ µ(m.b)

m.(a · b) = (m.a).b
m.1 = m

for all a, b ∈ A and λ, µ ∈ K and m,n ∈M . This explains the word “right module”. This
also becomes evident in the graphical notation.

3. Multiplication endows any algebra with the structure of a module over itself,
a.b := a · b. The corresponding module is called the left regular module. Similarly, a
right regular module can be defined. Notice that for a general K-algebra, the ground
field K cannot be necessarily endowed with the structure of an A-module.

4. To give a module
ρ : K[G]→ End(M)

over a group algebra K[G], it is sufficient to specify the algebra morphism ρ on the
distinguished basis (g)g∈G of K[G]. This amounts to giving a group homomorphism into
the group of invertible K-linear endomorphisms:

ρG : G→ GL(M) := {ϕ ∈ EndK(M), ϕ invertible } .

The pair (M,ρG) is called a representation of the group G.

8



Remarks 2.1.6.

1. Any K-vector space V carries a representation of its automorphism group GL(V ) by
ρ = idGL(V ). This representation is called the defining representation of the general linear
group GL(V ).

2. Any vector space M becomes a representation of any group G by the trivial operation
ρ(g) = idM for all g ∈ G.

3. To specify a representation (M,ρ) of the free abelian group Z amounts to specifying an
automorphism A ∈ GL(M), namely A = ρ(1). Then ρ(n) = An for all n ∈ Z.

4. To specify a module of the polynomial algebra K[X] amounts to specifying a K-vector
space M and an endomorphism ϕ : M →M . By the universal property of the polynomial
algebra, this uniquely specifies a morphism of algebras K[X] → End(M) and thus a
representaton of K[X].

5. A representation of the cyclic group Z/2Z on a K-vector space V amounts to an auto-
morphism A : V → V such that A2 = idV .

If charK 6= 2, V is the direct sum of eigenspaces of A to the eigenvalues ±1,

V = V + ⊕ V − ,

since any vector v ∈ V can be decomposed as

v =
1

2
(v + Av) +

1

2
(v − Av) .

Since

A
1

2
(v ± Av) =

1

2
(Av ± A2v) = ±1

2
(v ± Av) ,

these are eigenvectors of A to the eigenvalues ±1. This decomposition into eigenspaces is
unique.

If charK = 2, the only possible eigenvalue is +1. Because of A2 = idV , the minimal
polynomial of A has to divide X2 − 1 = (X − 1)2. It has to be a power of the prime
polynomial X − 1 so that a Jordan block decomposition exists. The Jordan blocks of the
automorphism A have size 1 or 2. Indeed, we find for a Jordan block of size 2:(

1 1
0 1

)(
1 1
0 1

)
=

(
1 2
0 1

)
=

(
1 0
0 1

)
.

Definition 2.1.7
Let A be a K-algebra and M,N be A-modules. A K-linear map ϕ : M → N is called a morphism
of A-modules or, equivalently, an A-linear map, if

ϕ(a.m) = a.ϕ(m) for all m ∈M,a ∈ A .

As a diagram, this reads

A⊗M idA⊗ϕ //

ρM
��

A⊗N
ρN
��

M ϕ
// N .

9



If A is a group algebra, A-linear maps are also called intertwiners of G-representations.
One goal of this lecture is to obtain insights on representations of groups and to generalize

them to a class of algebraic structures beyond groups. To this end, it is convenient to have
more terminology available to talk about all modules over a given algebra A at once: they form
a category.

Definition 2.1.8

1. A category C consists

(a) of a class of objects Obj(C), whose entries are called the objects of the category.

(b) a class Hom(C), whose entries are called morphisms of the category

(c) Maps

id : Obj(C)→ Hom (C)
s, t : Hom(C)→ Obj(C)
o : Hom(C)×Obj (C) Hom(C)→ Hom(C)

such that

(a) s(idV ) = t(idV ) = V for all V ∈ Obj(C)
(b) idt(f) ◦ f = f ◦ ids(f) = f for all f ∈ Hom(C)
(c) for all f, g, h ∈ Hom(C) with t(f) = s(g) and t(g) = s(h) the associativity identity

(h ◦ g) ◦ f = h ◦ (g ◦ f) holds.

2. We write for V,W ∈ Obj(C)

HomC(V,W ) = {f ∈ Hom(C) | s(f) = V, t(f) = W}

and EndC(V ) for HomC(V, V ). For any pair V,W , we require HomC(V,W ) to be a set.
Elements of EndC(V ) are called endomorphisms of V .

3. A morphism f ∈ Hom(V,W ) which we also write V
f−→ W or in the form f : V → W is

called an isomorphism, if there exists a morphism g : W → V , such that

g ◦ f = idV and f ◦ g = idW .

Two objects V,W of a category are called isomorphic, if there is an isomorphism V → W .
Being isomorphic is an equivalence relation; the equivalence classes of the category C are
denoted by π0(C).

Remarks 2.1.9.

1. Never require two objects of a category to be equal - rather require them to be isomorphic.
The isomorphism is then an interesting piece of data. For example, any finite-dimensional
vector space is isomorphic to its dual vector space, but there is no distinguished such
isomorphism (for example, one has to chose a basis to exhibit such an isomorphism).

As a more subtle example, consider finite-dimensional representations of the compact Lie
group SU(n). We should not ask whether the defining n-dimensional complex representa-
tion equals it dual, but rather whether it is isomorphic to its dual; then we can ask refined
questions about the isomorphism, leading e.g. to the distinction of real and pseudoreal
representations.
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2. We explain why in the definition of a category we talk about sets and classes : for applying
category in practice one would like to have a notion of a “category of all sets” and, for
constructing interesting categories, for a given a property ϕ(x) of a set x, also a category
“{x |ϕ(x)}” of all sets having the property ϕ. Famously, this leads to contradictions, such
as the one of the category of all sets that are not elements of themselves.

A solution to this problem is to restrict the application of ϕ to be allowed only for sets
that are elements in some specific set U (where it is supposed that the notion of a set
is defined, e.g. by working with Zermelo-Fraenkel axioms.) Further, such a set U must
be sufficiently nice – technically speaking, it must be a universe (for details see [McL,
Sect. I.6]). All mathematical constructions are then carried out inside the universe U. A
set that is an element of U is called small (relative to U). It should be appreciated that,
with this definition, sets that are small in terms of cardinality are not necessarily U-small;
for example, the one-element set {U} is not U-small. Functions between small sets relative
to U can be constructed inside U. This yields for each universe U a category of U-small
sets.

A category C is now called U-small if the set Obj(C) of objects is in U. The category of
U-small categories is not U-small, because this would imply U ∈ U, thus violating the
axioms of a universe. A class C (relative to a universe U) can then be defined as an
arbitrary subset C ⊆U. It follows that every U-small set is a U-class, but the converse is
not true. Using classes, we can now talk about the category of U-small categories.

The choice of U is usually supressed in the notation. It is common to enlarge the axioms
of set theory by requiring that for any set X there is a universe U such that X ∈ U, which
in particular ensures the existence of universes.

3. Let K be a field. A K-linear category is a category for which all hom-sets have the ad-
ditional structure of a K-vector space and for which the composition operation has the
property of being K-bilinear.

Examples 2.1.10.

1. Any set X can be endowed with a trivial structure of a category X in which the only
morphisms are the identity morphisms. This category is called the discrete category.

2. The category Cob1,0 has as objects sets of finitely many oriented points and as morphisms
arrows (or, rather, oriented one-dimensional manifolds up to diffeomorphism). This cat-
egory (or rather its higher-dimensional analogues) is central for topological field theory.
They contain much information on the collection of all manifolds.

3. Vector spaces over a field K, together with linear maps, form a category vect(K). It is a
particular feature of this category that its Hom-sets are not only sets, but K-vector spaces,
and that composition is K-bilinear. Hence, the category of K-vector spaces is K-linear.
We say that the category vect(K) is enriched over the category vect(K).

4. More generally, left modules over a ring R form a category R-mod. Complex represen-
tations of a given group G, together with intertwiners, form an R-linear or a C-linear
category, respectively.

5. Consider a category with a single object ∗; this category is completely described by the
set End(∗) which has the structure of an (associative, unital) monoid. The category is
called the delooping of the monoid.
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6. A category in which all morphisms are isomorphisms is a called a groupoid. A groupoid
with single object ∗ is completely described by the monoid G := End(∗) which is a group.
We write ∗//G for this groupoid.

More generally, we can consider for any associative unital K-algebra A the category ∗//A
with a single object and morphisms given by A. This category is K-linear.

7. An important example of a groupoid is the fundamental groupoid Π1(M) of a topological
space M : its objects are the points of the space M , a morphism from p ∈ M to q ∈ M
is a homotopy class of paths from p to q. For this groupoid End(p) =: π1(M, p) is the
fundamental group for the base point p ∈ M . The isomorphism classes of Π1(M) are
the path-connected components of M . See [B06] for a textbook on topology that uses
fundamental groupoids.

8. Let G be a group and X a set, together with an action

ρ : G×X → X
(g, x) 7→ g.x

of G on X, i.e. (gh).x = g.(h.x). Define a category, the action groupoid, X//G whose
objects are elements x ∈ X and which has a morphism x → g.x for every pair (g, x) ∈
G × X. (We use the somewhat counterintuitive notation X//G for a left action.) The
isomorphism classes of objects are the G-orbits, thus π0(X//G) = X/G with X/G the
orbit set, the set-theoretic quotient.

9. The category Man has as objects smooth finite-dimensional manifolds and as morphisms
smooth maps of manifolds. All manifolds in this lecture will be smooth manifolds.

For the next observation, we need the following notion:

Proposition 2.1.11.
Let (A, µA, ηA) and (B, µB, ηB) be unital associative K-algebras. Then the tensor product A⊗B
has a natural structure of an associative unital algebra determined by

(a⊗ b) · (a′ ⊗ b′) := aa′ ⊗ b · b′ for all a, a′ ∈ A, b, b′ ∈ B

and ηA⊗B := ηA ⊗ ηB.

Put differently, the multiplication µA⊗B is the map

A⊗B ⊗ A⊗B idA⊗τ⊗idB−→ A⊗ A⊗B ⊗B µA⊗µB−→ A⊗B ,

with τ the flip map τ : a⊗ b 7→ b⊗ a from Example 1.1.3 (i).

Observation 2.1.12.
The category of modules over a group algebra has more structure than just the structure of a
K-linear category:

• Let V,W be K[G]-modules. Then the ground field K, the tensor product V ⊗KW and the
dual vector space V ∗ := HomK(V,K) can be turned into K[G]-modules as well by

g.1 := 1 for all g ∈ G
g.(v ⊗ w) := g.v ⊗ g.w for all g ∈ G, v ∈ V and w ∈ W

(g.φ)(v) := φ(g−1.v) for all g ∈ G, v ∈ V and φ ∈ V ∗ .

(In physics, the representation on the ground field K is used to describe invariant states,
and the representation on V ⊗ W corresponds to “coupling systems” for symmetries
leading to multiplicative quantum numbers.)
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• We want to encode this information in additional algebraic structure on the group algebra
K[G]. To this end, we note the following simple fact:

Let ϕ : A→ A′ be a morphism of K-algebras and M an A′-module described by ρ′ : A′ →
End(M). Then

A
ϕ−→ A′

ρ′−→ End(M)

is an A-module, denoted by ϕ∗M . The A-action on M is

a.m := ϕ(a).m for all a ∈ A,m ∈M .

The operation is called restriction of scalars, even if A is not a subalgebra of A′. One also
calls the A-module ϕ∗M the pullback of M along the algebra morphism ϕ.

• Now suppose that (M,ρ) and (M ′, ρ′) are two A′-modules and M
f→ M ′ is a morphism

of A′-modules. Then the linear map f is also a morphism ϕ∗M → ϕ∗M ′ of A-modules
which we denote by ϕ∗f .

• In the case of the tensor product V ⊗W , we naturally get a morphism of algebras

K[G]⊗K[G]
ρV ⊗ρW−→ End(V )⊗ End(W )→ End(V ⊗W )

g1 ⊗ g2 7→ ρV (g1)⊗ ρW (g2)
.

If we identify the algebras K[G]⊗K[G] ∼= K[G×G], we get a representation of the group
G×G, but not of the group G itself. The remedy is to take the additional datum of the
morphism of algebras

∆ : K[G] → K[G]⊗K[G]
g 7→ g ⊗ g for all g ∈ G .

The K[G]-module structure on V ⊗W is then obtained by pullback

K[G]
∆−→ K[G]⊗K[G]

ρV ⊗ρW−→ End(V )⊗ End(W )→ End(V ⊗W )

g 7→ g ⊗ g 7→ ρV (g)⊗ ρW (g)
.

We thus get the K[G]-module structure on V ⊗W as the pullback along ∆ of the natural
K[G]⊗K[G]-module structure on V ⊗W .

For the case of the ground field, consider the algebra morphism

ε : K[G] → K
g 7→ 1 for all g ∈ G

The K[G]-module structure on K is then obtained from

K[G]
ε−→ K ∼= EndK(K) .

Finally, for the dual vector space, consider the algebra morphism

S : K[G] → K[G]opp

g 7→ g−1 for all g ∈ G

The K[G]-module structure on V ∗ is then obtained via the transpose from

K[G]
S−→ K[G]opp ρt→ End(V ∗)

g 7→ g−1 7→ (ϕ 7→ ϕ ◦ ρV (g−1)) .
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The same type of algebraic structure is present on another class of associative algebras. To
this end, we first introduce Lie algebras:

Definition 2.1.13

1. A Lie algebra over a field K is a K-vector space, g together with a bilinear map, called
the Lie bracket,

[−,−] : g⊗ g → g
x⊗ y 7→ [x, y]

which is alternating, i.e. [x, x] = 0 for all x ∈ g, and for which the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

holds for all x, y, z ∈ g.

2. A morphism of Lie algebras ϕ : g→ g′ is a K-linear map which preserves the Lie bracket,

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g .

3. Given a Lie algebra g, we define the opposed Lie algebra gopp as the Lie algebra with the
same underlying vector space and Lie bracket

[x, y]opp := −[x, y] = [y, x] for all x, y ∈ g .

Examples 2.1.14.

1. For any K-vector space V , the vector space EndK(V ) is endowed with the structure of a
Lie algebra by the commutator

[f, g] := f ◦ g − g ◦ f .

We denote this Lie algebra by gl(V ).

2. More generally, any associative K-algebra A inherits a structure of a Lie algebra by using
the commutator:

[a, b] := a · b− b · a for all a, b ∈ A .

The reader should check that the associativity of the product of A implies that Jacobi
identity for the commutator.

3. Let V be a finite-dimensional K-vector space. The subspace sl(V ) of endomorphisms with
vanishing trace is a Lie subalgebra of gl(V ).

4. Consider the algebra EndK(A) of K-linear endomorphisms of a K-algebra A. A linear
endomorphism ϕ : A→ A is called a derivation, if it obeys the Leibniz rule:

ϕ(a · b) = ϕ(a) · b+ a · ϕ(b) for all a, b ∈ A .

Denote by Der(A) ⊂ EndK(A) the subspace of derivations. It is a Lie subalgebra of
EndK(A):

[ϕ, ψ](a · b) = ϕ(aψ(b) + ψ(a)b)− ψ(ϕ(a)b+ aϕ(b))

= ϕψ(a)b+ aϕψ(b)− ψϕ(a)b− aψϕ(b)

= [ϕ, ψ](a) · b+ a · [ϕ, ψ](b)
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5. Examples of Lie algebras are abundant. In particular, the smooth vector fields on a smooth
manifold form a Lie algebra.

Remarks 2.1.15.

• To any Lie algebra g, one can associate a unital associative algebra, the
universal enveloping algebra. It is constructed as a quotient of the tensor algebra

T (g) :=
⊕
n≥0

g⊗n

by the two-sided ideal I(g) that is generated by all elements of the form

x⊗ y − y ⊗ x− [x, y] with x, y ∈ g

i.e.
U(g) = T (g)/I(g) .

Since the ideal I(g) is not homogeneous, we only have a filtration: define Ur(g) as the
image of

Ur(g) := π(⊕ri=0T
i(g)) ⊂ U(g) .

Then we have an increasing series of subspaces

K ⊂ U1(g) ⊂ U2(g) ⊂ . . . ⊂ Ur(g) ⊂ Ur+1(g) ⊂ . . .

with ∪∞i=1Ui(g) = U(g) which is is compatible with the multiplication:

Ur(g) · Us(g) ⊂ Ur+s(g) .

• As an example, take V to be any vector space. It is turned into a Lie algebra by [v, w] = 0
for all v, w ∈ V . Such a Lie algebra is called abelian. In this case, the universal enveloping
algebra is just the symmetric algebra S(V ) which is not only filtered, but even graded.

• If the Lie algebra g has a totally ordered basis (xi), the Poincaré-Birkhoff-Witt theorem
gives a K-basis of U(g).

Consider the map

ιg : g→ T (g)
π
� T (g)/I(g) = U(g)

which is a morphism of Lie algebras. Then the K-basis of U(g) consists of the elements
ι(xi1) · ι(xi2) . . . ι(xik) with k = 0, 1, . . . and i1 ≤ i2 ≤ . . . .

In particular, the elements (ι(xi)) generate U(g) as an associative algebra. As a conse-
quence of the Poincaré-Birkhoff-Witt theorem, 2 the map ιg : g → U(g) is an injective
map of Lie algebras.

• For later purposes, we note that for two K-Lie algebras g, h, we have

U(g⊕ h) ∼= U(g)⊗K U(h) .

2Alsen 1911 - Hamburg 1991, Professor in Hamburg 1938-1991
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• The universal enveloping algebras U(g) has the following universal property: for any
associative K-algebra A and any K-linear map

ϕ : g→ A ,

that is a morphism of Lie algebras,

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g

with the Lie algebra structure on A from example 2.1.14.2, there is a unique morphism
of associative algebras ϕ̃ : U(g)→ A such that the diagram

g

ϕ
��

ιg // U(g)

∃!ϕ̃}}
A

of morphisms of Lie algebras commutes. Explicitly, we have

ϕ̃(x1 · · · · · xn) = ϕ(x1) · · ·ϕ(xn) .

The diagram implies that any morphism ϕ : g → A of Lie algebras can be uniquely
extended to a morphism ϕ̃ : U(g) → A of associative algebras. As a consequence, it is
possible to construct algebra morphisms out of the universal enveloping U(g) algebra into
an associative algebra by giving a morphism g→ A of Lie algebras.

For example, the linear map underlying the morphism ιg : g → U(g) of Lie algebras can
also be seen as a morphism of Lie algebra gopp → U(g)opp, where on the codomain we
take the opposed algebra structure. It extends to a map of algebras U(gopp) → U(g)opp

which can be shown to be an isomorphism using the Poincaré-Birkhoff-Witt theorem.

Lie algebras have representations as well:

Definition 2.1.16
Let g be a Lie algebra over a field K. A representation of g is a pair (M,ρ), consisting of a
K-vector space M and morphism of Lie algebras

ρ : g→ gl(M) .

Remark 2.1.17.
We also write

x.m := ρ(x)m for all x ∈ g and m ∈M
and thus obtain a K-linear map

g⊗M → M
x⊗m 7→ x.m

such that for all x, y ∈ g and m,n ∈M the following identities hold:

x.(λm+ µn) = λ(x.m) + µ(x.n)
(λx+ µy).m = (λx.m) + (µx.m)

([x, y]).m = x.(y.m)− y.(x.m) .

Again, the first two lines express that we have a K-bilinear map.
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Definition 2.1.18
Let g be a K-Lie algebra and let M,N be representations of g. A K-linear map ϕ : M → N is
called a morphism of representations of g, if

ϕ(x.m) = x.ϕ(m) for all m ∈M and x ∈ g .

This defines the category g−rep of representations of g.

Using the universal property of the universal enveloping algebra, every representation ρ :
g→ EndK(M) of a Lie algebra g extends uniquely to a representation ρ̃ : U(g)→ EndK(M) of
the universal enveloping algebra:

g

ρ
##

ιg // U(g)

∃!ρ̃yy
EndK(M)

We have thus proven:

Proposition 2.1.19.
There is a canonical bijection between representations of the Lie algebra g and modules over
its universal enveloping algebra U(g). One can show that morphisms of representations of g are
in bijection to U(g)-module morphisms.

These bijections are, however, not an appropriate language to compare the categories
U(g)−mod and g−rep which are bilayered structures consisting of objects and morphisms,
the intertwiners.

Definition 2.1.20
Let C and C ′ be categories. A functor F : C → C ′ consists of two maps:

F : Obj(C) → Obj(C ′)
F : Hom(C)→ Hom(C ′),

which obey the following conditions:

(a) F (idV ) = idF (V ) for all objects V ∈ Obj(C)

(b) s(F (f)) = Fs(f) and t(F (f)) = Ft(f) for all morphisms f ∈ Hom (C)

(c) For any pair f, g of composable morphisms, we have

F (g ◦ f) = F (g) ◦ F (f) .

Two functors
F : C → C ′
G : C ′ → C ′′

can be concatenated to a functor G ◦ F : C → C ′′.

We have already encountered examples of functors:

Examples 2.1.21.

17



1. A functor ∗//G→ vect(K) assigns to the single object ∗ a K-vector space M and to any
group element g ∈ G an endomorphism ρ(g) of M . Since functors preserve composition,
the map ρ defines a representation of the group G. Thus K-linear representations of G
are just functors ∗//G→ vect(K).

2. Associating to a vector space V its dual space provides a functor

vect(K) → vect(K)opp

V 7→ V ∗ .

Here we have introduced the opposed category Copp of a category C. It has the same objects
as C, but Homopp(U, V ) := Hom(V, U). The composition is defined in a compatible way.
It thus implements the idea of “reversing arrows”.

The bidual provides a functor

Bi : vect(K) → vect(K)
V 7→ V ∗∗ .

3. Let ϕ : A→ A′ be a morphism of algebras. As in observation 2.1.12, we consider for any
A′-module M , ρ : A′ → End(M) the A-module ϕ∗M that is defined on the same K-vector
space M . The K-linear map underlying a morphism f : : M → M ′ of A′-modules is also
a morphism of modules ϕ∗M → ϕ∗M ′. We thus obtain a functor

ϕ∗ = ResA
′

A : A′−mod→ A−mod

that is called, by abuse of language, a restriction functor or pullback functor.

4. We have learned that any associative algebra is endowed, by the commutator, with the
structure of a Lie algebra. This provides a functor

AlgK → LieK .

5. The universal enveloping algebra provides a functor from the category of Lie algebras to
the category of associative algebras,

U : LieK → AlgK
g 7→ U(g) .

6. In proposition 2.1.19, we have constructed a functor g−rep→ U(g)−mod.

It is important to compare two functors F,G : C → C ′ between the same categories. We
give two motivations:

• We have seen in example 2.1.21.1 that for G a group, a functor Fρ : ∗//G → vect(K)
corresponds to a K-linear representation of the group G. From definition 2.1.7 we know
that there are intertwiners between different representations. Given two functors Fρ, Fρ′ :
∗//G→ vect(K), we thus need the analogue of an intertwiner.

• To get an idea on how to relate functors, we remark that any vector space V can be
embedded into its bidual vector space. This means that for every V there is a linear map

ιV : id(V ) = V → V ∗∗ = Bi(V )
v 7→ (β 7→ β(v))

that relates the two functors id,Bi : vect(K)→ vect(K).
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We formalize this as follows:

Definition 2.1.22
1. Let F,G : C → C ′ be functors. A natural transformation

η : F → G

is a family of morphisms
ηV : F (V )→ G(V )

in C ′, indexed by objects V ∈ Obj(C) in the source category such that for any morphism

f : V → W

in the source category C the diagram in C ′

F (V )

F (f)

��

ηV // G(V )

G(f)

��
F (W )

ηW // G(W )

commutes.

2. If for each object V ∈ Obj(C) the morphism ηV : F (V )→ G(V ) is an isomorphism in C ′,
then η : F → G is called a natural isomorphism.

3. A functor
F : C → D

is called an equivalence of categories, if there is a functor

G : D → C

and natural isomorphisms
η : idD → FG

θ : GF → idC .

Remarks 2.1.23.
1. Let G be a finite group, K a field and consider two functors Fρ, Fρ′ : ∗//G→ vect(K). A

natural transformation η : Fρ → Fρ′ is a K-linear map η∗ : Fρ(∗) → Fρ′(∗) which by the
commuting diagram in 2.1.22.1 is an intertwiner of G-representations.

2. Let F,G,H : C → D be functors. Two natural transformations η : F → G and η′ : G→ H
can be composed. Indeed, consider for V ∈ C the morphism:

(η′ ◦ η)V : F (V )
ηV→ G(V )

η′V→ H(V ) .

Since for any morphism V
f→ W in C the two squares

F (V )
ηV //

F (f)
��

G(V )
η′V //

G(f)
��

H(V )

H(f)

��
F (W )

ηW // G(W )
η′W // H(W )

commute, also the outer square commutes so that (η′ ◦ η)V : F → H defines a natural
transformation. The composition of natural transformations is associative and has the
identity natural transformation η : F → F with ηV = idV as a unit.
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3. If the class Obj(C) is a set, then there is a category Fun(C, C ′) whose objects are functors
F,G : C → C and whose morphisms natural transformations η : F → G.

The following lemma is useful to find equivalences of categories:

Lemma 2.1.24.
A functor F : C → D is an equivalence of categories, if and only if

(a) The functor F is essentially surjective, i.e. for any W ∈ Obj(D) there is V ∈ Obj(C) such
that F (V ) ∼= W in D.

(b) The functor F is fully faithful: for any pair V, V ′ of objects in C, the map

F : HomC(V, V
′)→ HomD(F (V ), F (V ′))

on Hom-spaces is bijective.

Proof: see [Kassel, p. 278] and the exercises. The proof uses the axiom of choice twice.
An example for an equivalence of categories is the functor g-rep → U(g)-mod constructed

in proposition 2.1.19.

We finally present some structure on universal enveloping algebras that should be compared
to the structure found in observation 2.1.12 for group algebras. As a further consequence of the
universal property of the enveloping algebra U(g), we get from maps of Lie algebras maps of
unital associative algebras:

g → K gives ε : U(g) → K
x 7→ 0
g → g⊕ g ⊂ U(g⊕ g) gives ∆ : U(g) → U(g⊕ g) ∼= U(g)⊗ U(g)
x 7→ (x, x)
g → gopp ⊂ U(gopp) gives S : U(g) → U(gopp) ∼= U(g)opp

x 7→ −x

These morphisms of algebras are explicitly given by the following expressions on the generators
x ∈ g ⊂ U(g)

ε(x) = 0
∆(x) = 1⊗ x+ x⊗ 1

S(x) = −x
These maps allow us to endow tensor products of representations of g, the dual of a vec-

tor space underlying a representation of g and the ground field K with the structure of g-
representations.

Observation 2.1.25.

• Let V,W be representations of g. The U(g)-module structure on the tensor product V ⊗W
is then obtained from

U(g)
∆−→ U(g)⊗ U(g)

ρV ⊗ρW−→ End(V )⊗ End(W )→ End(V ⊗W ) .

The U(g)-module structure is uniquely determined by the condition

(∗) x.(v ⊗ w) = x.v ⊗ w + v ⊗ x.w for all v ∈ V,w ∈ W and x ∈ g .
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• The U(g)-module structure on the ground field K is obtained from the unital algebra
morphism

U(g)
ε−→ K ∼= EndK(K) .

This is uniquely determined by the condition x.v = 0 for all x ∈ g and v ∈ K.

• The U(g)-module structure on V ∗ is then obtained via the transpose from

U(g)
S−→ U(g)opp ρt→ End(V ∗) .

• Again, in physics, the representation on K is used to introduce the notion of an invariant
state, and the representation on V ⊗W corresponds to the “coupling of two systems” for
symmetries leading by condition (∗) to additive quantum numbers.

2.2 Coalgebras and comodules

The maps (∆, ε) in the two examples of a group algebra K[G] of a group G and the universal
enveloping algebra U(g) of a Lie algebra g have properties that are best understood by reversing
arrows in the definition of an algebra.

Definition 2.2.1

1. A coassociative coalgebra over a field K is a pair (C,∆), consisting of a K-vector space
C and a K-linear map

∆ : C → C ⊗ C ,

called the coproduct, such that the coassociativity condition (∆⊗ idC)◦∆ = (idC⊗∆)◦∆
holds. As a picture, we have

=

In terms of commuting diagrams, we have

C ⊗ C ⊗ C C ⊗ C∆⊗idCoo

C ⊗ C

idC⊗∆

OO

C

∆

OO

∆oo

2. A coassociative coalgebra is called counital, if there is a K-linear map

ε : C → K ,
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called the counit, such that (ε ⊗ idC) ◦∆ = (idC ⊗ ε) ◦∆ = idC holds. As a picture, we

have
= = = idC

In terms of commuting diagrams, we have

K⊗ C C ⊗ Cε⊗idoo id⊗ε // C ⊗K

C

OO

C

∆

OO

C

OO

3. Given a coalgebra (C,∆, ε), the coopposed coalgebra Ccopp is given by (C,∆copp := τC,C ◦
∆, ε).
A coalgebra is called cocommutative , if the identity ∆copp = ∆ holds. Here τ is again
the map flipping the two tensor factors.

4. A coalgebra map is a linear map ϕ : C → C ′, such that the equation

∆′ ◦ ϕ = (ϕ⊗ ϕ) ◦∆

holds. It is called counital, if also the equation ε′ ◦ ϕ = ε holds. Pictorially,

=
ϕ ϕ

ϕ
= = εϕ

Examples 2.2.2.

1. Let S be any set and C = K[S] the free K-vector space with distinguished basis S. Then
C becomes a coassociative counital coalgebra with coproduct given on the distinguished
basis of K[S] by the diagonal map ∆(s) = s ⊗ s and ε(s) = 1 for all s ∈ S. It is
cocommutative. It should be noted that for a general element v ∈ K[S], we do not have
∆(v) = v ⊗ v and that the distinguished basis enters explicitly. Hence, it is somewhat
misleading to call ∆ a diagonal.

2. In particular, the group algebra K[G] for any group G with the maps ∆, ε discussed in
observation 2.1.12 is a cocommutative coalgebra.

3. The universal enveloping algebra U(g) of any Lie algebra with the maps ∆, ε discussed
before observation 2.1.25 will be shown to be a coalgebra which is cocommutative. (This is
easier to do once we have stated compatibility conditions between product and coproduct.)

Remarks 2.2.3.
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1. The counit ε is uniquely determined, if it exists.

2. The following notation is due to Heyneman and Sweedler and frequently called Sweedler
notation: let (C,∆, ε) be a coalgebra. For any x ∈ C, we can find finitely many elements
x′i ∈ C and x′′i ∈ C such that

∆(x) =
∑
i

x′i ⊗ x′′i .

Dropping the summation indices, this is written as

∆(x) =
∑
(x)

x(1) ⊗ x(2) .

It is common to even omit the sum and write

∆(x) = x(1) ⊗ x(2) .

In this notation, counitality reads

ε(x(1))x(2) = x(1)ε(x(2)) = x for all x ∈ C,

and cocommutativity

x(1) ⊗ x(2) = x(2) ⊗ x(1) for all x ∈ C .

Finally, coassociativity reads

(x(1))(1) ⊗ (x(1))(2) ⊗ x(2) = x(1) ⊗ (x(2))(1) ⊗ (x(2))(2) .

For the sake of a compact notation, we denote this element also by x(1) ⊗ x(2) ⊗ x(3).

Lemma 2.2.4.

1. If C is a coalgebra, then the dual vector space C∗ is an algebra, with multiplication from
m = ∆∗|C∗⊗C∗ and unit η = ε∗.

Explicitly,

m(f ⊗ g)(c) = ∆∗(f ⊗ g)(c) = (f ⊗ g)∆(c) ∈ K for all f, g ∈ C∗ and c ∈ C .

2. If the coalgebra C is cocommutative, then the algebra C∗ is commutative.

Proof.
This is shown by dualizing diagrams, together with one additional observation: the dual
of the copoduct ∆ : C → C ⊗ C is a map (C ⊗ C)∗ → C∗. Using the canonical injection
C∗ ⊗ C∗ ⊂ (C ⊗ C)∗, we can restrict ∆∗ to the subspace C∗ ⊗ C∗ to get the multiplication on
C∗. Details will be in an exercise. 2

Remarks 2.2.5.

1. Let S be a set. The algebra K[S]∗ dual to the coalgebra K[S] in example 2.2.2 has the
product

ϕ · ϕ′(s) = ϕ⊗ ϕ′(∆(s)) = ϕ⊗ ϕ′(s⊗ s) = ϕ(s)ϕ′(s) ,

which shows that K[S]∗ is the algebra of functions on S.
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2. Warning: algebras cannot be simply dualized to coalgebras: the dual of the multiplication
is a map m∗ : A∗ → (A⊗A)∗, but we need a map A∗ → A∗⊗A∗. If A is finite-dimensional,
we have A∗⊗A∗ = (A⊗A)∗ and A∗ is a coalgebra. In general, A∗⊗A∗ is a proper subspace,
A∗ ⊗ A∗ ( (A⊗ A)∗.

3. For this reason, we denote by Ao the finite dual of A:

Ao := {f ∈ A∗ | f(I) = 0 for some ideal I ⊂ A of finite codimension, dimA/I <∞} .

If A is an algebra, then the finite dual Ao can be shown to be a coalgebra, with coproduct
∆ = m∗ and counit η∗. If A is commutative, then Ao is cocommutative.

We dualize the notion of an ideal to get coalgebra structures on certain quotients:

Definition 2.2.6
Let C be a coalgebra.

1. A subspace I ⊂ C is a left coideal, if ∆I ⊂ C ⊗ I.

2. A subspace I ⊂ C is a right coideal, if ∆I ⊂ I ⊗ C.

3. A subspace I ⊂ C is a two-sided coideal, if

∆I ⊂ I ⊗ C + C ⊗ I and ε(I) = 0 .

Any two-sided ideal of an algebra is, in particular, a left ideal and a right ideal. For coideals
of a coalgebra, however, an left or right coideal is a two-sided coideal, provided ε(I) = 0 holds.
It is easy to check that a subspace I ⊂ C is a two-sided coideal, if and only if C/I is a coalgebra
with comultiplication induced by ∆.

This raises the question what the algebraic structure on the quotient of C/I with I a left
or right ideal is. To this end, we also dualize the notion of a module:

Definition 2.2.7
Let K be a field and (C,∆, ε) be a K-coalgebra.

1. A right C-comodule is a pair (M,∆M), consisting of a K-vector space M and a K-linear
map

∆M : M →M ⊗ C ,

called the coaction such that the two diagrams commute:

M
∆M //

∆M

��

M ⊗ C
∆M⊗idC
��

M ⊗ C
idM⊗∆

//M ⊗ C ⊗ C

and

M
∆M //

∼=
��

M ⊗ C
idM⊗ε
��

M ⊗K M ⊗K .
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2. A K-linear map ϕ : M → N between right C-comodules M,N is said to be a
comodule map, if the following diagram commutes

M
ϕ //

∆M

��

N

∆N

��
M ⊗ C

ϕ⊗idC
// N ⊗ C .

3. We denote the category of right C-comodules by comod-C.

4. Left comodules and morphisms of left comodules are defined analogously. They form a
category, denoted by C−comod.

Again, the reader should draw pictures in a graphical notation.

Examples 2.2.8.

1. A left coideal I of a coalgebra is a subspace that is also, by restriction of the coproduct
of C a left comodule. Similarly, a right coideal I ⊂ C is a subspace that is, by restriction
of the coproduct of C a right comodule.

2. Let C be a coalgebra. A subspace I ⊂ C is a left coideal, if and only if C/I with the
natural map

∆ : C/I → C ⊗ C/I

inherited from the coproduct of C is a left comodule. There is an analogous statement
for right coideals. A subspace I ⊂ C is a two-sided ideal, if and only if the quotient C/I
with the inherited map

∆ : C/I → C/I ⊗ C/I

is a coalgebra. All statements will be exercises.

3. Let C be a coalgebra and M be a right C-comodule with coaction

∆M(m) =
∑

m0 ⊗m1 with m0 ∈M and m1 ∈ C .

Here we have adapted Sweedler notation to comodules. The coassociativity of the coaction
is then encoded in the notion

(idM ⊗∆C) ◦∆M(m) = (∆M ⊗ idC) ◦∆M(m) = m0 ⊗m1 ⊗m2

with m0 ∈ M and m1,m2 ∈ C. By lemma 2.2.4, then C∗ is an algebra and M is a left
C∗-module, where the action of f ∈ C∗ is defined by

f.m =
∑
〈f,m1〉m0 ,

where 〈f,m1〉 denotes the evaluation of f ∈ C∗ on m1 ∈ C. Warning: in this way, we do
not get all C∗-modules, but only the so-called rational C∗-modules.

4. Let S be a set and C := K[S] the coalgebra described in example 2.2.2.1. Then a K-vector
space M has the structure of a C-comodule, if and only if it is S-graded, i.e. if it can be
written as a direct sum of subspaces Ms ⊂M for s ∈ S:

M = ⊕s∈SMs .
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Given an S-graded vector space M , set ∆M(m) := m⊗s for a homogeneous element m ∈
Ms. One directly checks that this is a coassociative counital coaction of the coalgebra C.
Conversely, given a C-comodule M , write ∆M(m) =

∑
s∈Sms⊗s, using the distinguished

basis of C. We find

(∆M ⊗ idC) ◦∆M(m) =
∑
s,t∈S

(ms)t ⊗ t⊗ s

which by coassociativity of the coaction has to be equal to

(idM ⊗∆) ◦∆M(m) =
∑
s∈S

ms ⊗ s⊗ s .

Thus (ms)t = msδs,t, which implies ∆M(ms) = ms ⊗ s. We introduce the subspaces

Ms := {ms |m ∈M} .

The sum of the subspaces ⊕Ms is direct: m ∈ Ms ∩Mt for s 6= t implies m = m′s = m′′t
for some m′,m′′ ∈M . Then the comparison of

∆(m) = ∆(m′s) = m′s ⊗ s = m⊗ s

with the same relation for t shows that m ⊗ s = m ⊗ t and thus m = 0. Moreover,
counitality of the coaction implies

m = idM(m) = (idM ⊗ ε) ◦∆M(m) =
∑
s∈S

msε(s) =
∑
s∈S

ms ,

so that M = ⊕s∈SMs.

2.3 Bialgebras

Definition 2.3.1
1. A triple (A, µ,∆) is called a bialgebra, if

• (A, µ) is an associative algebra, having a unit η : K→ A.

• (A,∆) is a coassociative coalgebra, having a counit ε : A→ K.

• The coproduct ∆ : A → A ⊗ A is a map of unital algebras, where A ⊗ A has the
algebra structure described in proposition 2.1.11:

∆(a · b) = ∆(a) ·∆(b) for all a, b ∈ A

in pictures
=

or in Sweedler notation∑
(ab)

(ab)(1) ⊗ (ab)(2) =
∑
(a)(b)

a(1)b(1) ⊗ a(2)b(2) .

and ∆(1) = 1⊗ 1.
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• The counit ε : A → K is a map of unital algebras: ε(a · b) = ε(a) · ε(b). In pictures

=
and ε(1) = 1.

2. A K-linear map is said to be a bialgebra map, if it is both an algebra and a coalgebra
map.

Examples 2.3.2.

1. To endow the tensor algebra T (V ) with the structure of a bialgebra, it is enough to specify
the unital algebra morphisms ∆ and ε on the generators v ∈ T (1)V = V . We set

∆(v) = v ⊗ 1 + 1⊗ v and ε(v) = 0 for all v ∈ V .

Since ε is required to be a morphism of algebras, one has

ε(v1 · · · · · vn) = ε(v1) · . . . · ε(vn) = 0 .

Together with unitality, ε(1) = 1, this fixes the counit uniquely. Inductively, one uses the
property that ∆ is a morphism of algebras to show

∆(v1 . . . vn) = 1⊗ (v1 . . . vn) +
n−1∑
p=1

∑
σ

(vσ(1) . . . vσ(p))⊗ (vσ(p+1) . . . vσ(n)) + (v1 . . . vn)⊗ 1 .

where the sum is over all (p, n−p)-shuffle permutations, i.e. over all permutations σ ∈ Sn
for which σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < · · · < σ(n).

Counitality of ∆ is now a direct consequence of the explicit formulae for coproduct and
counit. Similarly, coassociativity can be derived. Finally, cocommutativity comes from
the explicit formula for the coproduct, together with the observation that (p, n − p)-
shuffles are in bijection to (n− p, p)-shuffles via the cyclic permutation in Sn that acts as
(1, 2, . . . , n) 7→ (p+ 1, p+ 2, . . . , n, 1, . . . p).

2. A direct calculation shows that the group algebra K[G] of a group G is a bialgebra. Note
that here we do not make use of the inverses in the group G, hence monoid algebras are
bialgebras as well. The algebra of functions on a finite group is a bialgebra as well.

3. The universal enveloping algebra U(g) of a Lie algebra g is a bialgebra. In particular,
any symmetric algebra over a vector space has a natural bialgebra structure. Since the
arguments are similar to the case of the tensor algebra, we do not repeat them.

Remarks 2.3.3.

1. Since the counit ε : B → K of a bialgebra is a morphism of algebras, the ground field K
can be endowed with the structure of a B-module by b.λ = ε(b) · λ for b ∈ B and λ ∈ K.
A bialgebra thus has a distinguished module, the trivial module. Similarly, the ground
field K has also the structure of a comodule by ∆(λ) = λ⊗ 1B for λ ∈ K. This gives the
trivial comodule.
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2. If C and D are coalgebras, the tensor product C ⊗ D can be endowed with a natural
structure of a coalgebra with comultiplication

C ⊗D ∆C⊗∆D−→ C ⊗ C ⊗D ⊗D idC⊗τ⊗idD−→ C ⊗D ⊗ C ⊗D

and counit
C ⊗D εC⊗εD−→ K⊗K ∼= K .

This is just the anaologue of proposition 2.1.11.

3. In the definition of a bialgebra, the last two axioms of coproduct ∆ and counit ε being
morphisms of unital algebras can be replaced by the equivalent condition of the product
µ and and the unit η being morphisms of counital coalgebras.

4. Since the counit ε : A→ K is a morphism of algebras, the kernel A+ := ker ε is a two-sided
ideal of codimension 1, called the augmentation ideal.

5. There is a weakening of the axioms of a bialgebra: one drops the condition of unitality
for the coproduct and the counit and replaces them the following identities

(∆⊗ idA) ·∆(1) = (∆(1)⊗ 1) · (1⊗∆(1))

= (1⊗∆(1)) · (∆(1)⊗ 1) (1)

and

ε(fgh) = ε(fg(1))ε(g(2)h)

= ε(fg(2))ε(g(1)h) for all f, g, h ∈ A . (2)

This defines the notion of a weak bialgebra. In a weak bialgebra, we only have the relation

∆(1) = ∆(1 · 1) = ∆(1)∆(1) ,

=

i.e. ∆(1) is an idempotent in A⊗ A.

Remark 2.3.4.
A subspace I ⊂ B of a bialgebra B is called a biideal, if it is both an ideal and a coideal. In
this case, B/I is again a bialgebra.

We again discuss duals:

Lemma 2.3.5.
Let (A, µ, η,∆, ε) be a finite-dimensional (weak) bialgebra and A∗ = HomK(A,K) its linear
dual. Then the dual maps

∆∗ : (A⊗ A)∗ ∼= A∗ ⊗ A∗ → A∗

ε∗ : K→ A∗

µ∗ : A∗ → (A⊗ A)∗ = A∗ ⊗ A∗

η∗ : A∗ → K

define the structure of a (weak) bialgebra (A∗,∆∗, ε∗, µ∗, η∗).
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Remark 2.3.6.
For any (weak) bialgebra (A, µ, η,∆, ε), we have three more (weak) bialgebras:

Aopp = (A, µopp, η,∆, ε) Aopp,copp = (A, µopp, η,∆copp, ε)
Acopp = (A, µ, η,∆copp, ε)

2.4 Tensor categories

We wish to understand the additional structure that is present on the categories of modules over
bialgebras. Given two modules V,W over an algebra A, the tensor product has the structure
of an A⊗ A-module by

A⊗ A ρV ⊗ρW−→ End(V )⊗ End(W ) ↪→ End(V ⊗W ) ,

i.e. as in the case of Lie algebras and group algebras, cf. observation 2.1.12, will use for a
bialgebra the pullback along the group homomorphism ∆ : A → A ⊗ A to endow the tensor
product V ⊗W with the structure of an A-module. This turns a pair of objects (V,W ) of the
category A−mod into an object V ⊗W , and a pair of morphisms (f, g) into a morphism f ⊗ g.
We formalize this structure:

Definition 2.4.1
The Cartesian product of two categories C,D is defined as the category C×D whose objects are
pairs (V,W ) ∈ Obj(C)×Obj(D) and whose morphism sets are given by the Cartesian product
of sets:

HomC×D((V,W ), (V ′,W ′)) = HomC(V, V
′)× HomD(W,W ′) .

We are now ready to discuss the structure induced by the tensor product of modules:

Definition 2.4.2

1. Let C be a category and ⊗ : C × C → C a functor, called a tensor product.

Note that this associates to any pair (V,W ) of objects an object V ⊗W and to any pair of
morphisms (f, g) a morphism f ⊗ g with source and target given by the tensor products
of the source and target objects. In particular, idV⊗W = idV ⊗ idW and for composable
morphisms

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g) .

2. A monoidal category or tensor category consists of a category (C,⊗) with tensor product,
an object I ∈ C, called the tensor unit, and a natural isomorphism, called the associator,

a : ⊗(⊗× id)→ ⊗(id×⊗) .

of functors C × C × C → C and natural isomorphisms

r : id⊗ I→ id and l : I⊗ id→ id

called unit constraints such that the following axioms hold:
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• The pentagon axiom: for all quadruples of objects U, V,W,X ∈ Obj(C) the following
diagram commutes

(U ⊗ V )⊗ (W ⊗X)
aU,V,W⊗X

**
((U ⊗ V )⊗W )⊗X
aU,V,W⊗idX

��

aU⊗V,W,X
44

U ⊗ (V ⊗ (W ⊗X))

(U ⊗ (V ⊗W ))⊗X aU,V⊗W,X
// U ⊗ ((V ⊗W )⊗X)

idU⊗aV,W,X

OO

• The triangle axiom: for all pairs of objects V,W ∈ Obj(C) the following diagram
commutes

(V ⊗ I)⊗W
aV,I,W //

rV ⊗idW ''

V ⊗ (I⊗W )

idV ⊗lWww
V ⊗W

Remarks 2.4.3.

1. A monoidal category can be considered as a higher analogue of an associative, unital
monoid, hence the name. The associator a is, however, a structure, not a property. A
property is imposed at the level of natural transformations in the form of the pentagon
axiom. For a given category C and a given tensor product ⊗, inequivalent associators can
exist. Any associator a gives for any triple U, V,W of objects an isomorphism

aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

such that all diagrams of the form

(U ⊗ V )⊗W
(f⊗g)⊗h

��

aU,V,W // U ⊗ (V ⊗W )

f⊗(g⊗h)

��
(U ′ ⊗ V ′)⊗W ′

aU′,V ′,W ′
// U ⊗ (V ⊗W )

commute.

2. The pentagon axiom can be shown to guarantee the following property: suppose we are
given finitely many objects U1, U2, . . . , Un ∈ C. Any bracketing of this string determines
an object in C. For example, for n = 4, we get the five different objects at the vertices
of the pentagon diagram. The pentagon diagram illustrates that the associator can be
applied repeatedly in different ways to get an isomorphism between two objects arising
from different bracketings. In the case of the pentagon, we have two isomorphisms ((U ⊗
V ) ⊗W ) ⊗ X → U ⊗ (V ⊗ (W ⊗ X)). The pentagon axioms ensures that for arbitrary
n all such isomorphisms coincide. This is known as Mac Lane’s coherence theorem. We
refer to [Kassel, XI.5] for details.

3. A tensor category is called strict , if the natural transformations a, l and r are the identity.
One can show that any tensor category is equivalent, as a tensor category, to a strict tensor
category.
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4. Let (C,⊗, a, l, r) be a tensor category. From the tensor product ⊗ : C × C → C, we can
get the functor ⊗opp = ⊗ ◦ τ with

V ⊗opp W := W ⊗ V and f ⊗opp g := g ⊗ f .

It defines a tensor product: given an associator a for ⊗, one verifies that aopp
U,V,W := a−1

W,V,U

is an associator for the tensor product ⊗opp. Similarly, one obtains left and right unit
constraints.xxxxx

Examples 2.4.4.

1. The category of vector spaces over a fixed field K is a tensor category which is not strict.
(See the appendix for information about this tensor category.) Tacitly, it is frequently
replaced by an equivalent strict tensor category.

2. Let G be a group and vectG(K) be the category of G-graded K-vector spaces, i.e. of K-
vector spaces with a direct sum decomposition V = ⊕g∈GVg. Then the tensor product
V ⊗W is bigraded, V ⊗W = ⊕g,h∈GVg ⊗Wh and becomes G-graded by the total degree

V ⊗W = ⊕g∈G (⊕h∈GVh ⊗Wh−1g) .

Together with the associativity constraints inherited from vect(K) and with Ke, i.e. the
ground field K in homogeneous degree e ∈ G, as the tensor unit, this is a monoidal
category. For these considerations, inverses in G are not needed and we could consider
the monoidal category of vector spaces graded by any unital associative monoid.

3. Let C be a small category. The endofunctors

F : C → C

are the objects of a tensor category End(C). The morphisms in this category are natural
transformations, the tensor product is composition of functors. This tensor category is
strict.

4. Let (Gn)n∈N0 be a family of groups such that G0 = {1}.
Define a category G whose objects are the natural numbers and whose morphisms are
defined by

HomG(m,n) =

{
∅ m 6= n
Gn m = n

Composition is the product in the group, the identity is the neutral element, idn = e ∈ Gn.

Suppose that we are given as further data a group homomorphism for any pair (m,n)

ρm,n : Gm ×Gn → Gm+n

such that for all m,n, p ∈ N, we have

ρm+n,p ◦ (ρm,n × idGp) = ρm,n+p ◦ (idGm × ρn,p) .

We define a functor
⊗ : G × G → G

on objects by m⊗ n = m+ n and on morphisms by

Gm ×Gn → Gm,n

(f, g) 7→ f ⊗ g := ρm,n(f, g) .
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This turns G into a strict tensor category.

Such a structure is provided in particular by the collection (Sn)n∈N0 of symmetric groups
and the collection (Bn)n∈N of braid groups. Define

ρm,n : Bm ×Bn → Bm+n

(σi, σj) 7→ σiσj+m ,

as the juxtaposition of a braid from Bm to a braid Bn.

Remarks 2.4.5.
1. In any monoidal category, we have a notion of an associative unital algebra (A, µ, η): this

is a triple, consisting of an object A ∈ C, multiplication µ : A ⊗ A → A and a unit
morphism η : I→ A such that associativity identity

µ ◦ (µ⊗ idA) = µ ◦ (idA ⊗ µ) ◦ aA,A,A
for the morphisms (A⊗ A)⊗ A→ A and the unit property

µ ◦ (idA ⊗ η) = idA ◦ rA and µ ◦ (η ⊗ idA) = idA ◦ lA
hold. Note that the associator enters. For a general monoidal category, we do not have a
notion of a commutative algebra.

2. Similarly, we introduce the notion of a coalgebra (C,∆, ε) in any monoidal category. For
a general monoidal category, we do not have a notion of a cocommutative coalgebra.

3. Similarly, one can define modules and comodules in any monoidal category.

4. A coalgebra in C gives an algebra in Copp and vice versa.

The graphical notation for algebras, coalgebras, modules and comodules in a (strict)
monoidal category is introduced in the obvious way.

If C is any category, the category of endofunctors End(C) has a composition. (If the category
is small, it is even a strict monoidal category with composition as the tensor product. ) This
composition allows us to define:

Definition 2.4.6
Let C be a category. An associative unital algebra in the monoidal category End(C) of endo-
functors is called a monad on C. Concretely, a monad is an endofunctor Z : C → C, together
with two natural transformations

µ : Z ◦ Z → Z and η : idC → Z

such that the two diagrams

Z3(c)
µZ(c) //

Z(µc)
��

Z2(c)

µc

��
Z2(c) µc

// Z(c)

and Z(c)
ηZ(c) //

Z(ηc)
�� id ##

Z2(c)

µc

��
Z2(c) µc

// Z(c)

expressing associativity and unitality commute for all c ∈ C.

Considering Z as a monoid in End(C), one could define a module as as an object m in the
monidal category End(C) with a morphism Z ◦m→ m. The following notion of a Z-module is
different and more useful:

Definition 2.4.7
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1. Let C be a category and Z : C → C a monad on C. A Z-module is a pair (m, ρ), consisting
of an object m ∈ C and a morphism ρ : Z(m)→ m such that the following two diagrams

Z2(m)
µm //

Z(ρ)

��

Z(m)

ρ

��
Z(m) ρ

//m

and m
ηm //

idm ""

Z(m)

ρ

��
m

expressing associativity and unitality of the action commute.

2. Given two Z-modules (m, ρ) and (m, ρ′), the set of Z-module morphisms is

HomZ((m, ρ), (m′, ρ′)) := {f : m→ m′ | ρ′ ◦ Z(f) = f ◦ ρ} .

We denote by Z−mod the category of Z-modules.

There exists also the notion of a comonad which the reader should work out as an exercise.

Tensor categories are categories with some additional structure. It should not come as a
surprise that we need also a class of functors and natural transformations that is adapted to
this extra structure.

Definition 2.4.8

1. Let (C,⊗C, IC, aC, lC, rC) and (D,⊗D, ID, aD, lD, rD) be tensor categories. (We will some-
times suppress indices indicating the category to which the data belong.) A tensor functor
or monoidal functor from C to D is a triple (F, ϕ0, ϕ2) consisting of

a functor F : C → D
an isomorphism ϕ0 : ID → F (IC) in the category D

a natural isomorphism ϕ2 : ⊗D ◦ (F × F ) → F ◦ ⊗C

of functors C ×C → D. This includes in particular an isomorphism for any pair of objects
U, V ∈ C

ϕ2(U, V ) : F (U)⊗D F (V )
∼−→ F (U ⊗C V ) .

These data have to obey a series of constraints expressed by commuting diagrams:

• Compatibility with the associativity constraint:

(F (U)⊗ F (V ))⊗ F (W )
aF (U),F (V ),F (W ) //

ϕ2(U,V )⊗idF (W )

��

F (U)⊗ (F (V )⊗ F (W ))

idF (U)⊗ϕ2(V,W )

��
F (U ⊗ V )⊗ F (W )

ϕ2(U⊗V,W )

��

F (U)⊗ F (V ⊗W )

ϕ2(U,V⊗W )

��
F ((U ⊗ V )⊗W )

F (aU,V,W )
// F (U ⊗ (V ⊗W ))

• Compatibility with the left unit constraint:

ID ⊗ F (U)
lF (U) //

ϕ0⊗idF (U)

��

F (U)

F (IC)⊗ F (U)
ϕ2(IC ,U)

// F (IC ⊗ U)

F (lU )

OO
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• Compatibility with the right unit constraint:

F (U)⊗ ID
rF (U) //

idF (U)⊗ϕ0

��

F (U)

F (U)⊗ F (IC)
ϕ2(U,IC)

// F (U ⊗ IC)

F (rU )

OO

2. A tensor functor is called strict, if the isomorphism ϕ0 and the natural transformation ϕ2

are identities in D. In general, the isomorphism and the natural isomorphism is additional
structure.

3. A monoidal natural transformation between tensor functors

η : (F, ϕ0, ϕ2)→ (F ′, ϕ′0, ϕ
′
2)

is a natural transformation η : F → F ′ with the following two properties: such that
diagram involving the tensor unit

F (IC)

ηI

��

ID

ϕ0

<<

ϕ′0 ""
F ′(IC)

commutes, and for all pairs (U, V ) of objects the diagram

F (U)⊗ F (V )

ηU⊗ηV
��

ϕ2(U,V ) // F (U ⊗ V )

ηU⊗V
��

F ′(U)⊗ F ′(V )
ϕ′2(U,V )

// F ′(U ⊗ V )

commutes.

4. One then defines monoidal natural isomorphisms as invertible monoidal natural transfor-
mations. An equivalence of tensor categories C,D is given by a pair of tensor functors
F : C → D and G : D → C and natural monoidal isomorphisms

η : idD → FG and θ : GF → idC .

Remarks 2.4.9.

1. Suppose that a tensor functor (F, ϕ0, ϕ2) has the property that the underlying functor F
is an equivalence of categories. One then then show that then there exists a tensor functor
G such that (F,G) is an equivalence of tensor categories [DM, Proposition 1.11] which
refers to [Saa, Proposition 4.4.2]

2. The strictification result for tensor categories can now be stated more precisely: any
tensor category C is monoidally equivalent to a strict tensor category Ĉ. The strict tensor
category Ĉ equivalence F : C → Ĉ can even be chosen such that F is a strict monoidal
functor, see [JS, Corollary 1.4].
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3. There is also a strictification result for tensor functors: Proposition 1.5 in [JS] explains
how tensor functors can be replaced by strict tensor functors.

We can now characterize algebras whose representation categories are monoidal categories.

Proposition 2.4.10.
Let (A, µ) be a unital associative algebra. Suppose we are given unital algebra maps

∆ : A→ A⊗ A and ε : A→ K .

Use the pullback along the morphism of algebras ε : A → K ∼= EndK(K) to endow the ground
field K with the structure of an A-module (K, ε), i.e. a.λ := ε(a) · λ for a ∈ A and λ ∈ K. Let

⊗ : A−mod× A−mod→ A−mod

be the functor which associates to a pair M,N of A-modules their tensor product M ⊗K N as
vector spaces with the A-module structure given by the morphism of algebras

A
∆−→ A⊗ A ρM⊗ρN−→ End(M)⊗ End(N) −→ End(M ⊗N) .

Then (A−mod,⊗, (K, ε)), together with the canonical associativity and unit constraints of the
category vect(K) of K-vector spaces is a monoidal category, if and only if (A, µ,∆) is a bialgebra
with counit ε, i.e. if and only if (A,∆, ε) is a coalgebra.

Proof.

• Suppose that (A, µ,∆) is a bialgebra. We have to show that the canonical isomorphisms
of vector spaces

(U ⊗ V )⊗W → U ⊗ (V ⊗W )
(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w)

are morphisms of A-modules. Using Sweedler notation, the element a ∈ A acts on the left
hand side by

a.(u⊗ v)⊗ w = a(1).(u⊗ v)⊗ a(2).w = ((a(1))(1).u⊗ (a(1))(2).v)⊗ a(2).w (∗)

and on the right hand side

a.u⊗ (v ⊗ w) = a(1).u⊗ a(2).(v ⊗ w) = a(1).u⊗ ((a(2))(1).v ⊗ (a(2))(2).w) (∗∗)

Coassociativity of A implies that the right hand side of the first equation is mapped to
the right hand side of the second equation after rebracketing.

Since the standard associativity constraints in vect(K) obey the pentagon relation, this
relation holds in A−mod, as well. Similarly, we have to show that the two unit constraints

V ⊗K → V and K⊗ V → V
v ⊗ λ 7→ λv λ⊗ v 7→ λv

are morphisms of A-modules. For the second isomorphism, note that

a.(λ⊗ v) = ε(a(1))λ⊗ a(2).v 7→ ε(a(1))a(2).λv = a.λv

where in the last step we used one defining property of the counit. The other unit con-
straint is dealt with in complete analogy.
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• Conversely, suppose that (A−mod,⊗,K) is a monoidal category. We have to extract from
this categorical structure structure and relations on the algebra. This is usually done using
the following observation: the algebra A itself, with the action by left multiplication, is a
left A-module, the left regular A-module AA. In the specific case U = V = W =A A, the
associator provides an isomorphism

(A⊗ A)⊗ A → A⊗ (A⊗ A)
(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w)

of A-modules. Taking the associator in the category of vector spaces to be the identity,
the fact that the identity intertwines the action of A leads to the equation

(a(1))(1)u⊗ (a(1))(2)v ⊗ a(2)w = a(1)u⊗ (a(2))(1)v ⊗ (a(2))(2)w

for all u, v, w ∈A A and all a ∈ A. Choosing u = v = w = 1A, implies coassociativity,

(a(1))(1) ⊗ (a(1))(2) ⊗ a(2) = a(1) ⊗ (a(2))(1) ⊗ (a(2))(2)

for all a ∈ A.

Similarly, we conclude from the fact that the canonical maps K⊗A→ A and A⊗K→ A
are isomorphisms of A-modules that ε is a counit.

2

Remark 2.4.11.

1. Let (A, µ,∆) again be a bialgebra. Then the category comod-A of right A-comodules is
a tensor category as well. Given two comodules (M,∆M) and (N,∆N), the coaction on
the tensor product M ⊗N is defined using the multiplication:

∆M⊗N : M ⊗N ∆M⊗∆N−→ M ⊗A⊗N ⊗A idM⊗τ⊗idA−→ M ⊗N ⊗A⊗A idM⊗N⊗µ−→ M ⊗N ⊗A .

It is straightforward to dualize all statements we made earlier.

In particular, the tensor unit is the trivial comodule which is the ground field K with a
coaction that is given by the unit η : K→ A:

K η−→ A ∼= K⊗ A .

Again, the associativity and unit constraints of comodules are inherited from the con-
straints for vector spaces:

(M ⊗N)⊗ P ∼= M ⊗ (N ⊗ P )
K⊗M ∼= M ∼= M ⊗K .

2. A bialgebra thus gives rise to four monoidal categories, left and right modules and comod-
ules. These categories are, in general, rather different. For example, for a group algebra
K[G], the monoidal category of comodules is the category vectG of G-graded vector spaces
which has only one-dimensional simple modules while the category of left modules is the
category repG of G-representations.
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2.5 Hopf algebras

Observation 2.5.1.
Let (A, µ) be a unital algebra and (C,∆) a counital coalgebra over the same field K. We then
define on the K-vector space of K-linear maps Hom(C,A) a product, called convolution. The
product f ∗ g of f, g ∈ Hom(C,A) is the K-linear map

f ∗ g : C
∆−→ C ⊗ C f⊗g−→ A⊗ A µ−→ A .

This product is K-bilinear and associative. In Sweedler notation

(f ∗ g)(x) = f(x(1)) · g(x(2)) .

The linear map
C

ε−→ K η−→ A

is a unit for this product.

This endows in particular the space EndK(A) of endomorphisms of a bialgebra A with the
structure of a unital associative K-algebra. Its unit is not the identity idA ∈ EndK(A). It is,
however, not clear whether in this case the identity idA has the property of being an invertible
element of the convolution algebra.

Definition 2.5.2
We say that a bialgebra (H,µ,∆) is a Hopf algebra, if the identity idH has a two-sided inverse
S : H → H under the convolution product. This inverse is then called the antipode of the Hopf
algebra.

Remarks 2.5.3.

1. The defining identity of the antipode

S ∗ idH = idH ∗ S = ηε

reads in graphical notation

=S S =

and in Sweedler notation

x(1) · S(x(2)) = ε(x) · 1 = S(x(1)) · x(2) .

2. If an antipode exists, it is, as a two-sided inverse for an associative product, uniquely
determined:

S = S ∗ (ηε) = S ∗ (idH ∗ S ′) = (S ∗ idH) ∗ S ′

= ηε ∗ S ′ = S ′ .

Thus, for a bialgebra, being a Hopf algebra is a property rather than a structure.
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3. If H = (A, µ, η,∆, ε, S) is a finite-dimensional Hopf algebra, its dual H∗ =
(A∗,∆∗, ε∗, µ∗, η∗, S∗) is a Hopf algebra as well.

4. We will see in corollary 2.5.10 that any morphism f : H → K of bialgebras between Hopf
algebras respects the antipode, f(SHh) = SKf(h) for all h ∈ H. It is thus a morphism of
Hopf algebras.

5. The antipode is not necessarily invertible as a linear map S : H → H. For counter
examples, see [T].

6. A subspace I ⊂ H of a Hopf algebra H is a Hopf ideal, if it is a biideal, cf. remark 2.3.4
and if S(I) ⊂ I. In this case, H/I with the structure induced from H is a Hopf algebra.

Example 2.5.4.
If G is a group, the group algebra K[G] is a Hopf algebra with antipode

S(g) = g−1 for all g ∈ G .

Indeed, we have for g ∈ G:

µ ◦ (S ⊗ id) ◦∆(g) = µ ◦ (S ⊗ id)(g ⊗ g) = g−1 · g = ε(g)1 .

Before giving more examples, we need a fundamental property of the antipode. If (A, µA)
and (B, µB) are algebras, a map f : A→ B is called an antialgebra map, if it is a map of unital
algebras f : A→ Bopp, i.e. if f(a · a′) = f(a′) · f(a) for all a, a′ ∈ A and f(1A) = 1B.

Similarly, if (C,∆C) and (D,∆D) are coalgebras, a map g : C → D is called an
anticoalgebra map, if it is a counital coalgebra map g : C → Ccopp, i.e. if εD ◦ g = εC and

g(c)(2) ⊗ g(c)(1) = g(c(1))⊗ g(c(2)) .

Proposition 2.5.5.
Let H be a Hopf algebra. Then the antipode S is a morphism of bialgebras S : H → Hopp,copp,
i.e. an antialgebra and anticoalgebra map: we have for all x, y ∈ H

S(xy) = S(y)S(x) S(1) = 1
and (S ⊗ S) ◦∆ = ∆copp ◦ S ε ◦ S = ε .

Graphically,

=
S

S S

=
S

and

=
S S

S

=
S
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Proof.
Since H ⊗ H is in particular a coalgebra and H an algebra, we can endow the vector space
B := Hom (H ⊗ H,H) with bilinear product given by the convolution product: the product
ν ∗ ρ of ν, ρ ∈ Hom (H ⊗H,H) is by definition

ν ∗ ρ : H ⊗H (id⊗τ⊗id)◦(∆⊗∆)−→ H⊗4 ν⊗ρ−→ H⊗2 µ−→ H .

As any convolution product involving an associative algebra and a coassociative coalgebra, this
product is associative. The unit is

1B := η ◦ ε ◦ µ : H ⊗H µ−→ H
ε−→ K η−→ H

as can be seen graphically: for any f ∈ HomK(H ⊗H,H), we have

f f f= =

Here we used that the counit ε of a bialgebra is a morphism of algebras and then we used
the counit property twice. Recall that, as for any associative product, two-sided inverses are
unique: given µ ∈ B, for any ρ, ν ∈ B, the relation

ρ ∗ µ = µ ∗ ν = 1B

implies
ν = 1 ∗ ν = (ρ ∗ µ) ∗ ν = ρ ∗ (µ ∗ ν) = ρ ∗ 1 = ρ .

We apply this to the two elements in the algebra B

H ⊗H → H
ν : x⊗ y 7→ S(y) · S(x)
ρ : x⊗ y 7→ S(x · y)

We compute for x, y ∈ H:

(ρ ∗ µ)(x⊗ y) =
∑
x⊗y

ρ((x⊗ y)(1)) · µ((x⊗ y)(2)) [defn. of the convolution ∗]

=
∑

ρ(x(1) ⊗ y(1))µ(x(2) ⊗ y(2)) [defn. of the coproduct of H ⊗H]

=
∑

S(x(1)y(1))x(2)y(2) [defn. of ρ and µ]

=
∑
(xy)

S((xy)(1))(xy)(2) [∆ is a morphism of algebras]

= ηε(xy) [defn. of the antipode]

= 1B(x⊗ y)

It is instructive to do such a calculation graphically:
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S S

= =

The first equality is the multiplicativity of the coproduct in a bialgebra, the second is the
definition of the antipode.
On the other hand, we compute µ ∗ ν:

S
S

= = = =
S

S S

ηε(x) · ε(y) = ηε(x · y)

where in the first step we used associativity twice and in last step we used that the counit ε is
a map of algebras.

Finally, the equality defining the antipode

id ∗ S = ηε ,

can be applied to 1H and then yields

1H · S(1H) = id ∗ S(1H) = ηε(1H) = 1H ,

where the first equality is unitality of the coproduct ∆ and the last identity is the unitality of
the counit ε. This identity in H implies S(1H) = 1H . The assertions about the coproduct are
proven in an analogous way by showing the equivalent identity

∆ ◦ S = (S ⊗ S) ◦∆copp in Hom(H,H ⊗H) .

Finally, apply ε to the equality
ε(x)1 = S(x(1)) · x(2)

to get
ε(x) = ε(x)ε(1) = ε(S(x(1))ε(x(2)) = ε ◦ S(x) for all x ∈ H .

2

We now present another class of examples of Hopf algebras

Example 2.5.6.
The universal enveloping algebra U(g) of a Lie algebra g is a Hopf algebra with antipode

S(x) = −x for all x ∈ g .

Indeed, we have for x ∈ g:

µ ◦ (S ⊗ id) ◦∆(x) = µ(−x⊗ 1 + 1⊗ x) = −x+ x = 0 = 1ε(x) .
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We extend this to all of U(g) by the following observation: let H be a bialgebra that is
generated, as an algebra, by a subset X ⊂ H. Suppose that the defining relation for an antipode
holds for all x ∈ X, i.e.

S ∗ idH(x) = idH ∗ S(x) = ηε(x) for all x ∈ X .

Then S is an antipode for H. In fact, it is enought to check that the relation holds for products
xy with x, y ∈ X. Then

(xy)(1)S((xy)(2)) = x(1)y(1)S(x(2)y2)) [bialgebra]
= x(1)y(1)S(y(2))S(x2)) [antialgebra morphism]
= ε(x)ε(y) = ε(xy) [relation for generators x, y and ε algebra morphism.]

The other relation follows analogously.
In particular, the symmetric algebra over a vector space V is a Hopf algebra, since it is the

universal enveloping algebra of the abelian Lie algebra on the vector space V . Similarly, the
tensor algebra TV over a vector space V is a Hopf algebra, since it can be considered as the
enveloping algebra of the free Lie algebra on V .

Proposition 2.5.7.
Let H be a Hopf algebra. Then the following identities are equivalent:

(a) S2 = idH

(b)
∑

x S(x(2))x(1) = ε(x)1H for all x ∈ H.

(c)
∑

x x(2)S(x(1)) = ε(x)1H for all x ∈ H.

Proof.
We show (b) ⇒ (a) by first showing from (b) that S ∗ S2 is the unit η ◦ ε of the convolution
product. In graphical notation, (b) reads

S

=

Thus

S ∗ S2 = S =S2

S

S

=
(b)

S

= = η ◦ ε

For comparison, we also compute in equations:

S ∗ S2(x) =
∑
(x)

S(x(1))S
2(x(2)) = S

(∑
(x)

S(x(2))x(1)

)
(b)
= S(ε(x)1) = ε(x)S(1) = ε(x)1 .
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Multiplying from the left with id yields id = id ∗ (S ∗ S2) = (id ∗ S) ∗ S2 = S2.
Conversely, assume S2 = idH

S S SS S

S

S S

S

S

=
S2 = id

= = = = η ◦ ε

where we used S2 = id, the fact that S is an anticoalgebra map, again S2 = id and then the
defining property of the antipode S. The equivalence of (c) and (a) is proven in complete
analogy. 2

The following simple lemma will be useful in many places:

Lemma 2.5.8.
Let H be a Hopf algebra with invertible antipode. Then

S−1(a(2)) · a(1) = a(2) · S−1(a(1)) = 1Hε(a) for all a ∈ H .

Proof.
The following calculation shows the claim:

S−1(a(2)) · a(1) = S−1 ◦ S
(
S−1(a(2)) · a(1)

)
= S−1

(
S(a(1)) · a(2)

)
[ S is antialgebra morphism]

= S−1(1H)ε(a) = 1Hε(a)

The other identity is proven analogously. 2

Remark 2.5.9.
Let H be a bialgebra. An endomorphism S̃ : H → H such that∑

x

S̃(x(2))x(1) =
∑
x

x(2)S̃(x(1)) = ε(x)1H for all x ∈ H

is also called a skew antipode. For any invertible antipode, S−1 is a skew-antipode. Conversely,
a bialgebra with an antipode and a skew-antipode has an invertible antipode. As we will see,
a theorem of Larson and Sweedler asserts that for any finite-dimensional Hopf algebra the
antipode is invertible. Hence, finite-dimensional Hopf algebras also have a skew antipode.

Corollary 2.5.10.

1. If H is either commutative or cocommutative, then the identity S2 = idH holds.

2. If H and K are Hopf algebras with antipodes SH and SK , respectively, then any (unital
and counital) bialgebra map ϕ : H → K is a Hopf algebra map, i.e. ϕ ◦ SH = SK ◦ ϕ.

Proof.
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1. If H is commutative, then

x(2) · S(x(1)) = S(x(1)) · x(2)
defn. of S

= ε(x)1H .

From proposition 2.5.7, we conclude that S2 = idH . If H is cocommutative, then

x(2) · S(x(1)) = x(1) · S(x(2))
defn. of S

= ε(x)1H .

Again we conclude that S2 = idH .

2. Use again a convolution product to endow B := Hom(H,K) with the structure of an
associative unital algebra. Then compute

(ϕ ◦ SH) ∗ ϕ = µK ◦ (ϕ⊗ ϕ) ◦ (SH ⊗ idH) ◦∆H = ϕ ◦ µH(SH ⊗ idH) ◦∆H = 1KεH

and
ϕ ∗ (SK ◦ ϕ) = µK ◦ (id⊗ SK) ◦∆K ◦ ϕ = 1KεK ◦ ϕ = 1KεH

The uniqueness of the inverse of ϕ for the convolution product shows the claim.

2

We use the antipode to endow the category of left modules over a Hopf algebra H with
a structure that generalizes contragredient or dual representations of groups. We first state a
more general fact:

Proposition 2.5.11.

1. Let A be a K-algebra and U, V objects in A−mod. Then the K-vector space HomK(U, V )
is an A⊗ Aopp-module by [

(a⊗ a′).f
]
(u) := a.f(a′.u) .

2. If H is a Hopf algebra, then HomK(U, V ) is an H-module by

(af)(u) =
∑
(a)

a(1)f(S(a(2))u) .

In the special case of the trivial module, V = K, the dual vector space U∗ = HomK (U,K)
becomes an H-module by

(af)u = f(S(a)u) .

3. Similarly, if H is a Hopf algebra and if the antipode S of H is an invertible endomorphism
of H (or if a skew antipode exists), then the K-vector space HomK(U, V ) is also an H-
module by

(af)(u) =
∑
(a)

a(1)f(S−1(a(2))u) .

In the special case V = K, the dual vector space U∗ = HomK(U,K) becomes an H-module
by

(af)u = f(S−1(a)u) .
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Proof.
We compute with a, b ∈ A and a′, b′ ∈ Aopp:(

(a⊗ a′)(b⊗ b′)
)
f(u) = (ab⊗ b′a′)f(u)

= abf(b′a′u)

= a
(

(b⊗ b′)f
)

(a′u)

= (a⊗ a′)
(
(b⊗ b′)f(u)

)
For the second assertion, note that

A
∆−→ A⊗ A idA⊗S−→ A⊗ Aopp

and, if S is invertible, also

A
∆−→ A⊗ A idA⊗S−1

−→ A⊗ Aopp

are morphisms of algebras.
In the specific case of the trivial module, V = K, we find

(af)(u) =
∑
(a)

ε(a(1))f(S(a(2))u) =
∑
(a)

f
(
S(ε(a(1))a(2))u

)
= f(S(a)u)

where the second equality holds since f is K-linear and the last equality holds by counitality.
2

We recall the following maps relating a K-vector space X and its dual X∗ = HomK(X,K):
we have two evaluation maps

dX : X∗ ⊗X → K
β ⊗ x 7→ β(x)

d̃X : X ⊗X∗ → K
x⊗ β 7→ β(x)

We call dX a right evaluation and d̃X a left evaluation. If the K-vector space X is finite-
dimensional, consider a basis {xi}i∈I of X and a dual basis {xi}i∈I of X∗. We then have two
coevaluation maps:

bX : K → X ⊗X∗

λ 7→ λ
∑

i∈I xi ⊗ xi

b̃X : K → X∗ ⊗X
λ 7→ λ

∑
i∈I x

i ⊗ xi

The two maps bX and b̃X are in fact independent of the choice of basis. For example,

bX : K → EndK(X) ∼= X ⊗X∗
λ 7→ λidX

We call bX a right coevaluation and b̃X a left coevaluation.

Definition 2.5.12
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1. Let C be a tensor category. An object V of C is called right dualizable, if there exists an
object V ∨ ∈ C and morphisms

bV : I→ V ⊗ V ∨ and dV : V ∨ ⊗ V → I

such that

rV ◦ (idV ⊗ dV ) ◦ aV,V ∨,V ◦ (bV ⊗ idV ) ◦ l−1
V = idV

lV ∨ ◦ (dV ⊗ idV ∨) ◦ a−1
V ∨,V,V ∨ ◦ (idV ∨ ⊗ bV ) ◦ r−1

V ∨ = idV ∨

Such an object V ∨ is called a right dual to V .

The morphism dV is called an evaluation, the morphism bV a coevaluation.

2. A monoidal category is called right-rigid or right-autonomous, if every object has a right
dual.

3. A left dual to V is an object ∨V of C, together with two morphisms

b̃V : I→ ∨V ⊗ V and d̃V : V ⊗ ∨V → I

such that analogous equations hold. A left-rigid or left autonomous category is a monoidal
category in which every object has a left dual.

4. A monoidal category is rigid or autonomous, if it is both left and right rigid or autonomous.

Lemma 2.5.13.
A K-vector space V has a right dual, if and only if it is finite-dimensional.

Proof.
Consider the element

bV (1) =
N∑
i=1

bi ⊗ βi ∈ V ⊗ V ∗ with bi ∈ V and βi ∈ V ∗

which is necessarily a finite linear combination. Then by the axioms of a duality

v = (idV ⊗ dV )(bV (1)⊗ idV )(v) =
N∑
i=1

biβi(v) .

This shows that the vectors (bi)i=1,...N are a finite set of generators for V and thus that V is
finite-dimensional. The converse is obvious. 2

Remarks 2.5.14.

1. In any strict tensor category, we have a graphical calculus. Morphisms are to be read from
below to above. Composition of morphisms is by joining vertically superposed boxes. The
tensor product of morphisms is described by horizontally juxtaposed boxes.
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U V

U

V

f

g
f

= =g ◦ f f ⊗ g

V ′U ′

U V V

U ′

f g

U

V ′

We represent coevaluation and evaluation of a right duality and their defining properties
as follows.

V V ∨

bV V ∨ V

dV

= =and

2. By definition, a right duality in a rigid tensor category associates to every object V
another object V ∨. We also define its action on morphisms:

V

U

f f

V ∨

U∨

=: f∨

One checks graphically that this gives a functor ?∨ : C → Copp, i.e. a contravariant functor.
Similarly, we get from the left duality a functor ∨? : C → Copp. There is no reason, in
general, for these functors to be isomorphic. The reader should check that as functors

∨? : C → Copp,mopp

where we denote by Cmopp the monoidal category with the opposed tensor product, are
monoidal equivalences, cf. Remark 2.4.3.4.

Rigid duals are a property, not a structure as the following Lemma shows:

46



Lemma 2.5.15.
Let V be an object in a tensor category. Let (V ∨, dV , bV ) and (Ṽ ∨, d̃V , b̃V ) be two right duals of
V . Then V ∨ and Ṽ ∨ are canonically isomorphic: there is a unique isomorphism ϕ : V ∨ → Ṽ ∨,
such that the two diagrams

V ∨ ⊗ V ϕ⊗idV //

dV
##

Ṽ ∨ ⊗ V

d̃V{{I

V ⊗ V ∨ idV ⊗ϕ // V ⊗ Ṽ ∨

I
b̃V

;;

bV

cc

commute.

Proof.
For simplicity, we assume that the tensor category is strict. The axioms of a duality imply that

α : V ∨
idV ∨⊗b̃V−→ V ∨ ⊗ V ⊗ Ṽ ∨

dV ⊗idṼ ∨−→ Ṽ ∨

and

β : Ṽ ∨
idṼ ∨⊗bV−→ Ṽ ∨ ⊗ V ⊗ V ∨ d̃V ⊗idV ∨−→ V ∨

are inverse to each other. Uniqueness is easy to see. 2

Proposition 2.5.16.
Let H be a Hopf algebra. Let V be an H-module. We denote by V ∨ the H-module defined on
the dual vector space V ∗ = HomK(V,K) with the action given by pullback of the transpose
along S. If the antipode has an inverse S−1 ∈ End(H) or if a skew-antipode exists, then denote
by ∨V the H-module defined on the same vector space V ∗ = HomK(V,K) with the action given
by pullback of the transpose along S−1.

1. The right evaluation
dV : V ∨ ⊗ V → K

α⊗ v 7→ α(v)

is a map of H-modules.

2. If the antipode S of H is invertible, the left evaluation

d̃V : V ⊗ ∨V → K
v ⊗ α 7→ α(v)

is a map of H-modules.

3. If V is finite-dimensional, then the right coevaluation

bV : K→ V ⊗ V ∨

is a map of H-modules.

4. If V is finite-dimensional and if the antipode S of H is invertible, then the left coevaluation
is a map of H-modules.

Proof.
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1. Let a ∈ H, v ∈ V and α ∈ V ∗. Then we compute

dV (a.(α⊗ v)) =
∑
(a)

dV (a(1).α⊗ a(2).v)

=
∑
(a)

(a(1).α)(a(2).v) [defn. of dV ]

= α
(∑

(a)

S(a(1))a(2).v
)

[defn. of action for V ∨]

= α(ε(a)v) = ε(a)α(v) = a.dV (α⊗ v) .

In the last line, we used the defining property of the antipode, linearity of α and the
definition of the H-action on the trivial module K.

Here is also a graphical proof:

2. Similarly, we use the identity

S−1(a(2)) · a(1) = 1Hε(a)

from lemma 2.5.8 to compute for v ∈ V and α ∈ V ∗

d̃V (a.(v ⊗ α) = d̃V (a(1).v ⊗ a(2).α)

= α(S−1(a(2))a(1).v)

= α(ε(a)v) = a.α(v)

Again, we present a graphical proof:
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3. As a final example, we discuss the left coevaluation. We have to compare linear maps
K→ V ∗ ⊗ V ∼= EndK(V ). We compute for λ ∈ K and v ∈ V

a.b̃V (λ)v = λ
∑

i x
i(S−1(a(1)).v)⊗ a(2).xi

= λa(2)

(
(
∑

i x
i ⊗ xi)(S−1(a(1)).v)

)
= λ

(
a(2) · S−1(a(1))

)
.v = ε(a)λv = b̃V (a.λ)v

2

We conclude:

Corollary 2.5.17.
The category H-modfd of finite-dimensional modules over any Hopf algebra is right rigid. If the
antipode S of H is a (composition-)invertible element of EndK(H), the category H-modfd is
rigid.

We construct another example of a monoidal category.

Definition 2.5.18

1. Let n be any positive integer. We define a category Cob(n) of n-dimensional cobordisms
as follows:

(a) An object of Cob(n) is a closed oriented (n− 1)-dimensional smooth oriented mani-
fold. The empty set ∅ is considered as an (n− 1)-dimensional manifold and thus an
object of Cob(n).

(b) Given a pair of objects M,N ∈ Cob(n), a morphism M → N is a class of bordisms
from M to N . A bordism is an oriented, n-dimensional smooth manifold B with
boundary, together with an orientation preserving diffeomorphism

φB : M
∐

N
∼−→ ∂B .

Here M denotes the same manifold with opposite orientation. (Since the empty set is
an object in Cob(n), every closed oriented n-dimensional smooth manifold B defines
a morphism ∅ → ∅.)
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Two bordisms B,B′ give the same morphism, if there is an orientation-preserving
diffeomorphism φ : B → B′ which restricts to the evident diffeomorphism

∂B
φ−1
B′−→M

∐
N

φB−→ ∂B′ ,

i.e. the following diagram commutes:

B
φ // B′

M
∐
N

φB

cc

φ′B

;;

(c) For any object M ∈ Cob(n), the identity map is represented by the product bordism
B = M × [0, 1], i.e. the so-called cylinder over M .

(d) Composition of morphisms in Cob(n) is given by gluing bordisms together: given
objects M,M ′,M ′′ ∈ Cob(n), and bordisms B : M → M ′ and B′ : M ′ → M ′′, the
composition is defined to be the morphism represented by the manifold B

∐
M ′ B

′.
(To get a smooth structure on this manifold, choices like collars are necessary. They
lead to diffeomorphic glued bordisms, however.)

2. For each n, the category Cob(n) can be endowed with the structure of a tensor category.
The tensor product

⊗ : Cob(n)× Cob(n)→ Cob(n)

is given by disjoint union. The unit object of Cob(n) is the empty set, regarded as a
smooth manifold of dimension n− 1.

Example 2.5.19.
The objects of Cob(1) are finitely many oriented points. Thus objects are finite unions of (•,+)
and (•,−).

The morphisms are oriented one-dimensional manifolds, possibly with boundary, i.e. unions
of intervals and circles.

An isomorphism class of objects is characterized by the numbers (n+, n−) of points with
positive and negative orientation. Sometimes, one also considers another equivalence relation
on objects: two d − 1-dimensional closed manifolds M and N are called cobordant, if there
exists a cobordism B : M → N . Since there is a cobordism (•,+)

∐
(•,−) → ∅, the objects

(n+, n−) and (n′+, n
′
−) are cobordant, if and only if n+ − n− = n′+ − n′−.

One can also define a category of unoriented cobordisms. In this case, objects are finite
disjoint unions of points, isomorphism classes are in bijection to the number of points. Since a
pair of points can annihilate, there are only two cobordism classes, consisting of the set with
an even and and odd number of points, respectively.

We next comment on the rigidity of the category Cob(n):

Observation 2.5.20.
Let M be a closed oriented n−1-dimensional smooth manifold. Then the oriented n-dimensional
manifold B := M × [0, 1], the cylinder over M , has boundary M

∐
M . The manifold B can be

considered as a cobordism in six different ways, corresponding to decomposition of its boundary:

• As a bordism M →M . This represents the identity on M .
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• As a bordism M →M . This represents the identity on M .

• As a morphism dM : M
∐
M → ∅ or, alternatively, as a morphism d̃M : M

∐
M → ∅.

• As a morphism b̃M : ∅ →M
∐
M or, alternatively, as a morphism bM : ∅ →M

∐
M .

One checks that the axioms of a left and a right duality hold. We conclude that the category
Cob(n) is rigid. (It has in fact more structure.)

We discuss a final example.

Example 2.5.21.
We have seen that for any small category C, the endofunctors of C, together with natural
transformations, form a monoidal category. In this case, a left dual of an object, i.e. of a functor,
is also called its left adjoint functor. Indeed, the following generalization beyond endofunctors
is natural and a central notion of category theory.

Definition 2.5.22

1. Let C and D be any categories. A functor F : C → D is called left adjoint to a functor
G : D → C, if for any two objects c in C and d in D there is an isomorphism of Hom-spaces

Φc,d : HomC(c,Gd)
∼→ HomD(Fc, d)

with the following naturality property:

For any homomorphism c′
f→ c in C and d

g→ d′ in D consider for ϕ ∈ HomD(Fc, d) the
morphism

Hom(Ff, g)(ϕ) := Fc′
Ff→ Fc

ϕ→ d
g→ d′ ∈ HomD(Fc′, d′)

and for ϕ ∈ HomC(c,Gd) the morphism

Hom(f,Gg)(ϕ) := c′
f→ c

ϕ→ Gd
Gg→ Gd′ ∈ HomC(c

′, Gd′) .

The naturality requirement for the family (Φc,d) of isomorphisms is then the requirement
that the diagram

HomC(c,Gd) −−−−−−→
Hom(f,Gg)

HomC(c
′, Gd′)yΦc,d Φc′,d′

y
HomD(Fc, d) −−−−−−→

Hom(Ff,g)
HomD(Fc′, d′)

commutes for all morphisms f, g.

2. We write F a G and also say that the functor G is a right adjoint to F .

Examples 2.5.23.

1. In general, the existence of a left adjoint functor does not imply the existence of a right
adjoint functor. Even if both adjoints exist, they need not coincide. Also, the isomorphisms
Φc,d are in general not unique.
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2. As explained in the appendix, the forgetful functor

U : vect(K)→ Set ,

which assigns to any K-vector space the underlying set has as a left adjoint, the free
vector space on a set:

F : Set→ vect(K) ,

Indeed, we have for any set M and any K-vector space V an isomorphism

ΦM,V : HomSet(M,U(V )) → HomK(F (M), V )
ϕ 7→ ΦM,V (ϕ)

where ΦM,V (ϕ) is the K-linear map defined by prescribing values in V on the distinguished
basis of F (M) using ϕ and extending linearly:

ΦM,V (ϕ)(
∑
m∈M

λmm) :=
∑
m∈M

λmϕ(m) .

In particular, we find the isomorphism of sets HomSet(∅, U(V )) ∼= HomK(F (∅), V ) for all
K-vector spaces V . Thus HomK(F (∅), V ) has exactly one element for any vector space
V . This shows F (∅) = {0}, i.e. the vector space freely generated by the empty set is the
zero-dimensional vector space.

3. In general, freely generated objects are obtained as images under left adjoints of forgetful
functors. It is, however, not true that any forgetful functor has a left adjoint. As a coun-
terexample, take the forgetful functor U from the category of all fields to sets. Suppose
a left adjoint exists and study the image K of the empty set under it. Then K is a field
such that for any other field L, we have a bijection

HomField(K,L) ∼= HomSet(∅, U(L)) ∼= ? .

Since morphisms of fields are injective, such a field K would be a subfield of any field L.
Such a field does not exist.

To make contact with the notion of duality, the following reformulation of the notion of a
pair F a G of adjoint functors is needed:

Observation 2.5.24.

1. Let F a G be adjoint functors. From the definition, we get isomorphisms

HomC(G(d), G(d)) ∼= HomD(F (G(d)), d)

and
HomD(F (c), F (c)) ∼= HomC(c,G(F (c))) .

The images of the identity on G(d) and F (c) for all c ∈ C and d ∈ D respectively form
two natural transformations

ε : F ◦G→ idD and η : idC → G ◦ F .

Note the different order of the functors F,G in the composition and compare to the
definition 2.5.12 of a pair of dual objects. The natural transformation η is called the
unit, ε is called the counit of the adjunction. The natural transformations η and ε are
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not unique, since the isomorphisms Φc,d are not unique. In particular, for a K- linear
category, given any λ ∈ K×, we can replace η by λ η and ε by λ−1ε to get another pair of
morphisms.

These natural transformations have the property that for all objects c in C and d in D
the morphisms

G(d)
ηG(d)−→ (GF )G(d) = G(FG)(d)

G(εd)−→ G(d)

and

F (c)
F (ηc)−→ F (GF )(c) = (FG)F (c)

εF (c)−→ F (c)

are identities. Again compare with the properties of a pair of dual objects. In particular,
the left adjoint of an endofunctor is its left dual in the monoidal category of endofunctors
with monoidal product F ⊗G = G ◦ F . For proofs, we refer to [McL, Chapter IV]

2. Conversely, we can recover the adjunction isomorphisms Φc,d from the natural transfor-
mations ε and η by

HomC(c,G(d))
F→ HomD(F (c), F (G(d))

(εd)∗→ HomD(F (c), d)

and their inverses by

HomD(F (c), d)
G→ HomC(G(F (c)), G(d))

η∗c→ HomC(c,G(d)) .

3. Note that a pair of adjoint functors F a G is an equivalence of categories, if and only if ε
and η are natural isomorphisms of functors. In this case, one has an adjoint equivalence.
Any equivalence of categories can be improved to an adjoint equivalence, cf. [McL, IV.4,
Thm. 1].

Remark 2.5.25.
Adjoint functors can be understood in a planar diagrammatics, cf. e.g. [Kh, Section 1]. Con-
sider one-dimensional diagrams, with one-dimensional segments describing categories and zero-
dimensional parts indicating functors. In our convention, such diagrams are drawn horizontally
and are to be read from right to left. Thus for A and B categories and a functor F : A → B,
we draw the diagram

FB A

The composition Fn · · ·F1≡Fn◦· · ·◦F1 : A1 → An of functors Fi : Ai → Ai+1 is represented
by horizontal concatenation

F2 F1A2A3 A1
Fn AnAn+1

To accommodate also natural transformations, a second dimension is needed. Categories are
now represented by two-dimensional regions and functors by one-dimensional vertical segments,
while zero-dimensional parts indicate natural transformations. In our convention, the vertical
direction is to be read from bottom to top. Thus a natural transformation α : F1⇒F2 between
the functors F1, F2 from objects A to B is depicted by the diagram

F1

F2

αB A
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For the moment, we require that the strands always go from bottom to top and do not allow ‘U-
turns’. Such diagramms are called progressive in [JS]. For the identity natural transformation
α = idF we omit the blob in the diagram. For the identity functor idA we omit any label
except for the one referring to the category A. With these conventions, natural transformations
α : F ⇒idA and β : idA⇒F with F an endofunctor of the category A are drawn as

F

α

A
and

F

β

A

respectively, while a natural transformation F2F1⇒ idA is represented by

F2 F1

α

B

A

Natural transformations can be composed horizontally and vertically. Horizontal composi-
tion is depicted as juxtaposition, as in

α⊗ β =
α

β

Vertical composition is represented as vertical concatenation of diagrams; thus e.g.

(idG ⊗ β) ◦ (α⊗ idF ) =
α

β

G

F

By observation 2.5.24, for a pair of adjoint functors F : A → B and G : B → A, with F a G,
we have natural transformations

η : idA ⇒ GF and ε : FG⇒ IdB

satisfying
(idF ⊗ η) ◦ (ε⊗ idF ) = idF and (η ⊗ idG) ◦ (idG ⊗ ε) = idG .
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In the diagrammatic description, special notation is introduced for the unit and counit of
an adjoint pair of functors: we depict them as

η =
A

B
G F

and ε =

B

A

F G

The equalities (2.5.25) amount to the identifications

F F

F F

=

=

G G

G G

of diagrams.

Example 2.5.26.
Let C be a rigid tensor category. Then for any triple U, V,W of objects of C, we have natural
bijections

Hom(U ⊗ V,W ) ∼= Hom(U,W ⊗ V ∨)
λ 7→ (λ⊗ idV ∨) ◦ (idU ⊗ bV )

Hom(U ⊗ V,W ) ∼= Hom(V,∨ U ⊗W )

λ 7→ (id∨U ⊗ λ) ◦ (b̃U ⊗ idV )

We have thus the following adjunctions of functors:

(?⊗ V ) a (?⊗ V ∨) and (U⊗?) a (∨U⊗?) .

We will see in Lemma 3.2.18 that this implies that for C a rigid abelian category, the functors
−⊗ V and V ⊗− are exact.

We now relate adjunctions and monads.

Proposition 2.5.27.

1. Let F : C → D and G : D → C be a pair of adjoint functors, i.e. F a G. Then the
endofunctor T := G ◦ F : C → C, together with the natural transformation

µ : T ◦ T = G ◦ F ◦G ◦ F GεF−→ G ◦ F
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which on objects reads

µc : GFGF (c)
GεF (c)−→ GF (c)

together with the natural transformation idC → G ◦ F in Observation 2.5.24 is a monad.

2. Given a monad T : C → C, consider the forgetful functor U : T−mod → C which sends
the module (m, ρ) ∈ T−mod to m ∈ C and the induction functor I : C → T−mod
sending c ∈ C to the free module T (c) with action µc : T (T (c)) → T (c). These functors
are adjoints, I a U .

Proof.
The proof of 1. will be an exercise. For 2., we remark that the adjunction

HomT (Ic,m) ∼= HomC(c, Um)

with m = (d, ρ : Td → d) is given by the map that sends the morphism c
f→ d in C to the

morphism

Tc
Tf→ Td

ρ→ d

which is a morphism of T -modules. Its inverse sends a morphism of T -modules Tc
f→ m to the

morphism

c
ηc→ Tc

f→ m .

One should notice that U ◦ I = T . Hence, different adjunctions can give rise to the same
monad. 2

Remarks 2.5.28.

1. In the situation of the preceding proposition, we define a comparison functor

K : D → T−mod

which sends d ∈ D to the object Gd ∈ C with module structure given by

GFGd
Gεd→ Gd

2. An adjunction is called monadic, if K is an equivalence of categories. Beck’s monadicity
theorem [McL, Chapter VI.7] gives criteria on on the functor G ensuring this.

Example 2.5.29.
Let C = Set and D = Grp be the category of groups. The forgetful functor U : Grp→ Set has
as a left adjoint the functor F : Set → Grp that assigns to a set X the free group F(X) on
this set. This adjunction is monadic.

The monad T : Set→ Set assigns to a set X the set Ḟ(X) underlying the free group on X.
These are words in an alphabet (x+, x−)x∈X modulo the relation identifying x+x− and x−x+

with the empty word. The statement that the adjunction is monad means that we can describe
a group G in terms of a map of sets from the free group F(G)→ G which encodes the relations
for the set of generators G that characterize the group. For more information on adjunctions,
we refer to [Riehl, Chapter 4,5] for a helpful exposition where it is also explained how categories
can be seen as modules over a monad on a category of graphs.
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2.6 Examples of Hopf algebras

We will now consider several examples of Hopf algebras that are neither group algebras nor
universal enveloping algebras.

Observation 2.6.1.
The following example is due to Taft. Let K be a field and N ≥ 2 a natural number. Assume
that there exists a primitive N -th root of unity ζ in K. Consider the algebra H = HN generated
over K by two elements g and x, subject to the relations

gN = 1, xN = 0, xg = ζgx .

We say that the elements x and g ζ-commute. The algebra HN can be shown to have finite
dimension N2 and a basis gixj with 0 ≤ i, j ≤ N − 1.

We claim that there are algebra maps

∆ : H → H ⊗H, S : H → Hopp and ε : H → K

uniquely determined on the generators g, x by

∆(g) = g ⊗ g and ∆(x) = 1⊗ x+ x⊗ g
ε(x) = 0 and ε(g) = 1

S(g) = g−1 and S(x) = −xg−1

and that these maps endow the algebra HN with the structure of a Hopf algebra. The special
case ζ = −1, i.e. N = 2, is also known as Sweedler’s Hopf algebra.

We work out the coproduct ∆ in detail and leave the discussion of the counit ε and the
antipode S to the reader. We have to show that the map ∆ extends to a well-defined algbera
morphism, i.e. that it is compatible with the three defining relations of HN . To check compat-
ibility with the relation gN = 1, we compute for n ∈ N

∆(gn) = ∆(g)n = (g ⊗ g)n = gn ⊗ gn ,

where we use that ∆ has to be a morphism of algebras, the definition of ∆(g) and the product
in HN ⊗HN . To be compatible with the relation gN = 1, the expression ∆(gN) has to be equal
to ∆(1) = 1 ⊗ 1, which indeed follows from the relation gN = 1. To show compatibility with
the relation xg = ζgx, compare

∆(xg) = ∆(x) ·∆(g) = (1⊗ x+ x⊗ g) · (g ⊗ g) = g ⊗ xg + xg ⊗ g2

and
∆(ζgx) = ζ∆(g) ·∆(x) = ζ(g ⊗ g) · (1⊗ x+ x⊗ g) = ζg ⊗ gx+ ζgx⊗ g2

which implies ∆(xg) = ∆(ζgx).
For the remaining relation xN = 0, we need a few more relations:

Observation 2.6.2.
1. We denote for n ∈ N \ {0} the following element in the polynomial ring Z[q]

(n)q := 1 + q + . . .+ qn−1 ∈ Z[q]

and
(n)!q := (n)q · · · (2)q(1)q ∈ Z[q] .

Finally, define for 0 ≤ i ≤ n in the field of fractions of Z[q](
n
i

)
q

:=
(n)!q

(n− i)!q(i)!q
.
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2. We note the identity in the polynomial ring Z[q]:

qk(n+ 1− k)q + (k)q = (n+ 1)q

and thus deduce

qk
(
n
k

)
q

+

(
n

k − 1

)
q

= (n)!q
(n+1−k)!q(k)!q

·
(
qk(n+ 1− k)q + (k)q

)
=

(
n+ 1
k

)
q

from which we conclude by induction on n that

(
n
k

)
q

∈ Z[q].

Given a field K, we can then specialize for q ∈ K the values of (n)q, (n)!q and the of the

q-binomials and to obtain elements (n)q, (n)!q ∈ K and

(
n
k

)
q

∈ K. Note that (n)1 = n. If

q ∈ K is an N -th root of unity different from 1, then

(N)q = 1 + q + . . .+ qN−1 =
1− qN

1− q
= 0 .

In a field of characteristic p > 0, the quantity N := 1 + . . .+ 1 with p summands also vanishes.
There are indeed similarities between q-deformed situations and situations in fields of prime
characteristic. As a further consequence, for q an N -th root of unity,(

N
k

)
q

= 0 for all 0 < k < N .

Lemma 2.6.3.
Let A be an associative algebra over a field K and q ∈ K. Let x, y ∈ A be two elements that
q-commute, i.e. xy = qyx. Then the quantum binomial formula holds for all n ∈ N:

(x+ y)n =
n∑
i=0

(
n
i

)
q

yixn−i .

Proof.
By induction on n, using the relation we proven in Observation 2.6.2.2. 2

We then conclude, since for the Taft-Hopf algebra 1⊗ x and x⊗ g ζ-commute, we have

∆(xN) = ∆(x)N = (1⊗ x+ x⊗ g)N =
∑N

i=0

(
N
i

)
ζ

(x⊗ g)i(1⊗ x)N−i

= (x⊗ g)N + (1⊗ x)N = xN ⊗ gN + 1⊗ xN = 0

In the second identity, we used that the binomial coefficients vanish, except for i = 0, N . This
shows that the coproduct of the Taft Hopf algebra is well-defined.

We remark that for the square of the antipode, we have

S2(g) = S(g−1) = g and S2(x) = S(−xg−1) = −S(g−1)S(x) = gxg−1

which is a so-called inner automorphism of order N . Thus there exist finite-dimensional Hopf
algebras with antipode S of any even order.
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Note that the Taft algebra is, in general, not cocommutative. Indeed, one can show that over
an algebraically closed field K of characteristic zero, all finite-dimensional cocommutative Hopf
algebras are group algebras of some finite group. More precisely, the Cartier-Kostant-Milnor-
Moore theorem [Sweedler, Theorem 8.1.5] asserts that over an algebraically closed field K of
characteristic zero, any cocommutative Hopf algebra can be written as U(g) oK[G], where G
is a group acting on a Lie algebra g.

This is not true in finite characteristic. To provide a counterexample, we need a class of Lie
algebras with extra structure: restricted Lie algebras.

Observation 2.6.4.
Let K be a field of prime characteristic, charK = p. Let A be any K-algebra. The algebra A
might even be non-associative. Then the derivations Der(A) form a Lie subalgebra of the Lie
algebra EndK(A). Moreover, if D : A→ A is a derivation, then because of

Dp(a · b) =

p∑
i=0

(
p
i

)
Di(a) ·Dp−i(b) = Dp(a) · b+ a ·Dp(b)

the p-th power of D, i.e. Dp : A→ A is a derivation as well. Thus the Lie algebra Der(A) has
more structure: the structure of a restricted Lie algebra.

Definition 2.6.5

1. Let K be a field of characteristic p > 0. A restricted Lie algebra L over K is a Lie algebra,
together with a map

L → L
a 7→ a[p]

such that for all a, b ∈ L and λ ∈ K

(λa)[p] = λpa[p]

ad(b[p]) = (adb)p

(a+ b)[p] = a[p] + b[p] +
∑p−1

i=1 si(a, b)

Here ad(a) : L → L denotes the adjoint representation of L on L with ad(a)(b) = [a, b].
Moreover, i · si(a, b) is the coefficient of λi−1 in ad(λa+ b)p−1(a).

2. A morphism of restricted Lie algebras f : L→ L′ is a morphism of Lie algebras such that
f(a[p]) = f(a)[p] for all a ∈ L.

Example 2.6.6.
If A is an associative K-algebra with K a field of prime characteristic, char(K) = p, then the
commutator and the map a 7→ ap turns it into a restricted Lie algebra.

Observation 2.6.7.

1. Let L be a restricted Lie algebra, U its universal enveloping algebra. Denote by B the
two-sided ideal in U generated by ap−a[p] for all a ∈ L. Denote by U the quotient algebra
U := U/B. It is a restricted Lie algebra with a[p] given by the p-th power.

2. Then the canonical quotient map π : L → U is a morphism of restricted Lie algebras. It
is universal in the following sense: if A is any associative algebra over K and f : L→ A a
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morphism of restricted Lie algebras, then there exists a unique algebra map F : U → A
such that f = F ◦ π:

L π //

f ��

U
∃!F
��
A

3. By the universal property, the restricted morphisms

L → K
a 7→ 0
L → L× L
a 7→ (a, a)
L → Lopp

a 7→ −a

define algebra maps

ε : U → K , ∆ : U → U ⊗ U and S : U → Uopp

that are uniquely determined by

ε(π(a)) = 0
∆(π(a)) = 1⊗ π(a) + π(a)⊗ 1
S(π(a)) = −π(a)

for a ∈ L that turn U into a cocommutative Hopf algebra. It is called the u-algebra of
the restricted Lie algebra L.

4. One has the following variant of the Poincaré-Birkhoff-Witt theorem: the natural map
ιL : L→ U is injective. If (ui)i∈I is an ordered basis for L, then

uk1i1 · u
k2
i2
. . . ukrir with i1 ≤ i2 ≤ . . . ir and 0 ≤ kj ≤ p− 1

is a basis of U .

5. Thus if L has finite-dimension, dimK L = n, then U is finite-dimensional of dimension
dimU = pn. Thus U is a cocommutative finite-dimensional Hopf algebra.

To show that a restricted Lie algebra is not isomorphic to the group algebra of any finite
group, we need some notions which are of independent interest:

Definition 2.6.8

1. An element h ∈ H \ {0} of a Hopf algebra H is called group-like , if ∆(h) = h⊗ h. The
set of group-like elements of a Hopf algebra H is denoted by G(H).

2. An element h ∈ H of a bialgebra H is called a primitive element, if ∆(h) = 1⊗h+h⊗ 1.
The set of primitive elements of a bialgebra H is denoted by P (H).

3. More generally, if g1, g2 ∈ G(H) are group-like elements, an element h ∈ H is called
g1, g2-primitive, if ∆(h) = g1 ⊗ h+ h⊗ g2.

Remark 2.6.9.
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1. Consider group-like elements in the dual K-linear Hopf algebra H∗. These are K-linear
maps β : H → K such that for h1, h2 ∈ H

β(h1 · h2) = ∆(β)(h1 ⊗ h2) = (β ⊗ β)(h1 ⊗ h2) = β(h1) · β(h2) .

Thus the group-like elements in the dual Hopf algebra H∗ are the algebra maps H → K
which are also called characters of H.

2. The primitive elements in the dual Hopf algebra H∗ are linear maps D : H → K such
that for all h1, h2 ∈ H

D(h1 · h2) = (1⊗D +D ⊗ 1)(h1 ⊗ h2) = ε(h1) ·D(h2) +D(h1) · ε(h2) .

Thus, they are the K-valued derivations of H.

We need the following Lemma which is also important in Galois theory:

Lemma 2.6.10 (Artin).
Let M be an associative monoid. Let χ1, . . . χn be pairwise different characters χi : M → K×,
i.e. group homomorphisms of the monoid M with values in the multiplicative group K× of a
field K. Then these characters are linearly independent as K-valued functions on M .

Proof.
By induction on n. The assertion holds for n = 1, since for a character χ(M) ⊆ K× so that a
single character is linearly independent.

Thus assume n > 1 and consider a non-trivial relation

a1χ1 + · · ·+ amχm = 0 (∗)

of minimal length m in which all coefficients are non-zero, ai 6= 0 for all i = 1, . . .m. Thus
2 ≤ m ≤ n.

From χ1 6= χ2 we deduce that there is z ∈ M such that χ1(z) 6= χ2(z). Using the multi-
plicativity of characters, we find for all x ∈M :

0 = a1χ1(zx) + · · ·+ amχm(zx)

= a1χ1(z)χ1(x) + · · ·+ amχm(z)χm(x).

and thus a different non-trivial linear relation of the characters:

m∑
i=1

aiχi(z)χi = 0 .

Dividing this relation by χ1(z) 6= 0 and subtracting it from(∗), we find

a2

(
χ2(z)

χ1(z)
− 1︸ ︷︷ ︸

6=0

)
χ2 + · · ·+ am

(
χm(z)

χ1(z)
− 1

)
χm = 0 .

and thus a shorter non-trivial relation. 2

Proposition 2.6.11.
Let H be a Hopf algebra over a field K.

61



1. We have ε(x) = 1 for any group-like element x ∈ H.

2. The set of group-like elements G(H) is a subgroup of the set of units of H. The inverse
of x ∈ G(H) is S(x).

3. Distinct group-like elements are linearly independent. In particular, the set of group-like
elements of a group algebra K[G] is precisely G.

Proof.
1. We note that by definition of the counit ε,

x = (ε⊗ id) ◦∆(x) = ε(x)x .

Since by definition for a group-like element x, we have x 6= 0, this implies over a field
ε(x) = 1.

2. Using the fact that S is a coalgebra antihomomorphism, we find for a group-like element
x ∈ H

∆(S(x)) = (S ⊗ S) ◦∆copp(x) = (S ⊗ S)(x⊗ x) = S(x)⊗ S(x)

so that S(x) is group-like, provided that S(x) 6= 0. The defining identity of the antipode,
applied to a group-like element x shows

xS(x) = (id ∗ S)(x) = 1ε(x)
1.
= 1

so that S(x) is the multiplicative inverse of x in the algebra underlying H. In particular,
it follows that S(x) 6= 0 for all grouplike elements x ∈ H.

3. Using the embeddingH ↪→ H∗∗, group-like elements ofH are characters on the monoidH∗

with values in the field K. By Artin’s lemma 2.6.10, characters are linearly independent.

2

Proposition 2.6.12.
1. For any primitive element x in a bialgebra H, we have ε(x) = 0.

2. The commutator
[x, y] = xy − yx

of two primitive elements x, y of a bialgebra H is again primitive.

Proof.

1. The equation

x = (ε⊗ id) ◦∆(x) = (ε⊗ id)(x⊗ 1 + 1⊗ x) = ε(x)1 + ε(1)x

for x primitive implies ε(x) = 0.

2. We compute for primitive elements x, y ∈ H

∆(x · y) = ∆(x)∆(y) = (1⊗ x+ x⊗ 1)(1⊗ y + y ⊗ 1)

= 1⊗ xy + x⊗ y + y ⊗ x+ xy ⊗ 1

Subtracting the corresponding identity for ∆(yx), we find

∆([x, y]) = 1⊗ [x, y] + [x, y]⊗ 1 .
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2

The following proposition applies in particular to universal enveloping algebras of Lie alge-
bras and u-algebras of restricted Lie algebras.

Lemma 2.6.13.
Let K be a field. If H is a Hopf algebra over K which is generated as an algebra by primitive
elements, then the group of group-like elements of H is trivial, G(H) = {1H}.

Proof.
Let {xi}i∈I denote the family of non-zero primitive elements of H. Let A0 = K1A. For n > 0,
denote by An the linear span in H of elements of the form xk1i1 . . . x

km
im

with kj ∈ Z≥0 such that
k1 + k2 + . . . km ≤ n. Then

• An ⊂ An+1.

• Since H is generated, as an algebra, by primitive elements, we have ∪n≥0An = H.

• By multiplicativity of the coproduct, ∆(An) ⊂
∑n

i=0Ai ⊗ An−i

Let g 6= 1 be group-like. Then g ∈ Am for some m. Choose m to be minimal. Since g is
non-trivial, g 6∈ K1A = A0. Then find f ∈ H∗ such that f(A0) = 0 and f(g) = 1.

Now g ∈ Am implies

∆(g) =
m∑
i=0

ai ⊗ a′m−i

for some aj, a
′
j ∈ Aj which in turn implies

g = 〈id⊗ f, g ⊗ g〉 = 〈id⊗ f,∆(g)〉 =
m−1∑
i=0

aif(a′m−i) ∈ Am−1 ,

where the second equality follows from the fact that g is grouplike, contradicting the minimality
of m.

2

The lemma implies that the u-algebra of a non-trivial restricted Lie algebra cannot be
isomorphic, as a Hopf algebra, to a group algebra, since it contains no non-trivial group-like
elements. It cannot be isomorphic to a universal enveloping algebra either, since it is finite-
dimensional. This shows that the Milnor-Moore theorem does not hold in finite characteristic.

We remark that over fields of characteristic zero, we can recover a Lie algebra from the
primitive elements in its universal enveloping algebra:

Proposition 2.6.14.
Let g be a Lie algebra over a field K of characteristic zero with an ordered basis and ιg : g→ U(g)
its universal enveloping algebra. Then the primitive elements of U(g) are given by the image of
g,

P (U(g)) = ιg(g) .

If char(K) = p, then the subspace of primitive elements of U(g) is the span of all xp
k

with
x ∈ g and k ≥ 0. It is a restricted Lie algebra.
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Proof.
Define

Un(g) := spanK{xn|x ∈ g}

and consider the subspace of U(g) given by the direct sum:

U(g) ⊃
∞⊕
n=0

Un(g) . (∗)

Since x ∈ g is primitive in the Hopf algebra U(g), we find

∆(xn) =
n∑
k=0

(
n

k

)
xk ⊗ xn−k .

Thus the subspace in (∗) is a subcoalgebra of U(g) and the coproduct

∆ : U(g)→ U(g)⊗ U(g)

preserves the degree where the right hand side is endowed with the total degree. One checks
inductively using the Poincaré-Birkhoff-Witt theorem, that the direct sum is closed under
multiplication as well (the multiplication is not homogeneous, though). Since the elements
x ∈ g generate U(g) as an algebra, we conclude U(g) =

⊕∞
n=0 Un(g).

Since ∆ preserves the grade, we can restrict to homogenous elements

x =
l∑

j=1

λj(xj)
n ∈ Un(g)

with n ≥ 2 to find a primitive element x. We obtain for the coproduct:

∆(x) =
l∑

j=1

λj

n∑
k=0

(
n

k

)
(xj)

k ⊗ (xj)
n−k

Then x is primitive, if and only if all components with bigrade (k, n − k) and 1 ≤ k ≤ n − 1
vanish. Applying multiplication to the sum of these terms, we find[

n−1∑
k=1

(
n

k

)]
·

l∑
j=1

λj(xj)
n = 0 for all k = 1, . . . , n− 1 .

Over a field of characteristic zero, this implies x = 0. In finite characteristic p, n can be a
power of p. 2
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3 Finite-dimensional Hopf algebras

3.1 Hopf modules and integrals

The goal of this subsection is to introduce the notion of an integral on a Hopf algebra that is
fundamental for representation theory and some applications to topological field theory. Hopf
modules are an essential tool to show the existence of integrals.

Definition 3.1.1

1. Let H be a K-Hopf algebra. A K-vector space V is called a right Hopf module, if

• It has the structure of a right (unital) H-module.

• It has the structure of a right (counital) H-comodule with right coaction ∆V : V →
V ⊗H.

• ∆V is a morphism of right H-modules.

2. If V and W are Hopf modules, a K-linear map f : V → W is a map of Hopf modules, if
it is both a module and a comodule map.

3. We denote byMH
H the category of right Hopf modules. The categories HMH , HMH and

H
HM are defined analogously.

Remarks 3.1.2.

1. We have in Sweedler notation for the right coaction with ∆V (v) = v(0)⊗v(1) where v(0) ∈ V
and v(1) ∈ H

∆V (v.x) = v(0).x(1) ⊗ v(1) · x(2) for all x ∈ H, v ∈ V .

In the graphical calculus, the condition reads:

2. Any Hopf algebra H is a Hopf module over itself with action given by multiplication and
coaction given by the coproduct.

3. More generally, let K ⊂ H be a Hopf subalgebra. We may consider the restriction of the
right action to K, but the coaction of all of H to get the category of right (H,K)-Hopf
modules MH

K .

4. Given any H-module M , the tensor product M ⊗H is a right H-module, where H is seen
as a regular right H-module. Using ∆M⊗H := idM ⊗∆ as a coaction, one checks that it
becomes a Hopf module.
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5. Let M be a K-vector space; then M ⊗H becomes an H-Hopf module by

(m⊗ h).h̃ := m⊗ (h · h̃) and ∆M⊗H(m⊗ h) := m⊗ h(1) ⊗ h(2)

We call such Hopf module a trivial Hopf module.

Formally, this can be reduced to a special case of the examples given in 4.: let M be a
left H-module on which H acts tivially in the sense of remark 2.3.3.1, i.e. m.h = ε(h) ·m
for all h ∈ H and m ∈ M . Then, the right action on the tensor product M ⊗ H is
(m⊗ k).h = m⊗ k · h. (Note that this H-action is not trivial. In particular, both action
and coaction of a trivial Hopf module are not given by the counit and the unit!)

We also need the notion of invariants and coinvariants:

Definition 3.1.3
Let H be a Hopf algebra.

1. Let M be a left H-module. The invariants of H on M are defined as the K-vector subspace

MH := {m ∈M | h.m = ε(h)m for all h ∈ H}

of M . This defines a functor H−mod→ vect(K).

2. Let (M,∆M) be a right H-comodule. The coinvariants of H on M are defined as the
K-vector space

M coH := {m ∈M | ∆M(m) = m⊗ 1} .

Remarks 3.1.4.

1. For invariants of left modules, the notation HM would be more logical, but is not common.
One can also define invariants for right H-modules.

2. The invariants, MH , endowed with the trivial action h.v = ε(h)v, form a submodule of
M . The coinvariants M coH form a subcomodule.

Examples 3.1.5.

1. If M is a right H-comodule, it can be considered as a left H∗-module. Then

MH∗ = {m ∈M β.m = β(1)m ∀β ∈ H∗} = {m ∈M m(0)β(m(1)) = β(1)m ∀β ∈ H∗} = M coH .

2. Consider a group algebra, H = K[G]. For a left K[G]-module

MK[G] = {m ∈M | g.m = m for all g ∈ G} .

For a K[G]-comodule the coinvariants

M coK[G] = Me

are the identity component of the G-graded vector space underlying according to example
2.2.8.3 the comodule.

3. For a module M over the universal enveloping algebra H = U(g) of a Lie algebra g,

MU(g) = {m ∈M |x.m = 0 for all x ∈ g}.
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The category of Hopf modules in itself is not of particular interest, but the equivalence to
be stated next provides a powerful tool:

Theorem 3.1.6.
Let M be a right H-Hopf module. Then the multiplication map:

ρ : M coH ⊗H → M
m⊗ h 7→ m.h

is an isomorphism of Hopf modules, where the left hand side has the structure of a trivial Hopf
module, cf. Remark 3.1.2.4.

In particular, any Hopf module M is equivalent to a trivial Hopf module and thus a free
right H-module of rank dimKM

coH .

Proof.
We perform the proof graphically.

67
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2

Example 3.1.7.
Consider a Hopf module M over a group algebra K[G]. Since it is a comodule, M has by
example 2.2.8.4 the structure of a G-graded vector space

M = ⊕g∈GMg

with coaction ∆M(mg) = mg ⊗ g for mg ∈ Mg. Moreover, G acts on M . Since we have a
Hopf module, G acts such that ∆M(m.h) = ∆M(m).h. Thus for mg ∈ Mg and h ∈ G, we
have ∆M(mg.h) = mg.h⊗ gh. Thus Mg.h ⊂ Mgh. Using the action of h−1, we find a canonical
identification of the subspaces, Mg.h ∼= Mgh. Thus the G-action permutes the homogeneous
components and

Mg = M1.g = M coK[G].g .

This is exactly the statement of the fundamental theorem: M ∼= M coK[G] ⊗K[G].

We discuss a first simple application to finite-dimensional Hopf algebras:

Corollary 3.1.8.
Let H be a finite-dimensional Hopf algebra. If I ⊂ H is a right ideal and a right coideal, then
I = H or I = (0).

Proof.
As a right ideal, I is a right submodule of H. Similarly, as a right coideal, it is a right H-
subcomodule. The condition of a Hopf module is inherited, so I is a Hopf submodule. The
fundamental theorem 3.1.6 for Hopf modules implies

I ∼= IcoH ⊗K H .

Taking dimensions, we find

dimKH · dimK I
coH = dimK I ≤ dimKH

where the inequality comes from the fact that I is a vector subspace of H. This only leaves
the two possibilities dimK I

coH = 0, 1 and thus I = (0) or I = H. 2

Definition 3.1.9

1. Let H be a Hopf algebra. The K-linear subspace

Il(H) := {x ∈ H |h · x = ε(h)x for all h ∈ H}

is called the space of left integrals of the Hopf algebra H. Similarly,

Ir(H) := {x ∈ H |x · h = ε(h)x for all h ∈ H}

is called the space of right integrals of H.

2. Similarly, the subspace of the linear dual H∗

CIl(H) := {φ ∈ H∗ | (idH ⊗ φ) ◦∆H(h) = 1Hφ(h) for all h ∈ H}

is called the space of left cointegrals. Right cointegrals are defined analogously.
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3. A Hopf algebra is called unimodular, if Il(H) = Ir(H).

Remarks 3.1.10.

1. The space of left integrals is the space of left invariants for the left action of H on itself
by multiplication. Alternatively, consider the canonical isomorphism HomK(K, H) ∼= H
that sends φ 7→ φ(1) and H 3 Λ → (λ → λΛ). Under this identification, an integral h ∈
Il(H) ⊂ H corresponds to a morphism of left H-modules in HomH(K, H) ⊂ HomK(K, H)
from the trivial H-module to the left regular H-module. A similar statement holds for
right integrals.

2. Even if a Hopf algebra H is cocommutative, it can be not unimodular. For an example,
see [Montgomery, p. 17].

3. Let H be finite-dimensional. Then, by definition, φ ∈ H∗ is a left integral for the dual
Hopf algebra H∗, if and only if

µ∗(β, φ) = ε∗(β)φ for all β ∈ H∗ .

(Our convention needs an explanation: µ∗ is here the multiplication of H∗, not the linear
map dual to the multiplication on H. Similarly, ε∗ is the counit of H∗.) Applying this
identity in H∗ to h ∈ H and using the definition of the bialgebra structure on H∗, we
obtain the equality

β(h(1)) · φ(h(2)) = β(1H) · φ(h) for all β ∈ H∗ and h ∈ H .

Thus φ is a left integral of H∗, if and only if

h(1)〈φ, h(2)〉 = 〈φ, h〉1H for all h ∈ H ,

i.e. if and only if φ is a left cointegral for H. In this way, (co-)integrals are compatible
with duality.

4. Let G be a finite group. Then the group algebra K[G] is a unimodular Hopf algebra, with
integrals

Il = Ir = K
∑
g∈G

g .

Indeed, for I :=
∑

h∈G h we have g.I =
∑

h∈G gh = I = ε(g)I for all g ∈ G, and it is
enough to check this relation on the distinguished basis of K[G].

5. The dual KG of the group algebra K[G] is a commutative Hopf algebra. Suppose that
G is a finite group; then it can be identified with the commutative algebra of K-valued
functions on G. In this case, a right integral λ ∈ K[G] can be considered as an element
in the bidual, λ ∈ KG∗, i.e. a linear form λ̃ : φ 7→ φ(λ) on functions on G. The form λ̃ is
called a measure.

On the space of functions on a group G, we have a left action of G by translations:

Lg : KG→ KG

defined by (Lgφ)(h) = φ(hg). We compute, using that λ is a right integral:

λ(Lgφ) = (Lgφ)(λ) = φ(λ · g) = φ(λ) = λ(φ) .

Thus the measure on KG given by a right integral is invariant under left translations.
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6. The spaces of integrals for the Taft algebra are

Il = K
N−1∑
j=0

gjxN−1

and

Ir = K
N−1∑
j=0

ζjgjxN−1 .

This is an expansion as a linear combination of basis elements, hence the integrals differ
and the Taft algebra is thus not unimodular.

We need some actions and coactions of the Hopf algebra H on the dual vector space H∗.
Since we will use dualities, we assume H to be finite-dimensional.

Observation 3.1.11.

1. We consider H∗ as a right H-comodule

ρ : H∗ → H∗ ⊗H
f 7→ f(0) ⊗ f(1)

with coaction derived from the coproduct in H:

〈f(0), h〉 · 〈p, f(1)〉 = 〈p, h(1)〉 · 〈f, h(2)〉 for all p ∈ H∗, h ∈ H .

Graphically, this definition is simpler to understand

and the proof that ρ is a coaction follows from comparing

and

2. Consider for x ∈ H the K-linear endomorphism given by right multiplication with x

mx : H → H
h 7→ h · x
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It is a morphism of left modules. The transpose is a map m∗x : H∗ → H∗, for each x ∈ H.
One checks graphically that these maps define the structure of a left H-module on H∗.
We write

h ⇀ h∗ ∈ H∗

for the image of h∗ ∈ H∗ under the left action of h ∈ H. Thus

〈h ⇀ h∗, g〉 = 〈h∗, gh〉 for all g ∈ H .

One can perform this construction quite generally for an algebra in a rigid monoidal
category. In this case, one has to take the left dual for this construction to work to avoid
crossings of lines.

This is again immediately obvious from the graphical proof:

3. In the same vein, the transpose of left multiplication defines a right action of H on H∗.
We write

h∗ ↼ h ∈ H∗

for the image of h∗ ∈ H∗ under the right action of h ∈ H. Thus

〈h∗ ↼ h, g〉 = 〈h∗, hg〉 for all g ∈ H .

One can perform this construction quite generally for an algebra in a rigid monoidal
category. In this case, one has to take the right dual for this construction to work:

This is again immediately obvious from the graphical proof.
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4. Since the antipode is an antialgebra morphism, we can use it to turn left actions into
right actions and vice versa.

In this way, we get a left action of H on H∗ by

(h ⇁ h∗) := (h∗ ↼ S(h)) which is graphically

It obeys
〈h ⇁ h∗, g〉 = 〈h∗, S(h)g〉 for all g ∈ H .

Similarly, we get a right action of H on H∗ by

(h∗ ↽ h) := (S(h) ⇀ h∗) which is graphically

with
〈h∗ ↽ h, g〉 = 〈h∗, gS(h)〉 for all g ∈ H .

The following Lemma will be needed to show the existence of integrals:

Lemma 3.1.12.
Let H be a finite-dimensional Hopf algebra. Then H∗ with right H action ↽ and right coaction
ρ from observation 3.1.11 is a Hopf module.

Proof.
The condition in H∗ ⊗H to have a Hopf module is

ρ(f ↽ h) = (f(0) ↽ h(1))⊗ (f(1) · h(2))

for all f ∈ H∗ and h ∈ H. The right coaction ρ appears on the right hand side in the form
of the Sweedler-like notation f(0) ⊗ f(1). By the definition of the coaction ρ, this amounts to
showing for all p ∈ H∗ and x ∈ H:

〈p, x(1)〉〈f ↽ h, x(2)〉 = 〈f(0) ↽ h(1), x〉〈p, f(1) · h(2)〉 .

We start with the right hand side:

〈f(0) ↽ h(1), x〉〈p, f(1)h(2)〉 = 〈f(0), xS(h(1))〉〈h(2) ⇀ p, f(1)〉 [defn. of ↽ and ⇀]

= 〈h(3) ⇀ p, x(1)S(h(2))〉 · 〈f, x(2)S(h(1))〉 [defn. of ρ]

= 〈p, x(1)〈ε, h(2)〉〉 · 〈f, x(2)S(h(1))〉 [defn. of ⇀ and antipode]

= 〈p, x(1)〉〈f, x(2)S(h)〉 [counit]

= 〈p, x(1)〉〈f ↽ h, x(2)〉 [defn. of ↽]

2
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Lemma 3.1.13.
Let H be a finite-dimensional Hopf algebra. Consider H∗ as a right comodule with the H-
coaction ρ. Then

(H∗)coH = Il(H∗) .

Proof.
We recall from remark 3.1.10 that elements β ∈ Il(H∗) are left cointegrals for H: they are
elements such that

µ∗(h∗, β) = ε∗(h∗)β for all h∗ ∈ H∗ .
This means that we have β ∈ Il(H∗), if and only if for all h ∈ H and h∗ ∈ H∗, we have

h∗(h(1)) · β(h(2)) = µ∗(h∗, β)(h) = ε∗(h∗)β(h) = h∗(1)β(h) .

On the other hand, we have for coinvariants β ∈ H∗ under the coaction ρ

ρ(β) = β ⊗ 1H

and thus by definition of ρ

〈h∗, h(1)〉 · 〈β, h(2)〉 = 〈h∗, 1〉 · 〈β, h〉

for all h∗ ∈ H and h ∈ H. 2

Theorem 3.1.14.
Let H be a finite-dimensional Hopf algebra over a field K.

1. Then dim Il(H) = dim Ir(H) = 1.

2. The antipode S is bijective and S(Il) = S−1(Il) = Ir. In particular, a skew antipode
exists.

3. For any non-zero left cointegral λ ∈ Il(H∗) \ {0}, the so-called Frobenius map

Ψλ : H → H∗

h 7→ (S(h) ⇀ λ) = (λ ↽ h)

is an isomorphism of right H-modules, where H is endowed with the regular right action,
i.e. by multiplication, and H∗ with the action h∗ ↽ h.

We see that and thus

Proof.
1. Consider H∗ with the Hopf module structure described in lemma 3.1.12. By the funda-

mental theorem on Hopf modules,

H∗ ∼= (H∗)coH ⊗H .

Since H is finite-dimensional, we can take dimensions and find dim(H∗)coH = 1. By
lemma 3.1.13, we have dim Il(H∗) = dim(H∗)coH = 1. Thus the Hopf algebra H∗ has
a one-dimensional space of left integrals. Since any finite-dimensional Hopf algebra can
be written as the dual of a Hopf algebra, we get the first equality. The second equality
follows analogously or from the assertion in 2.
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2. Again by the fundamental theorem 3.1.6 on Hopf modules, the map

Il(H∗)⊗H → H∗

λ⊗ h 7→ (λ ↽ h)
(3)

is an isomorphism of Hopf-modules. In particular, it is a morphism of right H-modules.
The compatibility with the right action is also shown graphically. Keeping λ ∈ Il(H∗)\{0}
fixed, we deduce the third assertion.

3. Fix a non-zero left integral λ ∈ Il(H∗) \ {0} and suppose that there is h ∈ H such that
S(h) = 0. Then

0 = (S(h) ⇀ λ)
def
= (λ ↽ h)

and thus by injectivity of the map (3), we have λ⊗ h = 0. This implies over a field that
h = 0. Thus the antipode S is injective and, as an endomorphism of a finite-dimensional
vector space, bijective.

If Λ ∈ Il(H), we have h ·Λ = ε(h)Λ for all h ∈ H. Applying the antipode, and its inverse
respectively, which are antialgebra morphisms and preserve the counit, we find

S(Λ) · S(h) = ε(h)S(Λ) = ε(S(h))S(Λ) for all h ∈ H

and
S−1(Λ) · S−1(h) = ε(h)S−1(Λ) = ε(S−1(h))S−1(Λ) for all h ∈ H .

Since S is bijective, this implies that S(Λ) is a right integral. We have now also proven
the second assertion.

2

Corollary 3.1.15.
Let H be a finite-dimensional Hopf algebra over a field K. Then the monoidal category
H−modfd of finite-dimensional H-modules is rigid.

Proof.
Given the existence of a skew antipode, this follows immediately from from Lemma 2.5.17. 2

We find a different relation between the left and right integrals on a finite-dimensional Hopf
algebra in the following

Observation 3.1.16.

1. Let t ∈ Il(H) be a left integral. Then for any h ∈ H, the element th ∈ H is a left integral
as well: we have for all h′ ∈ H

h′(th) = (h′t)h = ε(h′)th .

Since the subspace of left integrals is one-dimensional, we have t · h = tα(h) with some
linear form α ∈ H∗.

2. One directly checks that α : H → K is a morphism of algebras and thus a group-like
element of H∗.
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3. Let now be t′ ∈ Ir(H) a non-vanishing right integral. Then by theorem 3.1.14.2, the
element St′ is a left integral and thus for all h ∈ H

S(ht′) = St′ · Sh = α(Sh)St′ .

The invertibility of the antipode implies ht′ = α(Sh)t′ = (S∗α)(h)t′ for all h ∈ H. Here
S∗ is the antipode of the dual Hopf algebra H∗. Thus the inverse α−1 = S∗α ∈ G(H∗)
plays a similar role for right integrals.

4. Since α : H → K is a morphism of algebras, it endows the ground field with the struc-
ture of an H-module by h.λ := α(h) · λ for h ∈ H and λ ∈ K. We conclude that the
category H−modfd of finite-dimensional modules over a finite-dimensional Hopf algebra
contains, apart from the monoidal unit, another distinguished object, given by α. It is
called the distinguished invertible object D, since we have for the object D−1 given by
α−1 isomorphisms D ⊗D−1 ∼= I ∼= D−1 ⊗D.

Definition 3.1.17
Let H be a finite-dimensional Hopf algebra. The element α ∈ G(H∗) constructed in observation
3.1.16 is called the distinguished group-like element or the modular element of H∗.

Corollary 3.1.18.
A finite-dimensional Hopf algebra is unimodular, if and only if the distinguished group-like
element α equals the counit, α = ε. In this case, the distinguished invertible element D is
isomorphic to the monoidal unit I.

Proof.
Let t ∈ Il(H) \ {0}. If α = ε, then t · h = tα(h) = tε(h) for all h ∈ H so that t is a right
integral as well. The converse is obvious. 2

The third assertion of theorem 3.1.14 about the bijectivity of the Frobenius map allows us
to identify additional algebraic structure on any finite-dimensional Hopf algebra.

Definition 3.1.19
Let (A, µ, η) be a unital associative algebra in a monoidal category C.

1. A (∆, ε)-Frobenius structure on A is the structure of a coassociative, counital coalgebra
(∆, ε) such that ∆ : A→ A⊗ A is a morphism of A-bimodules.

2. Assume now that the monoidal category C is rigid. A κ-Frobenius structure on A is a
pairing κ ∈ HomC(A⊗ A, I) that is invariant (or associative) i.e. satisfies

κ ◦ (µ⊗ idA) = κ ◦ (idA ⊗ µ) ,

and that is non-degenerate in the sense that

Φκ := (id∨A ⊗ κ) ◦ (b̃A ⊗ idA) ∈ Hom(A, ∨A)

is an isomorphism.

3. Assume again that the monoidal category C is rigid. A Φρ-Frobenius structure on A is
a left-module isomorphism Φρ ∈ HomA−mod(A, ∨A) between the left regular A-module
(A, µ) and left A-module ∨A with the left dual action.
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Remarks 3.1.20.

1. Graphically, the condition in the (∆, ε)-Frobenius structure that ∆ is a morphism of
bimodules reads

A

A

A

A

=

A

A

A

A

=

A

A

A

A

2. Note that, unlike in the case of bialgebras (which needs the swap of two tensorands and
hence cannot be defined in any monoidal category), neither the coproduct ∆ nor the
counit ε is an algebra morphism.

3. Concerning the Φρ-Frobenius structure, we remark that if Φρ ∈ Hom(A, ∨A) is an iso-
morphism between the left regular A-module (A, µ) and left A-module ∨A, then the right
dual morphism

Φ∨ρ ∈ Hom((∨A)∨, A∨) = Hom(A,A∨)

is an isomorphism between the right regular A-module (A, µ) and the right A-module A∨

with the right dual action. This is shown graphically on the next page.

It turns out that the three concepts are equivalent:

Proposition 3.1.21.
In a rigid monoidal category C the notions of a (∆, ε)-Frobenius structure and of a κ-Frobenius
structure on an algebra (A, µ, η) are equivalent.

More concretely:

1. If (A, µ, η,∆, ε) is an algebra with a (∆, ε)-Frobenius structure, then (A, µ, η, κε) with

κε := ε ◦ µ

is an algebra with κ-Frobenius structure.

2. If (A, µ, η, κ) is an algebra with κ-Frobenius structure, then (A, µ, η,∆κ, εκ) with

∆κ := (idA ⊗ µ) ◦ (idA ⊗ Φ−1
κ ⊗ idA) ◦ (bA ⊗ idA) and εκ := κ ◦ (idA ⊗ η)

with Φκ ∈ Hom(A,A∨) the morphism that exists by the assumption that κ is non-
degenerate is an algebra with (∆, ε)-Frobenius structure.

Proof.
We present the proof that a (∆, ε)-Frobenius structure gives a κ-Frobenius structure graphi-
cally. The converse statement is relegated to an exercise. 2
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Proposition 3.1.22.
In a rigid monoidal category C the notions of a κ-Frobenius structure and of a Φρ-Frobenius
structure on an algebra (A, µ, η) are equivalent.

More specifically, for any algebra A in C the following holds:

1. There exists a non-degenerate pairing on A, if and only if A is isomorphic to ∨A as an
object of C.

2. There exists an invariant pairing on A, if and only if there exists a morphism from A to
∨A that is a morphism of left A-modules.

Proof.
Given a morphism Φ ∈ HomC(A,

∨A), we define a pairing on A by

κΦ := d̃A ◦ (idA ⊗ Φ) .

Conversely, using the dualities, we find for any non-degenerate pairing an isomorphism ψ ∈
Hom(A, ∨A) such that the operations are inverse.

A pairing is obviously non-degenerate, if and only if the morphism Φ is an isomorphism.
Similarly, invariance of the pairing amounts to the fact that Φ is a morphism of left modules.
This can be seen graphically and is relegated to an exercise. 2

Definition 3.1.23
A Frobenius algebra in a rigid monoidal category C is an associative unital algebra A in C
together with the choice of one of the following three equivalent structures:

1. A (∆, ε)-Frobenius structure on A.

2. A κ-Frobenius structure on A.

3. A Φρ-Frobenius structure on A.

Example 3.1.24.
It is instructive to write down explicitly a distinguished Frobenius algebra structure on the
group algebra K[G] of a finite group.

1. The invariant bilinear form is defined on the distinguished basis by

κ(g, h) = δgh,e for all g, h ∈ G

and hence the evaluation of the product on the component of the neutral element e.
This form is obviously non-degenerate and invariant, κ(gh, l) = δghl,e = κ(g, hl) for all
g, h, l ∈ G.

2. The corresponding Φρ-Frobenius structure is the morphism

Φρ : K[G] → K(G) = K[G]∗

g 7→ δg−1

To show that this is indeed a morphism of left modules, we have to show Φρ(hg) = h ⇀
Φρ(g). Indeed, evaluating this on x ∈ G, we find

(h ⇀ δg−1)(x) = δg−1(xh) = δg−1h−1(x) = δ(hg)−1(x) for all x ∈ G .
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3. We can finally deduce the (∆F , εF )-Frobenius structure, where we added an index F to
the Frobenius coproduct and counit to distinguish them from the Hopf coproduct and
counit. We find

εF (g) = δg,e and ∆F (g) =
∑
h∈G

gh−1 ⊗ h

which is indeed different from the coproduct and counit giving the Hopf algebra structure
on K[G] which were only using the structure of the set underlying G. Note that here, in
contrast to the Hopf coproduct, the product in the group enters and the elements g ∈ G
are not group-like.

We can now state:

Theorem 3.1.25.
Let H be a finite-dimensional Hopf-algebra with left non-zero integral λ ∈ H∗. Then H has the
structure of a Frobenius algebra with bilinear pairing

κ(h, h′) := λ(h · h′) for h, h′ ∈ H .

Proof.
From the associativity and bilinearity of the product of the algebra H, it is obvious that the
form is bilinear and invariant. To show non-degeneracy, assume that there exists a ∈ H such
that

0 = κ(a, h) = λ(ah) = 〈h ⇀ λ, a〉 for all h ∈ H .

But (H ⇀ λ) = H∗ by equation (3) in the proof of theorem 3.1.14, and the pairing between
the vector space H and its dual H∗ is non-degenerate. 2

Example 3.1.26.
Consider the case of a group algebra H = K[G] for a finite group G. Then the cointegral λ ∈ H∗
is the projection to the component of the neutral element: λ(g) = δg,e for all g ∈ G. Indeed,

(idH ⊗ λ) ◦∆(g) = gλ(g) = eδg,e = 1Hλ(g) for all g ∈ G .

This yields the Frobenius structure on K[G] discussed in example 3.1.24.

Proposition 3.1.27.
Let H be a finite-dimensional Hopf algebra. Recall from theorem 3.1.14 that for a non-zero
λ ∈ Il(H∗)

Ψλ : H → H∗

h 7→ (S(h) ⇀ λ)

is an isomorphism of right H-modules. As a consequence, also the map H → H∗ with h 7→
(λ ↼ h) is a linear isomorphism H → H∗.

1. Let λ be a left integral in H∗. We can find Λ ∈ H such λ ↼ Λ = ε equals the counit ε.
Then Λ is a right integral.

2. Conversely, if I ∈ H is a right integral, then 〈λ, I〉 6= 0. If we normalize I ∈ H such that
〈λ, I〉 = 1, we have λ ↼ I = ε.

83



Proof.

1. We first show 2. and assume that I is a non-zero right integral. Then for all h ∈ H

〈λ ↼ I, h〉 = 〈λ, I · h〉 = 〈λ, I〉ε(h)

and thus λ ↼ I = 〈λ, I〉ε. By injectivity, since I 6= 0, we conclude 〈λ, I〉 6= 0. Normalizing
I, we find the identity λ ↼ I = ε.

2. Conversely, suppose that we have Λ ∈ H such that λ ↼ Λ = ε. Then

〈λ ↼ Λ, h〉 = 〈λ,Λh〉 = ε(h) for all h ∈ H .

Applying this to h = 1H ∈ H, we find

〈λ,Λ〉 = 〈λ,Λ1H〉 = ε(1H) = 1 .

Thus
〈λ,Λh〉 = ε(h) = ε(h)〈λ,Λ〉 = 〈λ, ε(h)Λ〉 .

By the injectivity of the map h 7→ (λ ↼ h), we conclude Λh = ε(h)Λ for all h ∈ H. Thus
Λ is a right integral.

2

3.2 Integrals and semisimplicity

We now need the important notion of semi-simplicity.

Definition 3.2.1
1. A module M over a K-algebra A is called simple, if it has no non-trivial submodules, i.e.

the only submodules of M are (0) and M itself.

2. A module M over a K-algebra A is called semisimple, if every submodule U ⊂ M has
a complement D, i.e. if we can find for any submodule U a submodule D such that
D ⊕ U = M .

3. An algebra is called semisimple , if it is semisimple as a left module over itself.

We also have the corresponding categorical definitions they are formulated in the framework
of abelian categories. In appendix ??, we develop the necessary background knowledge.

Definition 3.2.2

1. Let C be an abelian category. A morphism f : X → Y is said to be a monomorphism if
Ker (f) = 0. It is said to be an epimorphism if Coker(f) = 0.

2. A subobject of an object Y is an object X, together with a monomorphism ι : X → Y .
We write X ⊂ Y

3. A quotient object of Y is an object Z with an epimorphism p : Y → Z. For a subobject
X ⊂ Y , define the quotient object Z = Y/X to be the cokernel of the monomorphism
f : X → Y .
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4. A nonzero object X ∈ C is called simple, if 0 and X are its only subobjects. An object
X ∈ C is called semisimple, if it is a direct sum of simple objects,

Remarks 3.2.3.

1. A K-vector space is a semisimple module over the K-algebra K. A K-vector space V
together with an endomorphism ϕ ∈ EndK(V ) is a module over the polynomial algebra
K[X]. Suppose that V is finite-dimensional and that ϕ can be described by a matrix
that consists of a single Jordan block of size n ≥ 2. Then the K[X]-module contains a
one-dimensional submodule, the only eigenspace of ϕ. This submodule does not have a
complement.

2. One has a similar notion of semisimplicity for right modules. It follows from the structure
theory of semisimple algebras that an algebra is semisimple as a right module over itself,
if and only if it is semisimple as a left module over itself [JS, Satz VII.2.10].

Proposition 3.2.4.
Let A be a K-algebra and M an A-module. Then the following assertions are equivalent:

(i) M is a direct sum of simple submodules.

(ii) M is a (not necessarily direct) sum of simple submodules.

(iii) M is semisimple, i.e. any submodule U ⊂M has a complement D.

For the proof, we refer to the lecture notes on advanced algebra.

Corollary 3.2.5.
Any quotient and any submodule of a semisimple module is semisimple.

Proof.
Suppose we are given a submodule U ⊂M of a semisimple module M . Consider the canonical
surjection M → M/U . The image of a simple submodule of M is then either zero or simple.
Thus the quotient module is a sum of simple modules and thus semisimple by proposition 3.2.4.

Next, find a complement D of U . Then the submodule U is isomorphic to the quotient
U ∼= M/D and by the result just obtained semisimple. 2

We next need the important notion of a projective module. We recall that a collection of
morphisms of A-modules

0→ N ′
f→ N

g→ N ′′ → 0

is called a short exact sequence, if f is injective, g is surjective and Im f = ker g. The injectivity
of f means that ker f ⊂ N ′ is the image of the left most morphisms; the surjectivity of g means
that Im (g) ⊂ N ′′ is the kernel of the right most morphism. Hence we have at all objects that
the image of the preceeding morphism is the kernel of the subsequent morphism. This property
can be formulated in an arbitrary abelian category C.

Definition 3.2.6
A functor F : C → D to another abelian category D does not necessarily preserve this property.
If it preserves it, it is called exact; if the sequence

0→ F (N ′)
F (f)→ F (N)

F (g)→ F (N ′′)
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is exact, the functor is called left exact; if the sequence

F (N ′)
F (f)→ F (N)

F (g)→ F (N ′′)→ 0

is exact, F is said to be right exact. The functor HomC(c,−) : C → vectK for a K-linear category
C is left exact.

Proposition 3.2.7.
Let A be a K-algebra. Then the following assertions about an A-module M are equivalent:

1. For every diagram with A-modules N1, N2

M

��}}
N1

// N2
// 0

with exact line, there is a lift such that the diagram commutes. (The lift is indicated by
the dotted arrow. The lift is, in general, not unique.)

2. There is an A-module N such that M ⊕N is a free A-module.

3. Any short exact sequence of the form

0→ N ′ → N
f→M → 0

splits, i.e. there is a morphism s : M → N such that f ◦ s = idM . Then N ∼= N ′ ⊕ s(M).

4. For any short exact sequence of modules

0→ T ′ → T → T ′′ → 0

the sequence of K-vector spaces with morphisms given by postcomposition

0→ HomA(M,T ′)→ HomA(M,T )→ HomA(M,T ′′)→ 0

is exact. (Note that the sequence

0→ HomA(M,T ′)→ HomA(M,T )→ HomA(M,T ′′)

is exact for any module M .)

Proof.

1⇒ 3 The split is given by the lift in the specific diagram

M

id
��~~

N
f //M // 0

3⇒ 2 Any A-module M is a quotient of a free module, e.g. by the surjection

⊕m∈MA → M
am 7→ am.m

Take a surjection N → M with kernel N ′ and N a free module. Since the short exact
sequence 0→ N ′ → N →M → 0 splits, we have N ∼= M ⊕N ′, where N is a free module.
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2⇒ 4 We first note that assertion 4 holds in the case when M is a free module: then
HomA(M,T ) ∼= HomA(⊕i∈IA, T ) ∼=

∏
i∈I T for any module T , where the index set I

labels a basis of M . The maps are simply in each component the given maps.

In particular, if N is a complement of M to a free module, the sequence

0→ HomA(M ⊕N, T ′)→ HomA(M ⊕N, T )→ HomA(M ⊕N, T ′′)→ 0

is exact. Using the universal property of the direct sum, this amounts to

0→ HomA(M,T ′)× HomA(N, T ′)→ HomA(M,T )× HomA(N, T )
→ HomA(M,T ′′)× HomA(N, T ′′)→ 0 .

The kernel of a Cartesian product of maps is the product of kernels; the image of the
Cartesian product of maps is the Cartesian product of the images. This implies the ex-
actness of the sequence in 4.

4⇒ 1 From the surjectivity of the horizontal line, we get a short exact sequence

0→ ker((N1 → N2))→ N1
f→ N2 → 0

By 4, we get a short exact sequence

0→ HomA(M, ker(N1 → N2))→ HomA(M,N1)→ HomA(M,N2)→ 0

where the last arrow is

f∗ : HomA(M,N1) → HomA(M,N2)
ϕ 7→ f ◦ ϕ =: f∗(ϕ)

The surjectivity of this morphism amounts to property 1.

2

Definition 3.2.8
An A-module with one of the four equivalent properties from proposition 3.2.7 is called a
projective module.

We also have the corresponding notion in a general abelian category:

Definition 3.2.9

1. An object P in an abelian category C is called projective, if the functor HomC(P,−) is
exact.

2. Dually, an object I ∈ C is called injective, if the functor HomC(−, I) is exact.

We can now define

Definition 3.2.10
Let K be a field. A K-linear category C is called a finite category,

1. C has finite-dimensional spaces of morphisms.
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2. Every object of C has finite length, i.e. for any object c ∈ C there exists a finite filtration

0 = c0 ⊂ c1 ⊂ c1 ⊂ . . . ⊂ cn = c

by subobjects such that the quotient object ci/ci−1 is a simple object.

3. C has enough projectives, i.e. every simple object has a projective cover. (A projective
cover of an object c ∈ C is a projective object p(c) ∈ C, together with an epimorphism
π : p(c) → c such that if g : p′ → c is an epimorphism from a projective object p′ to c,
then there exists an epimorphism h : p′ → p(c) such that π ◦ h = g.

4. There are finitely many isomorphism classes of simple objects.

Remark 3.2.11.
A K-linear category is finite, if and only if it is equivalent to the category A-mod of finite-
dimensional A-modules over a finite-dimensional K-algebra. A detailled proof can be found in
[DSPS2, Proposition 1.4]. The algebra can be given explicitly: chose for any isomorphism class
of simple module with representative Si a projective cover Pi → Si. Then A can be chosen to be
the endomorphism algebra End(⊕i∈IPi), where the sum goes over a system of representatives
for the isomorphism classes of simple objects.

Definition 3.2.12
A finite tensor category is a finite rigid monoidal linear category.

Remarks 3.2.13.

1. The category H−modfd of finite-dimensional modules over a finite-dimensional Hopf al-
gebra is a finite tensor category. It is, however, not true that every finite tensor category
is monoidally equivalent to the category of finite-dimensional modules over some Hopf
algebra.

2. It can be shown though that every finite tensor category is monoidally equivalent to the
category of finite-dimensional modules over a Hopf algebroid, see [BLV, Theorem 7.6]; for
the definition of a Hopf algebroid see the beginning of [BLV, Section 7].

Proposition 3.2.14.
Let A be a K-algebra. Then the following assertions are equivalent:

1. The algebra A is semisimple, i.e. seen as a left module over itself, it is a direct sum of
simple submodules.

2. Any A-module is semisimple, i.e. direct sum of simple submodules.

3. The category A−mod is semisimple, i.e. all A-modules are projective.

As a consequence of this result, we need to understand only simple modules to understand
the representation category of a semisimple algebra. The morphisms between simple modules
are controlled by Schur’s lemma; there are no extensions, so the homological algebra of such
categories is trivial.

Proof.
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3.⇒ 2. Suppose that the category A−mod is semisimple. Let M be an A-module. Any submodule
U ⊂M yields a short exact sequence

0→ U →M →M/U → 0 ,

which splits, since the module M/U is projective. Then M ∼= U⊕M/U and the submodule
U has a complement in M . Thus, the module M is semisimple.

2.⇒ 1. Trivial, since 1. is a special case of 2.

1.⇒ 3. We have to show that every module is projective, i.e. direct summand of a free module.
Since every module is a homomorphic image of a free module F , we have a short exact
sequence:

0→ kerπ → F
π→M → 0

A being semisimple by assumption, implies that also the direct sum F of copies of A
is semisimple. Thus the submodule ker π has a complement which is isomorphic to M ,
F ∼= M ⊕ kerπ. Thus M is projective by property 2 of a projective module.

2

Lemma 3.2.15.
Let C be an abelian category. Then a sequence A

α→ B
β→ C is exact in C, if for any object

X ∈ C the sequence

HomC(X,A)
α∗→ HomC(X,B)

β∗→ HomC(X,C)

of abelian groups is exact.

Proof.
Let X = A and find from the exact Hom-sequence β ◦α = β∗ ◦α∗(idA) = 0. Thus Im α ⊂ ker β.

Next consider X = ker β with inclusion map ι : ker β → B. Since ι is the embedding of
the kernel of β, we have β∗(ι) = β ◦ ι = 0. By exactness of the Hom sequence, there exists
ϕ ∈ HomC(ker β,A) such that α ◦ ϕ = α∗(ϕ) = ι. Thus ker β ⊂ Im α. The converse statement
follows since the Hom-functor is left exact. 2

Lemma 3.2.16.
Let C and D be abelian categories and F : C → D be an additive functor left adjoint to
G : D → C, i.e. F a G. Then F is a right exact functor and G is a left exact functor.

Proof.
Let 0 → A → B → C → 0 be an exact sequence in D and let X ∈ C. Then we have the
following commutative diagram:

0 // Hom(F (X), A) //

∼=
��

Hom(F (X), B) //

∼=
��

Hom(F (X), C)

∼=
��

0 // Hom(X,G(A)) // Hom(X,G(B)) // Hom(X,G(C))

The vertical arrows are the adjunction isomorphisms and isomorphisms of abelian groups. The
top row is exact since the Hom-functor is left exact, thus the bottom row is exact as well. By
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lemma 3.2.15, this implies that 0 → G(A) → G(B) → G(C) is exact. Thus any right adjoint
functor is left exact.

To see that F is right exact, notice that F opp : Copp → Dopp is a right adjoint of Gopp and thus
by the previous argument left exact. But this amounts to the statement that F is right exact. 2

A certain converse is provided by so-called adjoint functor theorems: they state that under
certain conditions a functor that preserves limits (which generalizes left exactness) is a right
adjoint, and that a functor that preserves colimits (which preserves right exatness) is a left
adjoint. In our setting, the following proposition can be shown [DSPS2, Proposition 1.7]:

Proposition 3.2.17.
Let C and D be finite linear categories and let G : C → D be a linear functor. Then G is left
exact if and only if G admits a linear left adjoint, and G is right exact if and only if G admits
a linear right adjoint.

Lemma 3.2.18.
Let C be an abelian monoidal category. Suppose that the object X is rigid. Then the functor
−⊗X of tensoring with X is exact, i.e. if

0→ U → V → W → 0

is an exact sequence in C, then

0→ U ⊗X → V ⊗X → W ⊗X → 0

is exact in C as well. In particular, the tensor product of a finite tensor category C provides
exact functors c⊗− and −⊗ c for every object c ∈ C.

Proof.
This follows from lemma 3.2.16, since the functor of tensoring with a rigid object has a left
and a right adjoint by example 2.5.26. 2

For the following propositions, the reader might wish to keep the category C = H−modfd
of finite-dimensional modules over a finite-dimensional Hopf algebra in mind.

Lemma 3.2.19.
Let C be an abelian tensor category. Let P be a projective object and let M be an object that
has a right dual. Then the object P ⊗M is projective.

Proof.
By rigidity, we have adjunction isomorphisms

Hom(P ⊗M,N) ∼= Hom(P,N ⊗M∨) .

Thus the functor Hom(P ⊗M,−) is isomorphic to the concatenation of the functor − ⊗M∨

(which is exact by lemma 3.2.18) with the functor Hom(P,−) which is exact by property 4 of
the projective object P . 2

Corollary 3.2.20.
A finite tensor category C is semi-simple, if and only if the monoidal unit is projective. In
particular, a K-Hopf algebra is semi-simple, if and only if the trivial module (K, ε) is projective.
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Proof.
If the tensor unit I is semisimple, then by lemma 3.2.19 any object M ∼= M ⊗ I is projective.
The converse is trivial. In the case of C = H−modfd, the trivial module (K, ε) is the tensor
unit in H−mod. 2

Definition 3.2.21
A semisimple finite tensor category is called a fusion category.

Theorem 3.2.22 (Maschke).
Let H be a finite-dimensional Hopf algebra. Then the following statements are equivalent:

1. H is semisimple.

2. The counit takes non-zero values on the one-dimensional space of left integrals, ε(Il(H)) 6=
0.

Proof.

1. Suppose that H is semisimple. Then any module is projective, in particular the trivial
module (K, ε). Thus the exact sequence of left H-modules given by the counit

(0)→ ker ε→ HH
ε→ K→ (0) (∗)

splits. Here, H is considered with the structure of the left regular module; note that ε is
a morphism of modules: ε(h.x) = ε(h · x) = ε(h)ε(x) = h.εx. Thus, we have a direct sum
decomposition of H-left modules H = ker ε⊕ I with I a left ideal of H.

We first note that for any h ∈ H, we have h − ε(h)1 ∈ ker ε. Moreover, since I is a left
ideal, we have h · z ∈ I for any h ∈ H and z ∈ I. Thus, in the equality

h · z = (h− ε(h)1) · z + ε(h)z

the left hand side is in I, while on the right hand side the first summand is in ker ε and
the second summand is in I. Because of the direct sum decomposition H = ker ε⊕ I, the
first summand has to vanish and we find h · z = ε(h)z for all h ∈ H and all z ∈ I. This
is the defining equation for a left integral, so any z ∈ Il(H) is a left integral in H.

Since dimK I = 1, we may choose z 6= 0. Then z /∈ ker ε and thus ε(Il(H)) 6= 0.

2. Conversely, let Λ be a left integral and assume that ε(Λ) 6= 0. Replacing Λ by a non-zero
scalar multiple, we can assume that ε(Λ) = 1. Then

s : K → H
µ 7→ µΛ

obeys ε◦s(λ) = λε(Λ) = λ and is a morphism of left H modules, since Λ is a left integral,
so that the exact sequence (∗) splits. Thus the trivial module is projective and the claim
follows from corollary 3.2.20.

2
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Example 3.2.23.
Consider the group algebra K[G] of a finite group G with two-sided integral Λ =

∑
g∈G g. Then

ε(Λ) =
∑
g∈G

ε(g) = |G| ∈ K .

Thus the group algebra K[G] is semisimple, if and only if char(K) 6 | |G|. In this case, the
category G− repfd of finite-dimensional G-representations is a fusion category.

The category vectG of finite-dimensional G-graded vector spaces is a fusion category for any
field K.

Corollary 3.2.24.
A finite-dimensional semisimple Hopf algebra is unimodular.

Proof.
Since H is semisimple, we can choose by Maschke’s theorem 3.2.22 a left integral t ∈ H such
that ε(t) 6= 0. Then for any h ∈ H, we have

α(h)ε(t)t = α(h)t2 = (th)t = t(ht) = ε(h)t2 = ε(h)ε(t)t ,

where we used the definition of a left integral and of the distinguished group-like element α of
H∗. Since ε(t) 6= 0, we have α(h) = ε(h) for all h ∈ H which implies unimodularity by corollary
3.1.18. 2

Remarks 3.2.25.

1. We can immediately conclude from Remark 3.1.10 that the Taft algebra is not semisimple,
since it is not unimodular.

2. A distinguished invertible object D can also be introduced for a general finite tensor cate-
gory C, e.g. as the socle of the projective cover of the monoidal unit [EGNO, Section 6.4].
The finite tensor category is called unimodular, if D is isomorphic to the monoidal unit
I. Every semisimple finite tensor category is automatically unimodular [EGNO, Remark
6.5.9].

We recall the notion of a separable algebra over a field K. To this end, let A be an associative
unital K-algebra. The algebra Ae := A⊗ Aopp is called the enveloping algebra of A. If B is an
A-bimodule, it is a left module over Ae by

(a1 ⊗ a2).b := (a1.b).a2 .

Conversely, any Ae-left moduleM carries a canonical structure of an A-bimodule with left action
a.m := (a ⊗ 1).m and right action m.a := (1 ⊗ a).m. Thus the categories of Ae-left modules
and A-bimodules are canonically isomorphic as K-linear abelian categories. (The category of
bimodules has on top of this a monoidal structure with A as a bimodule as the monoidal unit.)

Proposition 3.2.26.
Let K be a field and A be an associative unital K-algebra. Then the following properties are
equivalent:

1. A is projective as an Ae-module.
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2. The short exact sequence of Ae-modules

0→ kerµ→ Ae
µ→ A→ 0

splits. Put differently, the multiplication epimorphism

µ : A⊗K A→ A

has a right inverse as a morphism of bimodules:

ϕ : A→ A⊗K A

with µ ◦ ϕ = idA and ϕ(abc) = a · ϕ(b) · c for all a, b, c ∈ A.

3. Given any extension of fields K ⊂ E, the E-algebra A ⊗K E induced by extension of
scalars is semisimple.

For the proof of this statement, we refer to [Pierce, Chapter 10]. Note that over a field that
is not perfect there are semisimple algebras that are not separable. For example, for any prime
p, consider the field K := Fp(t) of rational functions over the field Fp with p elements. Then
the algebra K[X]/(Xp − t) is known to be semisimple but not separable.

Definition 3.2.27
A K-algebra A that has one of the properties of proposition 3.2.26 is called separable.

Remarks 3.2.28.

1. The choice of a right inverse ϕ of the multiplication µ : A⊗K A→ A is called the choice
of a separability structure of A.

2. We can describe ϕ by the element e := ϕ(1A) ∈ Ae. Indeed, since ϕ is a morphism of
A-bimodules, ϕ(a) = a.e = (a ⊗ 1A)e. Since s is a section of the multiplication, we have
µ(e) = µ(s(1A)) = 1A. Finally, we have

(a⊗ 1A)e = a.e = ϕ(a · 1) = ϕ(1 · a) = e.a = e(1A ⊗ a)

for all a ∈ A. An element C ∈ B in an A-bimodule B that obeys a.C = C.a is called a
Casimir element.

With the multiplication in Ae, we have e2 = e, see [Pierce, p. 182].. The element e ∈ Ae
is therefore called a separability idempotent.

3. Separable algebras over fields are finite-dimensional and semisimple.

More precisely, a K-algebra A is separable, if and only if

A ∼= A1 ⊕ · · · ⊕ Ar

is a direct sum of finite-dimensional simple K-algebras where all Z(Ai)/K are separable
extensions of fields.

4. We present an example: for any field K, the full matrix algebra Matn(K) is a separable
K-algebra.
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Introduce matrix units εij, i.e. εij is the matrix with zero entries, except for one in the
i-th line and j-th column. Fix some index 1 ≤ j ≤ n; then

e(j) :=
n∑
i=1

εij ⊗ εji ∈ Matn(K)⊗Matn(K)opp

obeys

µ(e(j)) =
n∑
i=1

εijεji =
n∑
i=1

εii = 1 ∈ Matn(K)

and for all k, l = 1, . . . n

n∑
i=1

εij ⊗ εji · εkl = εkj ⊗ εjl =
n∑
i=1

εklεij ⊗ εji

so that all elements e(j) are separability idempotents. In particular, the separability idem-
potent is not unique.

Proposition 3.2.29.
Let H be a finite-dimensional semisimple K-Hopf algebra.

1. H is a separable K-algebra.

2. Any Hopf subalgebra U ⊂ H such that H is free over U is semisimple as well.

Proof.

1. We have to show that for any field extension K ⊂ E, the algebra H ⊗K E is semisimple
as well. Note that H ⊗ E is an E-Hopf algebra with morphisms

∆(h⊗ α) := ∆(h)⊗ α ∈ H ⊗H ⊗ E ∼= (H ⊗ E)⊗E (H ⊗ E)

ε(h⊗ α) := ε(h)⊗ α
S(h⊗ α) := S(h)⊗ α

for all h ∈ H and all α ∈ E. This implies that the ideal of left integrals is obtained by
extension of scalars as well,

Il(H ⊗K E) = Il(H)⊗K E

and thus that the counit ε is non-zero on Il(H ⊗K E). Now Maschke’s theorem 3.2.22
implies that the Hopf algebra H ⊗K E is semisimple.

2. Since H is semisimple, find t ∈ Ii(H) with ε(t) 6= 0. Since H is free as a U -module, find a
U -basis {hi} of UH and write t =

∑
i∈I uihi with coefficients ui ∈ U . Then for all u ∈ U ,

we have ∑
i∈I

(uui)hi = ut = ε(u)t =
∑
i∈I

(ε(u)ui)hi .

Comparison of coefficients with respect to the basis {hi} shows uui = ε(u)ui for all i ∈ I
and all k ∈ K. Thus all coefficients ui ∈ U of t are integrals of U , i.e. ui ∈ Il(U) .

Now 0 6= ε(t) =
∑

i∈I ε(ui)ε(hi) implies that ε(ui) 6= 0 for some i ∈ I. Thus, by Maschke’s
theorem 3.2.22, the Hopf subalgebra U is semisimple.
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2

Observation 3.2.30.

1. We comment on the results in a language using bases. Let A be a Frobenius algebra. It
is finite-dimensional and let (li)i=1,...N be any K-basis of A. Since the Frobenius form κ is
non-degenerate, we can find another basis (ri)i=1,...,N such that

κ(li, rj) = δij .

Such a pair of bases is called a pair (ri, li) of dual bases for the Frobenius form κ.

2. Since (li)i=1,...N is a basis, we can write any x ∈ A as a linear combination, x =
∑N

i=1 xili.
Since

κ(x, rj) =
N∑
i=1

xiκ(li, rj) = xj

we have explicit expressions for the coefficients xj ∈ K and find for the expansion in the
basis (li)i=1,...N

x =
N∑
i=1

κ(x, ri)li for all x ∈ A ; (∗)

similarly, we find for the expansion in the basis (ri)i=1,...N

x =
N∑
i=1

κ(li, x)ri for all x ∈ A . (∗∗)

3. Conversely, given a pair of bases (ri, li) such that equation (∗) holds for all x ∈ A, we
find with x = lj by comparing coefficients that κ(li, ri) = δij holds. We conclude that (∗∗)
holds for all x ∈ A.

4. Consider for any pair of dual bases of a Frobenius algebra A the element

C :=
N∑
i=1

ri ⊗ li ∈ A⊗ A .

We claim that it is a Casimir element, i.e. x.C = C.x for all x ∈ A. Indeed, by (∗)

lix =
N∑
i=1

κ(lix, ri)li

which implies

C.x =
N∑
i=1

ri ⊗ lix =
N∑

i,j=1

κ(lix, rj)ri ⊗ li .

Similarly, we find with (∗∗)

x.C =
N∑
i=1

xri ⊗ li =
N∑

i,j=1

κ(li, xrj)ri ⊗ li .

The invariance of the Frobenius form κ now implies the Casimir relation xC = Cx.
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Remark 3.2.31.
We can give explicitly a separability idempotent of a finite-dimensional semisimple Hopf algebra.

1. Let λ ∈ H∗ be a non-zero left integral and let Λ ∈ H be a right integral such that
λ(Λ) = 1, cf. proposition 3.1.27. Then we have for all x ∈ H

S(Λ(1))〈λ,Λ(2)x〉 = S(Λ(1))Λ(2)x(1)〈λ,Λ(3)x(2)〉 [λ left integral for H∗]

= x(1) 〈λ,Λx(2)〉 [S antipode]

= x〈λ,Λ〉 = x [Λ right integral, normalization]

It follows that the components Λi
(1) of any representation of ∆(Λ) as a sum

∆(Λ) =
∑
i

Λi
(1) ⊗ Λi

(2) ∈ H ⊗H

form a generating system of H. We can thus express ∆(Λ) as a sum such that the compo-
nents (Λi

(1)) form a basis. Thus (S(Λ(1)),Λ(2)) form a pair of dual bases for the standard
Frobenius structure on on the Hopf algebra H given by λ, cf. Theorem 3.1.25.

2. Assume that H is moreover semisimple. By Maschke’s theorem κ := ε(Λ) 6= 0. Then

e := κ−1 · S(Λ(1))⊗ Λ(2) ∈ H ⊗H

is a separability idempotent. Indeed,

µ(e) := κ−1S(Λ(1)) · Λ(2) = κ−11Hε(Λ) = 1H

by the defining property of the antipode. The Casimir property of a separability idempo-
tent follows directly from observation 3.2.30.4, since it is built from a pair of dual bases.
The integral thus provides a separability idempotent for a semisimple Hopf algebra.

3.3 Powers of the antipode

Observation 3.3.1.
Let V be a finite-dimensional K-vector space. Using the canonical identification

V ∗ ⊗ V → EndK(V )
β ⊗ v 7→ (w 7→ β(w)v)

we can associate to β ⊗ v the value of the trace. We have Tr(β ⊗ v) = β(v). Indeed, consider
dual bases (ei)i∈I of V and (ei)i∈I of V ∗ and write β =

∑
i βie

i and v =
∑

i v
iei. The linear

endomorphism corresponding to β ⊗ v maps the basis vector ei to

ei 7→ β(ei)
∑
j

vjej =
∑
j

βiv
jej

and thus has trace
∑

j βjv
j = β(v).

Lemma 3.3.2.
Let H be a finite-dimensional Hopf algebra with λ ∈ Il(H∗) and a right integral Λ ∈ H such
that λ(Λ) = 1. Let F be a linear endomorphism of H. Then

Tr(F ) = 〈λ, F (Λ(2))S(Λ(1))〉 .
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Proof.
We know by remark 3.2.31.1 that for all x ∈ H, we have

F (x) = 〈λ, F (x)S(Λ(1))〉Λ(2) .

Thus under the identification H∗ ⊗H ∼= End(H), the endomorphism F corresponds to

〈λ, F (−)S(Λ(1))〉 ⊗ Λ(2) ;

thus by observation 3.3.1
Tr(F ) = 〈λ, F (Λ(2))S(Λ(1))〉 .

2

We need to understand the powers of the antipode. We first need another structure: for any
element h ∈ H, left multiplication yields a K-linear endomorphism

Lh : H → H
x 7→ hx

We thus define a linear form
TrH : H → K

h 7→ Tr(Lh) .

Proposition 3.3.3.
Let H be a finite-dimensional Hopf algebra with λ ∈ Il(H∗) and a right integral Λ ∈ H such
that λ(Λ) = 1.

1. We have for the trace of the endomorphism S2 : H → H

TrS2 = 〈ε,Λ〉〈λ, 1〉 .

2. If S2 = idH , then TrH = 〈ε,Λ〉λ.

Proof.

1. Taking S2 in lemma 3.3.2, we find

Tr(S2) = 〈λ, S2(Λ(2))S(Λ(1))〉 = 〈λ, S(Λ(1) · S(Λ(2)))〉 = 〈ε,Λ〉 · 〈λ, 1〉 .

2. The identity S2 = idH implies that S is also a skew antipode and thus by proposition
2.5.7

h(2)S(h(1)) = 〈ε, h〉1 for all h ∈ H . (∗)

Taking F = Lh, we find

TrH(h)
def
= Tr(Lh)

3.3.2
= 〈λ, hΛ(2)S(Λ(1))〉

(∗)
= 〈ε,Λ〉 · 〈λ, h〉 ,

where we used in the last step equation (∗) for h = Λ.

2

Corollary 3.3.4.
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1. H and H∗ are semisimple, if and only if TrS2 6= 0.

2. If S2 = idH and charK does not divide dimH, then H and H∗ are semisimple.

Indeed, for the Taft algebra S2 6= id, and the Taft algebra over any field is not semisimple.

Proof.

1. By Maschke’s theorem 3.2.22, H is semisimple, if and only if 〈ε,Λ〉 6= 0. Similarly, again
by Maschke’s theorem, H∗ is semisimple, if and only if 〈ε∗,Λ∗〉 = 〈λ, 1〉 6= 0. Together
with proposition 3.3.3.1, this implies the assertion.

2. If S2 = idH , then by proposition 3.3.3.1

dimH = TrS2 = 〈ε,Λ〉〈λ, 1〉

which is non-zero by the assumption on the characteristic of K. Now Maschke’s theorem
3.2.22 implies the assertion.

2

Remark 3.3.5.

1. Assume that H is a cocommutative Hopf algebra. We have seen in corollary 2.5.10.1 that
S2 = idH for a cocommutative Hopf algebra. Thus by corollary 3.3.4 a cocommutative
finite-dimensional Hopf algebra over a field K of characteristic zero is always semisimple
and cosemisimple.

2. Let us assume that the field K of characteristic 0 is moreover algebraically closed. Since
H∗ is semisimple, it is, as an algebra, isomorphic to H∗ ∼= K×K× . . .×K by the Artin-
Wedderburn theorem. The projection pi to the i-th factor is a morphism of algebras or, put
differently, a grouplike element in H∗∗ ∼= H. All projections give a basis of H consisting
of grouplike elements. Thus a cocommutatitve finite-dimensional Hopf algebra H over an
algebraically closed field is a group algebra of a finite group. We will therefore have to go
beyond cocommutativity.

Observation 3.3.6.

1. Consider a Frobenius algebra A over a field K with bilinear form κ. Since κ is non-
degenerate, it provides a bijection

A → A∗

h 7→ κ(−, h) .

Consider for fixed x ∈ A the linear form on A

y 7→ κ(x, y) .

Using the bijection A→ A∗ above, we find ρ(x) ∈ A such that

κ(x, y) = κ(y, ρ(x)) for all y ∈ A .

The map ρ : A→ A is obviously K-linear and a bijection.
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2. The map ρ : A→ A is a morphism of algebras. Indeed, using the definition of ρ and the
invariance (I) of κ, we find for all x, y, z ∈ A

κ(z, ρ(xy)) = κ(xy, z)
(I)
= κ(x, yz) = κ(yz, ρ(x))

(I)
= κ(y, zρ(x))

= κ(zρ(x), ρ(y))
(I)
= κ(z, ρ(x)ρ(y))

Since the Frobenius form κ is non-degenerate, this implies ρ(xy) = ρ(x)ρ(y) for all x, y ∈
A.

Definition 3.3.7
Let A be a Frobenius algebra over a field K.

1. The automorphism ρ is called the Nakayama automorphism of the Frobenius algebra A
with respect to the Frobenius structure κ.

2. A Frobenius algebra is called symmetric, if the Nakayama automorphism equals the iden-
tity, i.e. if κ(x, y) = κ(y, x) for all x, y ∈ A.

Remark 3.3.8.

1. If the Frobenius algebra A is commutative, the Nakayama involution is the identity and
the Frobenius algebra is symmetric.

2. Group algebras over a field are examples of symmetric Frobenius algebras that are not
necessarily commutative.

3. The notion of a symmetric Frobenius algebra can not be defined for an Frobenius algebra
A in a general tensor category C, since it involves left and right duals of A which can be
different.

4. Denote by ν : A → A the inverse of the Nakayama automorphism and define an endo-
functor

N : A−mod→ A−mod

which sends a module (M,ρM : A→ EndK(M)) to the module with twisted action ρM ◦ν :
A→ EndK(M). This so-called Nakayama functor is an autoequivalence of A−mod.

We compute

κ(ν(z) · x, y)
(I)
= κ(ν(z), xy) = κ(xy, z)

(I)
= κ(x, yz) (∗)

Endowing A∗ with the standard ⇀-action of A and A with the A-action twisted by µ, we
see that the morphism

Φ : A → A∗

x 7→ κ(x,−)

intertwines the two A-actions:

Φ(z.x)(y) = κ(z.x, y) = κ(ν(z)x, y)
(∗)
= κ(x, yz) = (z ⇀ Φ(x))(y) .

The Eilenberg-Watts theorem then shows that the Nakayama functor is equivalent to
A∗ ⊗A −.
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5. The Nakayama functor can be defined for any finite K-linear category [FSS]; it is not
necessary an equivalence. If C ∼= A−mod, the Nakayama functor is A∗ ⊗A −. It is right
exact and has a right adjoint.

Our strategy will now be to compute the Nakayama automorphism for the Frobenius algebra
structure of a finite-dimensional Hopf algebra given by the right cointegral, cf. theorem 3.1.25
in two different ways. (One can show that the Nakayama automorphism has, in this case, always
finite order.) We need two lemmas. Denote by S−1 the composition inverse of the antipode,
S ◦ S−1 = S−1 ◦ S = idH . It exists by theorem 3.1.14.

Lemma 3.3.9.
Let H be a finite-dimensional Hopf algebra. Let γ ∈ H∗ a non-zero right integral and let Γ ∈ H
be the left integral such that 〈γ,Γ〉 = 1. Such a left integral exists by proposition 3.1.27.2.
By theorem 3.1.14, t := S(Γ) ∈ H is then a non-zero right integral. Denote by α ∈ H∗ the
distinguished group like element which is an algebra morphism H → K.

1. Then (S−1(t(2)), t(1)) is a pair of dual bases for γ.

2. We have for the Nakayama automorphism for the Frobenius structure given by the right
integral γ:

ρ(h) = 〈α, h(1)〉 S−2(h(2)) .

Proof.

• We already know from remark 3.2.31 that for the Frobenius form given by a left integral
λ for H∗ we have a dual basis (SΛ(1),Λ(2)). Applying this to the Hopf algebra Hcopp which
has antipode S−1, we find the assertion.

We remark that for all x ∈ H, we have by the general facts about dual bases

x = 〈γ, t(1)x〉S−1(t(2))

Let x = 1 and apply the counit ε; then

1 = ε(1) = 〈γ, t(1)〉ε(S−1(t(2))) = 〈γ, t(1)〉ε((t(2))) = 〈γ, t〉 (∗)

• We also have have, using dual bases,

ρ(h) = S−1(t(2)) 〈γ, t(1)ρ(h)〉 = S−1(t(2)) 〈γ, ht(1)〉

where in the second step applied the definition of the Nakayama automorphism ρ of H
with Frobenius structure given by γ. Applying S2, we find

S2ρ(h) = 〈γ, ht(1)〉S(t(2))

= 〈γ, h(1)t(1)〉h(2)t(2)S(t(3)) [γ right integral of H∗]

= 〈γ, h(1)t〉h(2) = 〈γ, α(h(1))t〉h(2) [antipode, α distinguished element]

= 〈α, h(1)〉h(2) [normalization in (∗)]

Applying S−2 yields the claim.

2

Similarly, we have
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Lemma 3.3.10.
Let a ∈ G(H) be the distinguished group-like element of H and t, γ as before in lemma 3.3.9.

1. Then (S(t(1))a, t(2)) is a pair of dual bases for γ.

2. We have for the Nakayama automorphism for the Frobenius structure given by the right
integral γ:

ρ(h) = a−1S2(h(1))〈α, h(2)〉a .

Proof.

• Using the definitions, we find for all h ∈ H:

S(t(1))a〈γ, t(2)h〉 = S(t(1))t(2)h(1)〈γ, t(3)h(2)〉 [γ right integral of H∗]

= h(1)〈γ, th(2)〉 = h(1)ε(h(2)) = h

so that we have dual bases.

• By the fact that we have dual bases, we can write

ρ(h) = S(t(1))a〈γ, t(2)ρ(h)〉 = S(t(1))a〈γ, ht(2)〉 ,

where in the second identity, we applied the definition of the Nakayama automorphism
ρ. Applying S−2 and conjugating with a, we find

aS−2(ρ(h))a−1 = a〈γ, ht(2)〉S−1(t(1))

= h(1)t(2)〈γ, h(2)t(3)〉S−1(t(1)) [γ right cointegral]

= h(1)〈γ, h(2)t〉 = h(1)〈α, h(2)〉 .

Conjugating with a−1 and then applying S2 yields the claim.

2

Observation 3.3.11.
If H is a finite-dimensional Hopf algebra, then H∗ is a finite-dimensional Hopf algebra as well.
We then have the structure of a left and right H∗-module on H by

h∗ ⇀ h := h(1)〈h∗, h(2)〉 and h ↼ h∗ := 〈h∗, h(1)〉h(2) .

This follows by identifying H ∼= H∗∗ from

(h∗ ⇀ h).β = h(β · h∗) = β · h∗(h) = β(h(1)) · h∗(h(2))

for all h∗, β ∈ H∗ and h ∈ H. This is indeed a left H∗-action:

g∗ ⇀ (h∗ ⇀ h) = g∗ ⇀ (h(1)〈h∗, h(2)〉) = h(1)〈g∗, h(2)〉〈h∗, h(3)〉 = h(1)〈g∗ · h∗, h(2)〉 = g∗ · h∗ ⇀ h

Theorem 3.3.12 (Radford,1976).
Let H be a finite-dimensional Hopf algebra over a field K. Let a ∈ G(H) and α ∈ G(H∗) be
the distinguished grouplike elements. Then the following identity holds:

S4(h) = a(α−1 ⇀ h ↼ α)a−1 = α−1 ⇀ (aha−1) ↼ α
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Proof.

• We first show the second identity

a(α−1 ⇀ h ↼ α)a−1 = α−1 ⇀ (aha−1) ↼ α

We transform the left hand side by using the definition of the H∗-actions for observation
3.3.11:

a(α−1 ⇀ h ↼ α)a−1 = 〈α, h(1)〉ah(2)a
−1〈α−1, h(3)〉 . (∗)

We transform the right hand side, using the definition of the H∗ actions from observation
3.3.11 and the fact that a is group-like:

α−1 ⇀ (aha−1) ↼ α = 〈α, ah(1)a
−1〉ah(2)a

−1〈α−1, ah(3)a
−1〉

= 〈α, h(1)〉ah(2)a
−1〈α−1, h(3)〉 ,

where in the last identity we used that α as a group-like element of H∗ is a morphism of
algebras H → K, cf. remark 2.6.9.1.

• The two lemmata 3.3.9 and 3.3.10 for the Nakayama automorphism ρ for the right coin-
tegral γ imply the identity

〈α, h(1)〉 S−2(h(2))
3.3.9
= ρ(h)

3.3.10
= a−1S2(h(1))〈α, h(2)〉a .

Applying S2 to this equation and conjugating with a ∈ G(H), we get

a · 〈α, h(1)〉 h(2) · a−1 = S4(h(1))〈α, h(2)〉 . (∗∗)

We now compute 〈α−1, h(3)〉, we find

a(α−1 ⇀ h ↼ α)a−1 (∗)
= a · 〈α, h(1)〉 h(2)〈α−1, h(3)〉 · a−1

(∗∗)
= S4(h(1))〈α, h(2)〉〈α−1, h(3)〉
= S4(h(1))〈α · α−1, h(2)〉
= S4(h)

2

Corollary 3.3.13.
Let H be a finite-dimensional Hopf algebra.

1. The order of the antipode S of H is finite.

2. If H is unimodular, then S4 coincides with the inner automorphism of H induced by a
grouplike element. In particular, the order of the antipode is at most 4 · dimH.

3. If both H and H∗ are unimodular, then S4 = idH .

Proof.

1. Since H and H∗ are finite-dimensional and since distinct powers of a group-like element
are linearly independent by proposition 2.6.11, every group-like element in H or H∗ has
finite order. By Radford’s formula 3.3.12, S4 has finite order and thus S has finite order.

102



2. By corollary 3.1.18, the Hopf algebra H is unimodular, if and only if the distinguished
group-like element α equals the counit. The action of the counit on H is trivial, thus for
unimodular Hopf algebras, Radford’s formula reads S4(h) = aha−1. The last assertion
follows by applying the same reasoning to the Hopf algebra H∗ as well.

2

Remark 3.3.14.
For a finite tensor category C, the Nakayama functor comes with coherent isomorphisms [FSS]

N(a⊗m⊗ b) ∼= ∨∨a⊗N(m)⊗ b∨∨ .

Using that N(1) = D−1 is the inverse of the distinguished invertible object, we conclude

N(a) = N(1⊗ a) ∼= N(1)⊗ a∨∨ ∼= D−1 ⊗ a∨∨

and
N(a) = N(a⊗ 1) ∼= ∨∨a⊗N(1) ∼= ∨∨a⊗D−1

which implies the following categorical variant of Radford’s S4-theorem:

a∨∨∨∨ ∼= D ⊗ a⊗D−1 .

We finally derive a result relating the order of the antipode S of H to the semisimplicity of
the Hopf algebra H.

Lemma 3.3.15.
Let A be a Frobenius algebra with bilinear form κ and dual bases (ri, li) as in observation 3.2.30.
Suppose that e ∈ A has the property that e2 = αe with some α ∈ K. Consider an K-linear
endomorphism f of the subspace eA := {ea | a ∈ A} of A. Then

1. αTr(f) =
∑

i κ(f(eli), ri).

2. αTr(f) =
∑

i κ(li, f(eri)).

Proof.
Using the defining property of dual bases, we find

αex = e2x = e

(∑
i

κ(ex, ri)li

)
=
∑
i

κ(ex, ri)eli .

Thus, since f is linear,

αf(ex) =
∑
i

κ(ex, ri)f(eli)

so that under the isomorphism

(eA)∗ ⊗ (eA)→ EndK(eA)

we have ∑
i

κ(−, ri)⊗ f(eli) 7→ αf .
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Combined with lemma 3.3.2 on the computation of traces, this shows the first formula. The
second formula is shown analogously. 2

Definition 3.3.16
Let A be a unital associative K-algebra. Let V be a finite-dimensional left A-module given by
the algebra map ρ : A→ EndK(V ). Then the linear form

χV : A → K
a 7→ Trρ(a)

is called the character of the module V .

Remarks 3.3.17.
The following properties are easy to check:

1. χV (1A) = dimK V for any A-module V .

2. Let V,W be A-modules. Any isomorphism of modules V ∼= W implies identity of char-
acters, χV = χW . The converse is, in general, wrong. As an example, consider the group
algebra K[C2] of the cyclic group of order two over a field of characteristic two which was
discussed in remark 2.1.6.5. The direct sum of two copies of the one-dimensional simple
representation and the regular representation have the same character (which identically
vanishes).

3. Let V,W be A-modules. Then we have χV⊕W = χV + χW , as a consequence of the
behaviour of the trace on direct sums of vector spaces.

4. Suppose that we consider modules over a Hopf algebra H. Then χV⊗W = χV · χW with
the product in H∗. Indeed,

χV⊗W (h) = TrV⊗WρV (h(1))⊗ ρW (h(2)) = χV (h(1)) · χW (h(2)) = (χV · χW )(h) .

5. Suppose again that we consider modules over a Hopf algebra H. Then for a trivial module
T = (V, ε⊗ idV ), we have χT (h) = ε(h) dimV .

6. For the character of the right dual module V ∨, we have

χV ∨(h) = TrV ∗ρV (S(h))t = TrV ρV (S(h)) = χV (S(h)) .

For the character of the left dual module, we have

χ∨V (h) = TrV ∗ρV (S−1(h))t = TrV ρV (S−1(h)) = χV (S−1(h)) .

Lemma 3.3.18.
Let H be a Hopf algebra. Then we have for the character of the left regular module

1. χ2
H = dimH · χH .

2. S2χH = χH , where we use S for the antipode of H∗ as well,

as identities of elements in the Hopf algebra H∗.
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Proof.

1. Let V be any H-module and Vε the trivial H-module structure on the vector space
underlying V . Then the Hopf algebra property of H implies that the linear map

H ⊗ Vε → H ⊗ V
h⊗ v 7→ h(1) ⊗ h(2).v

defines an isomorphism of H-modules with inverse

H ⊗ V → H ⊗ Vε
h⊗ v 7→ h(1) ⊗ S(h(2)).v

This implies
χHχV = χHχVε = χH dimV ,

where all products are products in H∗ and where we used that the counit ε is the unit of
H∗. Then specialize to V = H.

2. Let h ∈ H. Then
〈S2(χH), h〉 = 〈χH , S2h〉 = TrH(LS2(h)) .

Since S2 is an algebra automorphism, we have

TrH(LS2(h)) = TrH(Lh) = 〈χH , h〉 .

2

Since S2χH = χH by lemma 3.3.18.2 and since S2 is a an algebra auto morphism of H∗, we
have for any β ∈ H∗

S2(χHβ) = S2(χH) · S2(β) = χH · S2(β)

so that S2 restricts to an endomorphism of the linear subspace χHH
∗ ⊂ H∗.

Lemma 3.3.19.
Let H be a Hopf algebra. Let γ ∈ H∗ be a nonzero right integral and Γ ∈ H be a left integral,
normalized such that 〈γ,Γ〉 = 1. Then

TrH∗(S
2) = 〈ε,Γ〉〈γ, 1〉 = (dimH)Tr (S2|χHH∗) .

Proof.
By applying proposition 3.3.3 to Hopp,copp, we find

TrHS
2 = 〈γ, 1〉 · 〈ε,Γ〉 .

We denote by Γ̃ ∈ H∗∗ the image of Γ ∈ H in the bidual of H. Now γ is a Frobenius form
with dual bases (Γ(1), S(Γ(2))) which implies that Γ̃ is a Frobenius form for H∗ with dual bases
(S(γ(1)), γ(2)).

Now lemma 3.3.15 applies to e := χH with α = dimH, thus yielding

dimH · Tr(S2)|χHH∗ = 〈Γ̃, S2(χHγ(2))S(γ(1))〉
= 〈Γ̃, S2(χH)S2(γ(2))S(γ(1))〉 [S2 algebra morphism]

= 〈Γ̃, χHS(γ(1) · S(γ(2))〉 [S2χH = χH ]

= 〈γ, 1〉 · 〈χH ,Γ〉
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By the same lemma 3.3.15, taking f = LΓ and e = 1 with α = 1, we have for the second
factor

χH(Γ) = 〈γ, S(Γ(2))ΓΓ(1)〉
= 〈γ, ε(Γ(2))ΓΓ(1)〉 [Γ is a left integral of H]

= 〈γ,ΓΓ〉 = ε(Γ)〈γ,Γ〉 = ε(Γ)

Combining the two results yields

dimH · Tr(S2)|χHH∗ = 〈γ, 1〉 · 〈χH ,Γ〉 = 〈γ, 1〉 · 〈ε,Γ〉

which completes the proof of the lemma. 2

Theorem 3.3.20 (Larson-Radford, 1988).
Let K be a field of characteristic zero. Let H be a finite-dimensional K-Hopf algebra. Then the
following statements are equivalent:

1. H is semisimple.

2. H∗ is semisimple.

3. S2 = idH .

It has been shown [EG, Theorem 3.1] that over a field of any characteristic, the following
holds: if H and H∗ are semisimple, then S2 = idH .

Proof.
We have already seen in corollary 3.3.4.2 that 3. implies 1. and 2. One can show [LR, Theorem
3.3] that 2 implies 1. Here we only show that 1. and 2. together imply 3. Suppose that H and
H∗ are both semisimple and thus, by corollary 3.2.24, unimodular. By corollary 3.3.13.3, then
S4 = (S2)2 = id.

Hence the eigenvalues of S2 on H and of S2|χHH∗ are all ±1 and S2 can be diagonalized,
cf. remark 2.1.6.5. Call the eigenvalues (µj)1≤j≤n with n := dimH and (ηi)1≤i≤m with m :=
dimχHH

∗. Thus

TrH∗(S
2) =

n∑
j=1

µj and Tr(S2|χHH∗) =
m∑
i=1

ηi ,

By lemma 3.3.19,
n∑
j=1

µj = n
m∑
i=1

ηi . (∗)

This implies

n · |
m∑
i=1

ηi| =

∣∣∣∣∣
n∑
j=1

µj

∣∣∣∣∣ ≤
n∑
j=1

|µj| = n .

For a semisimple Hopf algebra, we have seen in corollary 3.3.4 that 0 6= TrS2 =
∑n

j=1 µj
and thus by the equality (∗) we find

∑m
i=1 ηi 6= 0. This implies

∑m
i=1 ηi = ±1 and, as a further

consequence of equation (∗) we have
∑n

j=1 µj = ±n. Since S2(1H) = 1H , we have at least

one eigenvalue +1. Thus all eigenvalues of S2 on H have to be +1 which amounts to S2 = idH . 2

There are some important results we do not cover in these lectures. The following theorem
is proven in [Schneider]:
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Theorem 3.3.21 (Nichols-Zoeller, 1989).
Let H be a finite-dimensional Hopf algebra, and let R ⊂ H be a Hopf subalgebra. Then H is
a free R-module.

Corollary 3.3.22 (“Langrange’s theorem for Hopf algebras”).
If R ⊂ H are finite-dimensional Hopf algebras, then the order of R divides the order of H. (The
order of a Hopf algebra is, by definition, its dimension.)

We finally refer to chapter 4 of Schneider’s lecture notes [Schneider] for a character theory
for finite-dimensional semisimple Hopf algebras that closely parallels the character theory for
finite groups.
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4 Quasi-triangular Hopf algebras and braided categories

4.1 Braidings and topological field theory

In this subsection, we introduce the notion of a topological field theory and investigate low-
dimensional topological field theories. To this end, we need more structure on monoidal cate-
gories.

We recall from Remark 2.4.3.4 that, given a tensor category (C,⊗, a, l, r) we obtain from
the tensor product ⊗ : C × C → C, a functor ⊗opp = ⊗ ◦ τ with

V ⊗opp W := W ⊗ V and f ⊗opp g := g ⊗ f .

which admits the associator aopp
U,V,W := a−1

W,V,U .

Definition 4.1.1

1. A commutativity constraint for a tensor category (C,⊗) is a natural isomorphism

c : ⊗ → ⊗opp

of functors C × C → C. Explicitly, we have for any pair (V,W ) of objects of C an isomor-
phism

cV,W : V ⊗W ∼−→ W ⊗ V

such that for all morphisms V
f−→ V ′ and W

g−→ W ′ the diagrams

V ⊗W
cV,W //

f⊗g
��

W ⊗ V
g⊗f
��

V ′ ⊗W ′ cV ′,W ′ //W ′ ⊗ V ′

commute.

2. Let C be, for simplicity, a strict tensor category. A braiding is a commutatitivity constraint
such that for all objects U, V,W the compatibility relations with the tensor product

cU⊗V,W = (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W )

cU,V⊗W = (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW )

hold.

If the category is not strict, the following two hexagon axioms involving also the associ-
ators have to hold:

U ⊗ (V ⊗W )
cU,V⊗W // (V ⊗W )⊗ U

aV,W,U

((
(U ⊗ V )⊗W

aU,V,W
66

cU,V ⊗idW ((

V ⊗ (W ⊗ U)

(V ⊗ U)⊗W
aV,U,W // V ⊗ (U ⊗W )

idV ⊗cU,W

66
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and

(U ⊗ V )⊗W
cU⊗V,W //W ⊗ (U ⊗ V )

a−1
W,U,V

((
U ⊗ (V ⊗W )

a−1
U,V,W

66

idU⊗cV,W ((

(W ⊗ U)⊗ V

U ⊗ (W ⊗ V )
a−1
U,W,V // (U ⊗W )⊗ V

cU,W⊗idV

66

3. A braided tensor category is a tensor category together with the structure of a braiding.

4. With cUV , also c−1
V U is a braiding. If the identity cU,V = c−1

V,U holds, the braided tensor
category is called symmetric.

Remarks 4.1.2.

1. Graphically, we represent the braiding by overcrossings and its inverse by undercross-
ings. Overcrossings and undercrossings have to be distinguished, unless the category is
symmetric.

2. It is not necessary to impose the correct behaviour of the monoidal unit as an axiom, see
[JS, Proposition 2.1].

3. The flip map
τ : V ⊗W → W ⊗ V

v ⊗ w 7→ w ⊗ v

defines a symmetric braiding on the monoidal category vect(K) of K-vector spaces. It also
induces a symmetric braiding on the category K[G]-mod of K-linear representations of a
group. More generally, flip maps give a symmetric braiding on the category H−mod for
any cocommutative Hopf algebra. Since the universal enveloping algebra U(g) of a Lie
algebra g is cocommutative, the category of K-linear representations of g has the structure
of a symmetric tensor category, as well.

4. There are tensor categories that do not admit a braiding. For example, for G a non-abelian
group, the category vect(G) of G-graded vector spaces does not admit a braiding since

Kg ⊗Kh
∼= Kgh and Kh ⊗Kg

∼= Khg

are not isomorphic, if gh 6= hg.

5. The category vect(G) admits the flip as a braiding, if the group G is abelian. In the
case of G = Z2, objects are Z2-graded vector spaces V0 ⊕ V1. We can introduce another
symmetric braiding c: on homogeneous components, it is the flip up to signs:

c : Vi ⊗Wj → Wj ⊗ Vi
vi ⊗ wj 7→ (−1)ijwj ⊗ vi

This category is the symmetric category underlying the spherical category of
super vector spaces. For more details, see remark 5.1.12. In particular, a tensor category
can admit inequivalent braidings.
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6. Recall from definition 2.5.18 that the monoidal category of cobordisms has disjoint union
as the tensor product, S1 ⊗ S2 = S1 t S2. It admits symmetric braiding given by the
morphism represented by the bordism of two cylinders

(S1 t S2)× I = S1 × I t S2 × I

with maps

Ψi : S1 t S2 → (S1 t S2)× I and S2 t S1 → (S1 t S2)× I
(s1, s2) 7→ (s1, s2, 0) and (s2, s1) 7→ (s1, s2, 1) .

We note that in a braided category, a version of the Yang-Baxter equation holds:

Proposition 4.1.3.
Let U, V,W be objects in a strict braided tensor category. Then the following identity of mor-
phisms U ⊗ V ⊗W → W ⊗ V ⊗ U holds:

(cV,W ⊗ idU) ◦ (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW )

= (idW ⊗ cU,V ) ◦ (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W ) .

Expressed using the graphical calculus, we find

If the braided category is not strict, this amounts to a commuting diagram with 12 corners,
a dodecagon. The reader should draw the graphical representation of this identity.

In particular cV,V ∈ Aut (V ⊗ V ) is a solution of the Yang-Baxter equation, cf. remark
1.1.2. Thus any object V of a braided tensor category provides a group homomorphism Bn →
Aut(V ⊗n), cf. proposition 1.2.4.

Proof.
The equality is a direct consequence of the hexagon axiom from definition 4.1.1 and the func-
toriality of the braiding:

(cV,W ⊗ idU) ◦ (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW )
= (cV,W ⊗ idU) ◦ cU,V⊗W [Hexagon axiom]
= cU,W⊗V ◦ (idU ⊗ cV,W ) [Naturality of cU,V⊗W ]
= (idW ⊗ cU,V ) ◦ (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W ) [Hexagon axiom]

2

Remarks 4.1.4.

1. As in any tensor category, we can consider algebras and coalgebras in a braided tensor
category (C,⊗, c). Now, we have the notion of a commutative associative unital algebra
(A, µ, η): here the product is required to obey µ ◦ cA,A = µ. We also have the opposed
algebra with multiplication µopp := µ◦cA,A. Similarly, we have the notion of the coopposed
coalgebra with coproduct ∆copp := cC,C◦∆, and the notion of a cocommative coassociative
counital coalgebra with coproduct obeying cC,C ◦∆ = ∆.
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2. Another construction that uses the braiding is the following: Suppose that we have two
associative unital algebras (A, µ, η) and (A′, µ′, η′) in a braided tensor category C. Then
the tensor product A ⊗ A′ can be endowed with the structure of an associative algebra
with product

A⊗ A′ ⊗ A⊗ A′
idA⊗cA,A′⊗idA′−→ A⊗ A⊗ A′ ⊗ A′ µ⊗µ

′
−→ A⊗ A′ .

A unit is then η ⊗ η′.
Dually, also the tensor product of two counital coassociative coalgebras can be endowed
with the structure of a coalgebra.

3. Hence, in braided tensor categories, it makes sense to consider an object H which has both
the structure of an associative unital algebra and of a coassociative counital coalgebra
such that the coproduct ∆ : H → H ⊗H is a morphism of algebras. We are thus able to
introduce the notion of a bialgebra and, moreover, of a Hopf algebra, in a braided category.
Such Hopf algebras play an important role in the construction of modular functors and
of invariants of three-manifolds. For a detailled exposition of the modular functor which
goes back to the work of Lyubashenko we refer to [LMSS].

4. We will see in an exercise that the exterior algebra is a Hopf algebra in the symmetric
tensor category of super vector spaces. A generalization are Nichols algebras [H].

We again need functors and natural transformations with appropriate compatibilities:

Definition 4.1.5

1. A tensor functor (F, ϕ0, ϕ2) from a braided tensor category C to a braided tensor category
D is called a braided tensor functor, if for any pair of objects (V, V ′) of C, the square

F (V )⊗ F (V ′)
ϕ2 //

cF (V ),F (V ′)
��

F (V ⊗ V ′)
F (cV,V ′ )

��
F (V ′)⊗ F (V )

ϕ2 // F (V ′ ⊗ V )

commutes. If the braided tensor category has the property of being symmetric, a braided
tensor functor is also called a symmetric tensor functor.

2. As braided monoidal natural transformations, we take all monoidal natural transforma-
tions.

Example 4.1.6.
We discuss an important class of braided monoidal categories. Let G be a finite abelian group
and vectG the category of (finite-dimensional) G-graded vector spaces. For simplicity, we assume
that the category of finite-dimensional vector spaces has been replaced by an equivalent strict
monoidal category. An associator is then determined on simple objects by

αg1,g2,g3 = ω(g1, g2, g3)id : (Kg1 ⊗Kg2)⊗Kg3 → Kg1 ⊗ (Kg2 ⊗Kg3)

and the braiding by

cg1,g2 = β(g1, g2)id : Kg1 ⊗Kg2
∼= Kg1g2 → Kg1g2

∼= Kg2 ⊗Kg1
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with functions
ω : G×G×G→ K× and β : G×G→ K×

obeying by the pentagon and the two hexagon equations

ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)ω(g2, g3.g4)
ω(g2, g3, g1)β(g1, g2g3)ω(g1, g2, g3) = β(g1, g3)ω(g2, g1, g3)β(g1, g2)

ω(g3, g1, g2)−1β(g1g2, g3)ω(g1, g2, g3)−1 = β(g1, g3)−1ω(g1, g3, g2)−1β(g2, g3)

for all g1, g2, g3, g4 ∈ G.
Using these equations, one shows [EGNO, Theorem 8.4.9] that the function

q : G → K×
g 7→ β(g, g)

is a quadratic form on G, i.e. it obeys q(g) = q(g−1) and

b(g, h) :=
q(gh)

q(g)q(h)

is a symmetric bicharacter, b(g1g2, h) = b(g1, h)b(g2, h). Such quadratic forms even classify
structures of a braided monoidal category on vectG up to braided equivalence. This makes this
class of braided monoidal categories accessible by tools from (abelian) group cohomology. For
more information, see [EGNO, Section 8.4].

Definition 4.1.7 [Atiyah]
Let K be a field. A topological field theory of dimension n is a symmetric monoidal functor

Z : Cob(n)→ vect(K) .

Remarks 4.1.8.

1. The category vect(K) can be replaced by any symmetric monoidal category. (Interesting
examples include e.g. categories of complexes of vector spaces.) Also variants of cobor-
dism categories are in use: spin cobordisms, manifolds with principal bundle, unoriented
manifolds, . . . . One also considers categories with less morphisms, e.g. admitting only
cobordisms S→ S that are cylinders, M = S×I with two diffoemorphisms ψi,o : S→ S⊗I.

2. Without loss of generality, one can suppose that the symmetric monoidal functor Z is
strict.

3. Recall for G a finite group from example 2.1.21 the functor category [∗//G, vect(K)] which
is the category of K-linear representations of G. Topological field theories can be seen as
representations of cobordism categories.

4. We deduce from the definition that a topological field theory Z of dimension n is given
by the following data:

(a) For every oriented closed manifold M of dimension (n− 1), a K-vector space Z(M).

(b) For every oriented bordism B from an (n−1)-manifold M to another (n−1)-manifold
N , a K-linear map Z(B) : Z(M)→ Z(N).
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(c) A collection of coherent isomorphisms

Z(∅) ∼= K Z(M
∐

N) ∼= Z(M)⊗ Z(N).

Functoriality implies that we can glue cobordisms and get the composition of linear maps.
Moreover, these data are required to satisfy a number of natural coherence properties
which we will not make explicit.

5. A closed oriented manifold M of dimension n can be regarded as a bordism from the
empty (n− 1)-manifold to itself, M : ∅ → ∅. Thus

Z(M) : K ∼= Z(∅)→ Z(∅) ∼= K

and thus Z(M) ∈ HomK(K,K) ∼= K is a number: an invariant assigned to every closed
oriented manifold of dimension n.

Observation 4.1.9.
Let Z be an n-dimensional topological field theory. For any closed oriented (n− 1)-dimensional
manifold M , Z(M) is a vector space. The cylinder on M gives a bordism dM : M

∐
M → ∅

which is a right evaluation. Similarly, we get a right coevaluation bM : ∅ →M
∐
M .

Applying the functor Z, we get a vector space Z(M) together with another vector space
Z(M) that is a right dual.

We can now use Lemma 2.5.15 and Lemma 2.5.13 which state the uniqueness of duals and
the fact that the finite-dimensional vector spaces are precisely the ones that admit duals.

Corollary 4.1.10.
Let Z be a topological field theory of dimension n. Then for every closed (n− 1)-manifold M ,
the vector space Z(M) is finite-dimensional, and the pairing Z(M) ⊗ Z(M) → K is perfect:
that is, it induces an isomorphism α from Z(M) to the dual space of Z(M).

In low dimensions, it is possible to describe topological field theories very explicitly.

Example 4.1.11 (Topological field theories in dimension 1).

• Let Z be a 1-dimensional topological field theory. Then Z assigns a finite-dimensional
vector space Z(M) to every closed oriented 0-manifold M , i.e. to a finite set of oriented
points. Since the functor Z is monoidal, it suffices to know its values Z(•,+) and Z(•,−)
on the positively and negatively oriented point which are finite-dimensional vector spaces
dual to each other. Thus

Z(M) ∼= (
⊗
x∈M+

V )⊗ (
⊗
y∈M−

V ∨)

with V := Z(•,+).

• To fully determine Z, we must also specify Z on 1-manifolds B with boundary. Since Z
is a symmetric monoidal functor, it suffices to specify Z(B) when B is connected. In this
case, the 1-manifold B is diffeomorphic either to a closed interval [0, 1] or to a circle S1.

• There are five cases to consider, depending on how we interpret the one-dimensional
oriented manifold B with boundary, the interval, as cobordism:

(a) Suppose that B = [0, 1], regarded as a bordism from (•,+) to itself. Then Z(B) is
the identity map idV : V → V .
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(b) Suppose that B = [0, 1], regarded as a bordism from (•,−) to itself. Then Z(B) is
the identity map id : V ∨ → V ∨.

(c) Suppose that B = [0, 1], regarded as a bordism from (•,+)
∐

(•,−) to the empty
set. Then Z(B) is a linear map from V ⊗ V ∨ into the ground field K: the evaluation
map (v, λ) 7→ λ(v). Since the order matters, we also consider the related bordism
from (•,−)

∐
(•,+) to the empty set. Then Z(B) is a linear map from V ∨ ⊗ V into

the ground field K: the evaluation map (λ, v) 7→ λ(v).

(d) Suppose that B = [0, 1], regarded as a bordism from the empty set to (•,+)
∐

(•,−).
Then Z(B) is a linear map from K to Z((•,+)

∐
(•,−)) ∼= V ⊗ V ∨. Under the

canonical isomorphism V ⊗V ∨ ∼= End(V ), this linear map is given by the coevalution
x 7→ xidV . Again, we can exchange the order of the objects.

(e) Suppose that B = S1, regarded as a bordism from the empty set to itself. Then
Z(B) is a linear map from K to itself, which we can identify with an element of K.
To compute this element, decompose the circle S1 ∼= {z ∈ C : |z| = 1} into two
intervals

S1
− = {z ∈ C : (|z| = 1) ∧ Im (z) ≤ 0} S1

+ = {z ∈ C : (|z| = 1) ∧ Im (z) ≥ 0},

with intersection
S1
− ∩ S1

+ = {±1} ⊆ S1.

It follows that Z(S1) is given as the composition of the linear maps

K ' Z(∅)
Z(S1

−)
−→ Z(±1)

Z(S1
+)

−→ Z(∅) ' K .

These maps were described by (c) and (d) above. We thus get a map

K ∼= Z(∅) → Z(±1) ∼= V ⊗ V ∨ → Z(∅) ∼= K
λ 7→ λ

∑
vi ⊗ vi 7→ λ

∑
i v

i(vi) = λ · dimV

where we have chosen a basis (vi)i∈I of V and a dual basis (vi)i∈I of V ∗. Consequently,
Z(S1) is given by the dimension of V .

In physical language, we have a quantum mechanical system which has only ground
states and thus trivial Hamiltonian. Then the only invariant of the system is the
degeneracy dimV of the space of ground states.

Example 4.1.12 (Topological field theories in dimension 2).

• A two-dimensional topological field theory assigns a vector space Z(M) to every closed,
oriented 1-manifold M . Such a manifold is diffeomorphic to a disjoint union of circles,
M ∼= (S1)

∐
n for some n ≥ 0. Since Z is monoidal, Z(M) ∼= A⊗n with A := Z(S1) by

Lemma 2.5.13 a finite-dimensional vector space.

• One can show (see e.g. [Kock, Proposition 1.4.13]) that the morphisms of monoidal cate-
gory Cob(2) are generated under composition and disjoint union by six cobordisms: cap
or disc, trinion, also called pair of pants, the cylinder, the trinion with two outoing circles,
a disc with one ingoing circle and two exchanging cylinders. This a proposition about the
structure of oriented 2-manifolds!
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Cap ∅ → S1, trinion or pair-of-pants S1tS1 → S1, cylinder S1 → S1, their mirror images
and commutativity constraint.

Applying the functor Z to these cobordisms, we get the following linear maps:

cap η : K→ A
trinion µ : A⊗ A→ A

cylinder IA : A→ A
opposite trinion ∆ : A→ A⊗ A

opposite cap ε : A→ K
exchanging cylinder τ : A⊗ A→ A⊗ A

• One can also classify all relations between the generators, see [Kock, 1.4.24-1.4.28].
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The relations can be summarized that category Cob(2) is the free symmetric monoidal
category on a commutative Frobenius object [Kock, Theorem 3.6.19]. The relations imply
that A has the structure of a commutative (∆, ε)-Frobenius algebra.

• The converse is true as well: given a commutative Frobenius algebra A, one can construct
a 2-dimensional topological field theory Z such that A = Z(S1) and the multiplication and
Frobenius form on A are given by evaluating Z on a pair of pants and a disk, respectively.

• In a categorical language, we thus arrive at the following classification result for two-
dimensional topological field theories: the topological field theories are described by the
category [Cob(2), vect(K)]symm. monoidal of symmetric monoidal functors. This category
which is actually a groupoid [Kock, Lemma 2.4.5] is equivalent to the category of com-
mutative K-Frobenius algebras.

This example can be generalized:

Example 4.1.13 (Open/closed topological field Theories in dimension 2).

• We define a larger category Cob(2)o/cl of open-closed cobordisms:

– Objects are compact oriented 1-manifolds which are allowed to have boundaries.
These are finite disjoint unions of oriented intervals and oriented circles.

– As a bordism B : M → N , we consider a smooth oriented two-dimensional manifold
B, together with an orientation preserving smooth map

φB : M
∐

N → ∂B

which is a diffeomorphism to its image. The map is not required to be surjective.
In particular, we have parametrized and unparametrized intervals on the boundary
circles of M . The unparametrized intervals are called free boundaries and consti-
tute physical boundaries of two-manifolds. The other boundaries are cut-and-paste
boundaries and implement (aspects of) locality of the topological field theory.

Two bordisms B,B′ give the same morphism, if there is an orientation-preserving
diffeomorphism φ : B → B′ such that the following diagram commutes:

B
φ // B′

M
∐
N

φB

cc

φ′B

;;

Thus the diffeomorphism respects parametrizations of intervals on boundary circles
and parametrizations of whole boundary circles.

– For any object M , the identity morphism idM is represented by the cylinder over M .

– Composition is again by gluing.

• Again, disjoint union endows Cob(2)o/cl with the structure of a symmetric monodial
category with the empty set as the tensor unit.

• An open-closed TFT is defined as a symmetric monoidal functor

Z : Cob(2)o/cl → vect(K) .
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Again C := Z(S1) is a commutative Frobenius algebra. One can again write generators
and relations for the cobordism category. Generators for morphisms are the generators
for morphisms of the closed TFT, together with the additional generators:

and their mirror images. The last generator is called the zipper and is topologically an
annulus with a parametrized interval on one boundary component and a parametrized
circle on the other boundary component.
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One finds that the image O := Z(I) of the interval I carries the structure of a Frobenius
algebra. C is called the bulk Frobenius algebra, O the boundary Frobenius algebra.

• The Frobenius algebra O is not necessarily commutative: given three disjoint intervals
on the boundary of a disk, two of them cannot be exchanged by a diffeomorphism of the
disc. This situation is thus rather different from three boundary circles in a sphere, where
two of them can be continuously commuted. For this reason, the bulk Frobenius algebra
C is commutative.

Still, the boundary Frobenius algebra is symmetric, i.e. the bilinear form κ0 : O⊗O → K
is symmetric: κO(a, b) = κO(b, a).

• The zipper gives a linear map i∗ : C → O and the cozipper i∗ : O → C. We show
graphically that

(1) µO ◦ (i∗ ⊗ i∗) = i∗ ◦ µC
(2) (i∗ ⊗ i∗) ◦∆O = ∆C ◦ i∗
(3) i∗(1C) = 1O
(4) εC ◦ i∗ = εO

We summarize the relations: i∗ : C → O is a unital algebra morphism. i∗ : O → C is a
counital morphism of coalgebras.

• One next shows that the image i∗(C) is in the center Z(O). Moreover, i∗ and i∗ are
adjoints with respect to the Frobenius forms:

(6) κC(i∗ψ, φ) = κO(ψ, i∗φ) for all ψ ∈ O, φ ∈ C .

• Finally, the image of the cobordism

allows us to use only structure in the Frobenius algebra O to get a map

π : O → O .

If (bi) is a basis of O and (bi) the dual basis, we find

π : ψ 7→
∑
i

ψbi ⊗ bi 7→
∑
i

bi ⊗ ψbi 7→
∑
i

bi · ψbi .

The fact that
∑

i b
i⊗ bi is a Casimir element, cf. observation 3.2.30, implies that ψ(O) ⊂

Z(O). From the picture

we obtain the last relation, called the Cardy relation:

π = i∗ ◦ i∗ .
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• We are thus lead to the definition of a knowledgeable Frobenius algebra: A knowledgeable
Frobenius algebra in a symmetric tensor category D consists of a commutative Frobenius
algebra C in D, a not necessarily commutative Frobenius algebra O in D, a unital mor-
phism of algebras

i∗ : C → Z(O)

such that π = i∗ ◦ i∗ with i∗ the adjoint of i∗ with respect to the Frobenius forms and π
defined as before.

Morphisms of knowledgeable Frobenius algebras are pairs of morphisms of Frobenius
algebras, compatible with i∗ and i∗. We thus get a category Frobo/cl(D) of knowledgeable
Frobenius algebras and an equivalence of categories

[Cob(2)o/cl,D]symm. monodial = Frobo/cl(D)

which classifies open/closed two-dimensional topological field theories.

• Given the bulk Frobenius algebra C, the boundary Frobenius algebra O is not
uniquely determined. Rather, each choice of boundary Frobenius algebra determines a
boundary condition for the two-dimensional closed topological field theory based on C.
The category of all such boundary conditions carries a natural structure of an algebroid,
i.e. of a linear category. The Frobenius structure can be encoded in terms of the additional
structure of traces on the Hom-spaces.

• As a general reference for this example, we refer to the paper [LP].

This example already illustrates the principle that topological field theories transport geo-
metric structure to algebraic structure.

4.2 Braidings and quasi-triangular bialgebras

It is an obvious question to ask what kind of structure on a Hopf algebra induces the structure
of a braiding on its representation category.

Definition 4.2.1

1. Let H be a bialgebra. The structure of a quasi-cocommutative bialgebra is the choice of
an invertible element R in the algebra H ⊗H such that for all x ∈ H

∆copp(x)R = R∆(x) . [QT1]

R is called a universal R-matrix. A quasi-cocommutative Hopf algebra is a Hopf algebra
together with the choice of a universal R-matrix.

2. A quasi-cocommutative bialgebra H is called quasi-triangular, if its universal R-matrix
obeys the relations in H⊗3

(∆⊗ idH)(R) = R13 ·R23 [QT2]
(idH ⊗∆)(R) = R13 ·R12 [QT3]

with
R12 := R⊗ 1, R23 := 1⊗R and R13 := (τH,H ⊗ idH)(1⊗R) .

It is convenient to extend this notation, e.g. by R21 := τH,H(R) ∈ H ⊗H, and, by some
abuse of notation R21 := τH,H(R)⊗ 1 ∈ H ⊗H ⊗H.
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3. A morphism f : (H,R) → (H ′, R′) of quasi-triangular Hopf algebras is a morphism
f : H → H ′ of Hopf algebras such that R′ = (f ⊗ f)(R).

Remarks 4.2.2.

1. In Sweedler-like notation R = R1 ⊗R2, the relations read

x(2)R1 ⊗ x(1)R2 = R1x(1) ⊗R2x(2) [QT1]

(R1)(1) ⊗ (R1)(2) ⊗R2 = R1 ⊗R1′ ⊗R2R2′ [QT2]

R1 ⊗ (R2)(1) ⊗ (R2)(2) = R1R1′ ⊗R2′ ⊗R2 [QT3]

2. A cocommutative bialgebra has a distinguished structure of a quasi-triangular Hopf alge-
bra with R-matrix R = 1⊗ 1. A quasi-triangular structure on a Hopf algebra can thus be
seen as a weakening of cocommutativity. We have already seen in remark 3.3.5 that co-
commutative Hopf algebras are not a rich enough structure - over an algebraically closed
field of characteristic 0 these are just group algebras.

3. To see a non-trivial quasi-triangular structure, consider the cocommmutative Hopf algebra
K[Z2] with K a field of characteristic different from 2. Write Z2 multiplicatively as {1, g}.
Then

R :=
1

2
(1⊗ 1 + 1⊗ g + g ⊗ 1− g ⊗ g)

is a universal R-matrix. A one-parameter family of R-matrices for the four-dimensional
Taft Hopf algebra from observation 2.6.1 can be found in [Kassel, p. 174].

4. There is no universally accepted definition for the term quantum group. I would prefer
to use the term for quasi-triangular Hopf algebras. Some authors use it as a synonym
for Hopf algebras, some for certain subclasses of quasi-triangular Hopf algebras of Lie-
theoretic flavour.

Theorem 4.2.3.
Let A be a bialgebra over a field K. Then the tensor category A−mod is braided, if and only
if A is quasi-triangular. Both structures are in one-to-one correspondence.

Proof.

• Let A be quasi-triangular with R-matrix R. For any pair U, V of left A-modules, we define
a linear map

cRU,V : U ⊗ V → V ⊗ U
u⊗ v 7→ τU,V (R.(u⊗ v)) = R2.v ⊗R1.u .

This is a morphism of A-modules: we have, for all u ∈ U, v ∈ V and h ∈ A:

cRU,V (h.u⊗ v) = R2h(2).v ⊗R1h(1).u

= h(1)R2.v ⊗ h(2)R1.u [equation QT1 ]

= h.cRU,V (u⊗ v) .

with inverse
c−1(v ⊗ u) = R1u⊗R2v .
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where R−1 = R1⊗R2 is the multiplicative inverse of R in the algebra A⊗A. This family
of morphisms of A-modules is natural for morphisms of A-modules since such morphisms
commute with the action of R ∈ H ⊗H.

To check the first hexagon axiom, we compute for u ∈ U , v ∈ V and w ∈ W :

(idV ⊗ cRU,W ) ◦ (cRU,V ⊗ idW )(u⊗ v ⊗ w)

= (idV ⊗ cRUW )(R2v ⊗R1u⊗ w) [Defn. of cR]

= R2v ⊗R2′w ⊗R1′R1u [Defn. of cR]

= (R2)(1)v ⊗ (R2)(2)w ⊗R1u [equation QT3 for R-Matrix]

= cRU,V⊗W (u⊗ (v ⊗ w)) [Defn. of cR]

The second hexagon follows in complete analogy from equation [QT2].

• Conversely, suppose that the category A-mod is endowed with a braiding. Consider the
element

R := τA,A(cA,A(1A ⊗ 1A)) ∈ A⊗ A .
We have to show that R contains all information on the braiding on the category. To this
end, let V be an A-module; for any vector v ∈ V , consider the A-linear map v which
realizes the isomorphism V ∼= HomA(A, V ) of vector spaces:

v : A → V
a 7→ av

Now consider two A-modules V,W and two vectors v ∈ V and w ∈ W . The naturality of
the braiding c applied to the morphism v ⊗ w implies

cV,W ◦ (v ⊗ w) = (w ⊗ v) ◦ cA,A (∗)

and thus

cV,W (v ⊗ w) = cV,W (v ⊗ w(1A ⊗ 1A))
= (w ⊗ v)cA,A(1A ⊗ 1A) [naturality, see (∗)]
= τV,W (v ⊗ w(R))
= τV,WR.(v ⊗ w) [definition of v, w]

This shows that all the information on a braiding on A−mod is contained in the element
R ∈ A⊗ A.

We have to derive the three relations on an R-matrix from the properties of a braiding.
We have for the action of any x ∈ A on cA,A(1⊗ 1) ∈ A⊗ A:

x.cA,A(1⊗ 1) = x.τA,A(R) = ∆(x) · τA,A(R) ,

where the last expression is a product in A⊗ A. On the other hand, the braiding cA,A is
A-linear. Thus this expression equals

cA,A(x.1⊗ 1) = τA,A [R · (∆(x) · 1⊗ 1)] = τA,A [R ·∆(x)] .

Thus ∆(x) · τA,A(R) = τA,A [R ·∆(x)]; applying τA,A to this expression yields

R ·∆(x) = τA,A [∆(x) · τA,A(R)] = τA,A
[
x(1) ·R2 ⊗ x(2) ·R2

]
= x(2) ·R1 ⊗ x(1) ·R2 = ∆opp(x) ·R .

One can finally derive the two hexagon properties [QT2] and [QT3] of an R-matrix from
the hexagon axioms for the braiding.
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2

Let A be a quasi-triangular Hopf algebra. We conclude from proposition 4.1.3 that for any
A-module V , the automorphism

cRV,V : V ⊗ V → V ⊗ V

is a solution of the Yang-Baxter equation. This explains the name universal R-matrix which is
not related to a universal property. We note some properties of this R-matrix.

Proposition 4.2.4.
Let (H,R) be a quasi-triangular bialgebra.

1. Then the universal R-matrix obeys the following equation in H⊗3:

R12 ·R13 ·R23 = R23 ·R13 ·R12

(cf. proposition 4.1.3) and we have

(ε⊗ idH)(R) = 1 = (idH ⊗ ε)(R) .

2. If, moreover, H has an invertible antipode, then

(S ⊗ idH)(R) = R−1 = (idH ⊗ S−1)(R)

and
(S ⊗ S)(R) = R .

Proof.

1. We calculate, using the defining properties of the R-matrix:

R12 ·R13 ·R23 = R12(∆⊗ id)(R) [equation QT2]

= (∆opp ⊗ id)(R) ·R12 [equation QT1]

= (τH,H ⊗ id)(∆⊗ id)(R) ·R12 [Defn. of ∆opp]

= (τH,H ⊗ id)(R13R23) ·R12 [equation QT2]

= R23 ·R13 ·R12 .

We now calculate in H⊗3:

1⊗R = (((1ε⊗ id) ◦∆)⊗ id) (R) [(ε⊗ id) ◦∆ = id]
= (1ε⊗ id⊗ id)(R13 ·R23) [equation QT2]
= (1ε⊗ id⊗ id)(R13) ·R23

= (id⊗ 1ε⊗ id)(R23) ·R23

= 1⊗ ((1ε⊗ id)(R) ·R)

Since R is invertible, we get (ε ⊗ id)(R) = 1. The other equality is derived in complete
analogy from equation [QT3].
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2. Using the definition of the antipode, we have for all x ∈ H

µ ◦ (S ⊗ id)∆(x) = ε(x)1 .

We tensor this with the identity on H and apply it to R ∈ H ⊗H: we find

(µ⊗ id) ◦ (S ⊗ id⊗ id)(∆⊗ id)(R) = (1ε⊗ id)R = 1⊗ 1 ,

where in the last step we used the identity just derived. Now, using equation [QT2], we
find

1⊗1 = (µ⊗ id)(S⊗ id⊗ id)(R13R23) = S(R1) ·R1′⊗R2 ·R2′ = (S(R1)⊗R2) · (R1′⊗R2′) .

We thus find
(S ⊗ id)(R) = R−1 .

Recall the notation R21 = τH,H(R). We observe that equation [QT1] implies ∆(x)R21 =
R21 · ∆opp(x). Thus, there is a quasi-triangular Hopf algebra (H,µ,∆opp, S−1, R21). The
corresponding relation for this quasi-triangular Hopf algebra reads

(S−1 ⊗ id)(R21) = R−1
21

which amounts to
(idH ⊗ S−1)(R) = R−1 . (∗)

Finally, we use the two equations just derived to find

(S ⊗ S)(R) = (id⊗ S)(S ⊗ id)(R)
= (id⊗ S)(R−1)
(∗)
= (id⊗ S)(idH ⊗ S−1)(R) = R

2

4.3 Interlude: Yang-Baxter equations and integrable lattice models

Consider the following model: on the lattice points of the lattice Z2 ⊂ R2, we have “atoms”. We
are not interested in these atoms, but in their bonds to their nearest neighbour. We describe
the state of a bond by a variable taking its values in the finite set {1, . . . , n}.

Consider a vertex associated to an atom:

k

l

i

j

To such a vertex, we associate an energy εklij ∈ R which is allowed to depend on the type
of bond i, j, k, l, but not on the vertex. We include the case that the energy depends on some
external parameter εklij (λ) which can be thought of as values of external magnetic or electric
fields in some applications.
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A lattice state is now a map that assigns to each bond a state:

ϕ : bonds −→ {1, . . . n}

The energy of a state ϕ for given values of the parameters λ is obtained as the sum over atoms:

ελ(ϕ) =
∑

atoms

ε
ϕ(j)ϕ(k)
ϕ(i)ϕ(l) (λ) .

To get a finite sum and thus well-defined expressions, we replace the lattice by a finite part
with period boundary conditions, i.e. we consider vertices on ZM ×ZN . The partition function
depends on an additional variable β ∈ R+, with the interpretation of an inverse temperature,
β = 1/kT :

Z(β, λ) :=
∑
states

e−βελ(ϕ) .

The set of states is now the finite set of functions S := Fun(Zn × Zm, {1, . . . , n}) =
{1, . . . , n}N ·M . We endow it with the structure of a σ-algebra by the power set. We then get a
family of probability measures with value

pβ,λ(ϕ) =
1

Z(β, λ)
e−βελ(ϕ)

on the state ϕ ∈ S. Here, the partition function Z(β, λ) normalizes the sum of the probabilities
to be one.

The random variables, also called observables in this context, are then all measurable func-
tions, i.e. all functions

Q : S → R .

The energy ε is one example of an observable. The expectation value of a random variable Q is
defined, as usual:

Eβ,λ[Q] =

∑
ϕ∈S

Q(ϕ)e−βελ(ϕ)

Z(β, λ)
.

For the special case of the energy, we have

Eβ,λ[ε] =

∑
states

ελ(ϕ)e−βελ(ϕ)

Z(β, λ)
= − ∂

∂β
lnZ(β, λ)

It is an important goal to compute the partition function as a function of β, λ. To this end, we
introduce Boltzmann weights

Rkl
ij (β, λ) := e−βε

kl
ij (λ) .

We then get

e−βελ(ϕ) = exp(−β
∑

atoms

ε
ϕ(j)ϕ(k)
ϕ(i)ϕ(l) (λ)) =

∏
atoms

Rkl
ij (β, λ) .

Consider the contribution of the atoms in the first row to the partition function where we
temporarily allow different values for the leftmost and rightmost bond:

. . .

. . .
l1 l2 l3 lN−1 lN

k1 k2 k3 kN−1 kN

r1 r2 r3 rN−1 i′1i1

It equals

T
i′1l1...lN
i1k1...kN

=
∑

r1...rN−1

Rr1l1
i1k1

Rr2l2
r1k2

. . . R
i′1lN
rN−1kN

(∗)
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To eliminate indices, we introduce a complex vector space V freely generated on the set
{1, . . . , n} with basis {v1, . . . vn} and a family of endomorphisms

R = R(β, λ) : V ⊗ V → V ⊗ V
vi ⊗ vj 7→

∑
k,lR

kl
ij (β, λ)vk ⊗ vl .

The endomorphism T ∈ End (V ⊗ V N) with

T := R01 ·R02 ·R03 · · ·R0n

is represented by the matrix defined in definition (∗). Here we understand that the endomor-
phism Rij acts on the i-th and j-th copy of V in the tensor product V ⊗ V N .

Periodic boundary conditions imply that we have to consider for the first line

TrV (T )l1...lNk1...kN
.

This endomorphism is called the row-to-row transfer matrix. To sum over all M lines, we take
the matrix product and then the trace so that we find:

Z = TrV ⊗N (TrV (T ))M .

This raises the problem of understanding the eigenvalues of the endomorphism TrV (T ) ∈
End(V ⊗N): in the thermodynamic limit, we take M → ∞ so that Z ∼ κMN with κN the
eigenvalue with the largest modulus.

As usual in eigenvalue problems, we try to find as many endomorphisms of V ⊗N as possible
commuting with TrV (T ) which allows us to solve the eigenproblem separately on eigenspaces
of these operators.

Definition 4.3.1
A vertex model with parameters λ is called integrable, if for any pair µ, ν of values for the
parameters there is a value λ such that the equation

R12(λ)R13(µ)R23(ν) = R23(ν)R13(µ)R12(λ) (QYBE)

holds in End (V ⊗ V ⊗ V ). A specific case is the quantum Yang-Baxter equation with spectral
parameters:

R12(λ− µ)R13(λ− ν)R23(µ− ν) = R23(µ− ν)R13(λ− ν)R12(λ− µ)

Finite-dimensional bialgebras are not enough to describe such a structure; Etingof and
Varchenko [EV] have instead proposed algebroids.

Lemma 4.3.2.
Consider the tensor product V ⊗V ⊗V N and denote the index for the first copy of V by 0 and
the index for the second copy of V by 0. Then the following equation holds in End (V ⊗V ⊗V N)

R00(λ)T0(µ)T0(ν) = T0(ν)T0(µ)R00(λ) .

Proof.
We suppress the spectral parameters and calculate:

R00T0T0
def
= R00R01R02 . . . R0NR01 . . . R0N

= R00R01R01R02 . . . R0NR02 . . . R0N
=

(QYBE) R01R01R00R02 . . . R0NR02 . . . R0N
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Here, we first used that the endomorphisms R0j and R01 for j ≥ 2 act on different factors of
the tensor product V ⊗V ⊗V N and thus commute. Then we applied the integrability equation
(QYBE) on the indices 0, 0, 1. Repeating this N -times, we get

= R01R02 . . . R0NR01 . . . R0NR00

= T0T0R00

2

Proposition 4.3.3.
Suppose that for the integrable lattice model, the endomorphism R(λ) is invertible for all values
λ of the parameters. Then the endomorphism

C(λ) := TrV T (λ) ∈ End (V ⊗N)

(which is, of course, just the transfer matrix for the parameter value λ) commutes with C(µ)
for all values λ, µ.

We thus have a set of commuting endomorphisms which make the eigenproblem for any
operator C(λ) more tractable, hence the name integrable.

Proof.
We take the trace TrV0⊗V0 over the relation in lemma 4.3.2 and use the cyclicity of the trace to
get the following equation in End (V ⊗N).

C(µ) · C(ν) = TrV0⊗V0T0(µ)T0(ν)
4.3.2
= TrV0⊗V0R00(λ)−1T0(ν)T0(µ)R00(λ)

= C(ν)C(µ)

2

Example 4.3.4.
We consider the case of two possible states for each bond. One represents the state of a bond
by assigning to it a direction, denoted by an arrow. A famous model is then the XXX model
or six vertex model. In this case, one assigns Boltzmann weight zero to all vertices, except for
those with two ingoing and two outgoing vertices. These are the following six configurations,
hence the name of the model:

Since now V is two-dimensional, the R-matrix is a 4× 4-matrix

R(q, λ) =


1 0 0 0
0 λ 1− qλ 0
0 1− q−1λ λ 0
0 0 0 1


This model is integrable, if the relation holds

λ− µ+ ν + λµν = (q + q−1)λν .
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4.4 The Drinfeld center and Yetter-Drinfeld modules

We now present an important class of examples of braided monoidal categories. The following
categorical construction works in a rather general situation:

Observation 4.4.1.
Let C be a strict tensor category.

• We consider a category Z(C) whose objects are pairs (V, c−,V ) consisting of an object V
of C and a natural isomorphism c−,V : −⊗ V ∼→ V ⊗−, called a half-braiding for V , i.e.
isomorphisms for all X ∈ C

cX,V : X ⊗ V → V ⊗X

natural in the sense that that for any morphism X
f→ Y in C the diagram

X ⊗ V
cX,V //

f⊗idV
��

V ⊗X
idV ⊗f
��

Y ⊗ V cY,V
// V ⊗ Y

commutes which obey the additional requirement that for all objects X, Y of C we have

cX⊗Y,V = (cX,V ⊗ idY ) ◦ (idX ⊗ cY,V ) . [Hex]

• A morphism (V, c−,V ) → (W, c−,W ) in Z(C) is a morphism f : V → W in C with the
property that for all objects X of C we have

(f ⊗ idX) ◦ cX,V = cX,W ◦ (idX ⊗ f) . (∗∗)

It is clear that the identity idV in C is a morphism in Z(C) and that if f, g are morphisms
in Z(C) that are composable in C, then f ◦ g is a morphism in Z(C). Thus Z(C) is a
category with composition and identities inherited from C.

We now have examples of braided tensor categories:

Theorem 4.4.2.
Let C be a tensor category which we assume for simplicity to be strict. Then the category Z(C)
has a natural structure of a strict braided tensor category with

1. Monoidal unit (I, idI).

2. The tensor product of two objects (V, c−,V ) and (W, c−,W ) in Z(C) is given by

(V, c−,V )⊗ (W, c−,W ) := (V ⊗W, c−,V⊗W ) .

Here, given two objects (V, c−,V ) and (W, c−,W ) in Z(C), we define for any object X ∈ C
the morphism

cX,V⊗W : X ⊗ V ⊗W → V ⊗W ⊗X
by

cX,V⊗W := (idV ⊗ cX,W ) ◦ (cX,V ⊗ idW ) . (∗)

3. The braiding on Z(C) is given by

cV,W : (V, c−,V )⊗ (W, c−,W )→ (W, c−,W )⊗ (V, c−,V ) .
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This braided monoidal category is called the Drinfeld center of the monoidal category C.

Proof.

1. We have to show that morphism (∗) is a half-braiding which implies that the tensor
product is indeed an object in Z(C). It follows immediately that cX,V⊗W is an isomorphism
and natural in X. Hence, we have to check the hexagon [Hex] for any pair X, Y ∈ C:

cX⊗Y,V⊗W
(∗)
= (idV ⊗ cX⊗Y,W ) ◦ (cX⊗Y,V ⊗ idW )
[Hex]
= (idV ⊗ cX,W ⊗ idY ) ◦ (idV⊗X ⊗ cY,W ) ◦ (cX,V ⊗ idY⊗W ) ◦ (idX ⊗ cY,V ⊗ idW )

= (idV ⊗ cX,W ⊗ idY ) ◦ (cX,V ⊗ idW⊗Y ) ◦ (idX⊗V ⊗ cY,W ) ◦ (idX ⊗ cY,V ⊗ idW )
(∗)
= (cX,V⊗W ⊗ idY ) ◦ (idX ⊗ cY,V⊗W )

2. Next, we have to show that the tensor product f ⊗ f ′ of morphisms f : (V, c−,V ) →
(W, c−,W ) and f ′ : (V ′, c−,V ′) → (W ′, c−,W ′) in Z(C) is again a morphism in Z(C), i.e.
obeys the naturality condition (∗∗)

(f ⊗ f ′ ⊗ idX) ◦ cX,V⊗V ′
(∗)
= (f ⊗ idW ′ ⊗ idX) ◦ (idV ⊗ f ′ ⊗ idX) ◦ (idV ⊗ cX,V ′) ◦ (cX,V ⊗ idV ′)
(∗∗)
= (f ⊗ idW ′ ⊗ idX) ◦ (idV ⊗ cX,W ′) ◦ (idV ⊗ idX ⊗ f ′) ◦ (cX,V ⊗ idV ′)
= (idW ⊗ cX,W ′) ◦ (f ⊗ idX ⊗ idW ′) ◦ (cX,V ⊗ idW ′) ◦ (idX ⊗ idV ⊗ f ′)
(∗∗)
= (idW ⊗ cX,W ′) ◦ (cX,W ⊗ idW ′) ◦ (idX ⊗ f ⊗ idW ′) ◦ (idX ⊗ idV ⊗ f ′)

(∗)
= cX,W⊗W ′ ◦ (idX ⊗ f ⊗ f ′)

We have now defined a tensor product on objects and morphisms of Z(C). It is a functor,
since it is obtained from a tensor product of C. All other axioms are inherited as well. (If
C is not strict, one can show that the associators in C provide associators for Z(C).) Thus
Z(C) is a tensor category.

3. We next show that this tensor category is braided. We first show that the component
cV,W of the halfbraiding c−,W , cV,W : V ⊗W → W ⊗ V is a morphism in Z(C). We have
to show (∗∗):

(cV,W ⊗ idX) ◦ cX,V⊗W = cX,W⊗V ◦ (idX ⊗ cV,W )

for all X ∈ C. We compute

(cV,W ⊗ idX) ◦ cX,V⊗W
(∗)
= (cV,W ⊗ idX) ◦ (idV ⊗ cX,W ) ◦ (cX,V ⊗ idW )
[Hex]
= cV⊗X,W ◦ (cX,V ⊗ idW )

= (idW ⊗ cX,V ) ◦ cX⊗V,W [naturality of braiding]
[Hex]
= (idW ⊗ cX,V ) ◦ (cX,W ⊗ idV ) ◦ (idX ⊗ cV,W )

(∗)
= cX,W⊗V ◦ (idX ⊗ cV,W )

4. Note that cV,W is invertible by definition and natural for all morphisms in C, thus in
particular for those in Z(C). To show that it defines a braiding, we have to show the two
hexagon axioms from definition 4.1.1. One hexagon axiom has been imposed in [Hex] in
the definition of a half-braiding. The second is part (∗) of the definition of the tensor
product in Z(C).
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Remarks 4.4.3.

1. The forgetful functor
U : Z(C) → C

(V, c−,V ) 7→ V

is strict monoidal and exact. It is, in general, neither essentially surjective nor full, but
faithful by the definition of morphisms of Z(C).

2. If C is a finite tensor category, U as an exact functor has both a left adjoint L : C → Z(C)
and a right adjoint R : C → Z(C). The left adjoint functor is opmonoidal, i.e. comes with
morphisms

L(X ⊗ Y )→ L(X)⊗ L(Y ) and L(I)→ I

which are in general not isomorphisms. Similarly, the right adjoint is (weakly) monoidal,
i.e. comes with morphisms

R(X)⊗R(Y )→ R(X ⊗ Y ) and I→ R(I)

which are in general not isomorphisms. In particular, L(I) is naturally a coalgebra in Z(C)
and R(I) a (commutative) algebra in Z(C).

3. One can show [Sh, Lemma 4.7] that

L(D ⊗−) ∼= R ∼= L(−⊗D) and R(D−1 ⊗−) ∼= L ∼= R(−⊗D−1)

where D is the distinguished invertible element, cf. observation 3.1.16.4. In particular, if C
is unimodular, left and right adjoint of U coincide. Then L(1) is a commutative Frobenius
algebra in Z(C) [Sh, Theorem 6.1].

4. The pair of adjoint functors L a U defines a monad U ◦ L on C, the central monad.
The adjunction is monadic. The central monad U ◦ L on C can be used to show that the
Drinfeld center Z(C) of a finite tensor category is again a finite tensor category. Similarly,
U a R defines a comonad on C, the central comonad to which analogous statements apply.

Suppose that the monoidal category C is given as the category of modules over a Hopf
algebra H over a field K. We ask whether the braided monoidal category Z(C) can be directly
realized in terms of the Hopf algebra H.

For the following construction, we do not need to assume that the Hopf algebra H is a Hopf
algebra in the braided monoidal category vectK, and we directly consider a Hopf algebra H in
a (strict) braided monoidal category A. A bialgebra R in the braided category A is called a
braided Hopf algebra, if there is a morphism S : R→ R in A such that

S(r(1))r(2) = r(1)S(r(2)) = ηε(r)

where ∆R(r) = r(1)⊗r(2) for r ∈ R in slightly modified Sweedler notation – a change of notation
is performed in order to avoid confusion in Radford’s biproduct below. We will assume that the
antipode S is invertible (or that a skew antipode exists).

Definition 4.4.4

1. Let H be a bialgebra in a braided monoidal category A. A Yetter-Drinfeld module is a
triple (V, ρV ,∆V ) such that
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• (V, ρV ) is a unital left H-module in A.

• (V,∆V ) is a counital left H-comodule in A:

∆V : V → H ⊗ V
v 7→ v(−1) ⊗ v(0)

• The Yetter-Drinfeld condition

h(1) · v(−1) ⊗ h(2).v(0) = (h(1).v)(−1) · h(2) ⊗ (h(1).v)(0)

holds for all h ∈ H. Graphically, it reads

These pictures are drawn in the strict braided monoidal category A.

2. Morphisms of Yetter-Drinfeld modules are morphisms of left modules and left comodules.
We write H

HYD for the category of Yetter-Drinfeld modules over the bialgebra H.

Example 4.4.5.
Let us consider explicitly Yetter Drinfeld modules over the group algebra K[G] of a finite group
G.

Since Yetter-Drinfeld have the structure of a K[G]-comodule, any Yetter-Drinfeld module
has by example 2.2.8 a natural structure of a G-graded vector space,

V = ⊕g∈GVg ,

which is moreover endowed with a G-action. We evaluate the Yetter-Drinfeld condition for the
action of g ∈ G on a homogeneous element vh ∈ Vh. We find for the left hand side using
∆(g) = g ⊗ g and ∆V (vh) = h⊗ vh that gh⊗ g.vh. For the right hand side, we find the sum∑

x∈G

xg ⊗ (g.vh)x .

The equality gh⊗g.vh =
∑

x∈G xg⊗(g.vh)x implies that only the term with x such that xg = gh
contributes to the sum over x. Thus the Yetter-Drinfeld condition amounts to the condition
g.vh ∈ Vghg−1 . Thus the G-action has to cover for the G-grading the action of G on itself by
conjugation.
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We know that modules over a bialgebra form a tensor category, and so do comodules over a
bialgebra. We can thus define as in proposition 2.4.10 and remark 2.4.11 on the tensor product
of the objects in A underlying two Yetter-Drinfeld modules V,W the structure of a module and
of a comodule. We also note that the monoidal unit of A with trivial action

H ⊗ I ε⊗idI−→ I⊗ I ∼= I

and coaction
I ∼= I⊗ I η⊗idI−→ H ⊗ I

is trivially a Yetter-Drinfeld module and is a tensor unit for the tensor product.

Proposition 4.4.6.
Let H be a bialgebra. Then the category of Yetter-Drinfeld modules has a natural structure of
a tensor category.

Proof.
Let V,W be Yetter-Drinfeld modules. We only have to show that the vector space V ⊗W with
action and coaction defined by the coproduct and product respectively obeys the Yetter-Drinfeld
condition.

Here, we first used associativity and coassociativity, then the Yetter-Drinfeld condition on
W and then on V . 2

Proposition 4.4.7.
Let H be a Hopf algebra. Then the category of Yetter-Drinfeld modules has a natural structure
of a braided tensor category with the braiding of two Yetter-Drinfeld modules V,W ∈ H

HYD

given by cV,W : V ⊗W → W ⊗ V
v ⊗ w 7→ v(−1).w ⊗ v(0)

Remark 4.4.8.
We have seen that the category of comodules over a group algebra H = K[G] is the category of
G-graded vector spaces. If G is not abelian, it cannot admit a braiding, since for homogeneous
elements vg ∈ Vg and wh ∈ Wh the tensor product vg ⊗ wh is homogeneous of degree gh and
wh ⊗ vg of degree hg. It is instructive to see how the combination of action and coaction for
Yetter-Drinfeld modules allows for a braiding

vg ⊗ wh → g.wh ⊗ vg ;
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the left hand side is again homogeneous of degree gh, and the right hand side is now homoge-
neous of degree ghg−1g = gh.

Proof.
The following statements have to be shown:

• The linear map cV,W is a morphism of modules and comodules and thus a morphism of
Yetter-Drinfeld modules:

Here, we first use that we have an H action on W , then the Yetter-Drinfeld condition on
V , and finally the action on W .

• The braiding is natural:

Here, we use that f is a morphism of comodules and that g is a morphism of modules.

• The morphisms cV,W obey the hexagon axioms, e.g. follows from the fact that we have an
H-action:

• Based on lemma 2.5.8, we show that the morphism cV,W has the inverse

where the inverse S−1 of the antipode enters. We show one relation that is needed to show
that this is indeed an inverse
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Here, we used the action on W and the coaction on V .

2

To simplify the exposition, let us assume that A = vectK. We define as in proposition
2.5.16 the right dual action of H on V ∗ = HomK(V,K) as the pullback along S of the trans-
pose of the action on V and the left dual action as the pullback of the transpose along S−1.
The right dual coaction maps β ∈ V ∗ to the linear map ∆∨V (β) ∈ H ⊗ V ∗ ∼= HomK(V,H)

∆∨V (β) : V 7→ H
v 7→ S−1(v(−1))β(v(0))

while the left dual coaction maps to

∨∆V (β) : V 7→ H
v 7→ S(v(−1))β(v(0))

Proposition 4.4.9.
Let H be a Hopf algebra. Then the category of finite-dimensional Yetter-Drinfeld modules HHYD
is rigid.

Proof.
The following statements are easily shown, e.g. by graphical calculations:

• The above definition indeed defines H-coactions on V ∗.

• The coaction defined with S−1 has the property that the right evaluation and right co-
evaluation are morphisms of H-comodules. The statement that the coaction defined with
S on the left dual is compatible with left evaluation and coevaluation follows in complete
analogy.

• The left and right dual actions and coactions obey the Yetter-Drinfeld axiom.

2

Remark 4.4.10.

1. Let H be a Hopf algebra over a field K with bijective antipode. A bialgebra R in the
braided category H

HYD is called a braided Hopf algebra.
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2. Any K-Hopf algebra is also a braided Hopf algebra over H = K. A super Hopf algebra is
nothing but a braided Hopf algebra over the group algebra H = K[Z2].

The tensor algebra TV of any Yetter–Drinfeld module V ∈ H
HYD is a braided Hopf

algebra, where the coproduct ∆ is defined in such a way that the elements of V are
primitive, i.e. ∆(v) = 1⊗ v + v ⊗ 1 for all v ∈ V , compare example 2.3.2.

3. Consider the largest quotient of TV that is still a braided Hopf algebra and for which
the elements of V are the only primitive elements. This is called the Nichols algebra
of V . Nichols algebras take the role of quantum Borel algebras in the classification of
pointed Hopf algebras, analogously to the classical Lie algebra case. Nichols algebras can
be finite-dimensional and infinite-dimensional. Important classification results exist.

More precisely let V := x1C⊕ x2C⊕ · · · ⊕ xnC be the diagonal Yetter-Drinfel’d module
over an abelian group Λ = Zn = 〈K1, . . . , Kn〉 with braiding

xi ⊗ xj 7→ qijxj ⊗ xi qij := q(αi,αj)

where (αi, αj) is the Killing form of a semisimple (finite-dimensional) Lie algebra g, then
the Nichols algebra is the positive part of Lusztig’s small quantum group

B(V ) = uq(g)+

4. Let H be a Hopf algebra over a field K. For any braided Hopf algebra R in H
HYD, there

exists a natural Hopf algebra R#H over K containing R as a subalgebra and H as a Hopf
subalgebra. It is called Radford’s biproduct or bosonization.

As a K-vector space, R#H is just R⊗H. The algebra structure of R#H is given by

(r#h)(r′#h′) = r(h(1).r
′)#h(2)h

′,

where r, r′ ∈ R, h, h′ ∈ H and . : H ⊗R→ R is the left action of H on R. Further, the
coproduct of R#H is determined by the formula

∆(r#h) = (r(1)#r(2)
(−1)h(1))⊗ (r(2)

(0)#h(2)), r ∈ R, h ∈ H.

Here ∆R(r) = r(1)⊗ r(2) denotes the coproduct of r in R, and δ(r(2)) = r(2)
(−1)⊗ r(2)

(0) is
the left coaction of H on r(2) ∈ R.

5. The small quantum group uq(g) is now obtained by a double bosonization uq(g) =
H#B(V )#B(V ∗); its modules are closely related to Yetter-Drinfeld modules of the
braided Hopf algebra B(V ) in H-mod.

In the remainder of this section, we want to work with a Hopf algebra H over a field K. We
now turn to the the question whether for any given Hopf algebra H over K the category H

HYD
can be seen as the category of left modules over a quasi-triangular Hopf algebra D(H).

Observation 4.4.11.

1. To investigate this in more detail, assume that the Hopf algebra H is finite-dimensional
and recall from example 2.2.8.1 that a coaction of H then amounts to an action of H∗.
Thus the quasi-triangular Hopf algebra D(H) should account for an action of H and H∗.
If the two actions would commute, H∗ ⊗ H with the product structure for algebra and
coalgebra would be an obvious candidate. This is not the case, and we have to encode the
Yetter-Drinfeld condition in the product on D(H).
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2. To match the conventions in [Kassel], it will be convenient to consider a slightly different
category HYDH of Yetter-Drinfeld modules: these are triples (V, ρV ,∆V ) such that

• (V, ρV ) is a unital left A-module.

• (V,∆V ) is a counital right A-comodule:

∆V : V → V ⊗H
v 7→ v(V ) ⊗ v(H)

• The Yetter-Drinfeld condition holds in the form

h(1).v(V ) ⊗ h(2) · v(H) = (h(2).v)(V ) ⊗ (h(2).v)(H) · h(1) .

Morphisms of Yetter-Drinfeld modules in HYDH are morphisms of left modules and right
comodules.

This observation leads to the following definition:

Definition 4.4.12
Let H be a finite-dimensional Hopf algebra. Endow the vector space D(H) := H∗ ⊗H

• with the structure of a counital coalgebra using the tensor product structure, i.e. for
f ∈ H∗ and a ∈ H, we have

ε(f ⊗ a) := ε(a)f(1)
∆(f ⊗ a) := (f(1) ⊗ a(1))⊗ (f(2) ⊗ a(2)) ∈ D(H)⊗D(H) .

This encodes the fact that the tensor product of Yetter-Drinfeld modules is the ordinary
tensor product of modules and comodules.

• Define an associative multiplication for a, b ∈ H and f, g ∈ H∗ by

(f ⊗ a) · (g ⊗ b) := f ·
(
g(S−1(a(3))?a(1))

)
⊗ a(2)b .

The unit for this multiplication is ε⊗ 1 ∈ H∗ ⊗H.

A tedious, but direct calculation (see [Kassel, Chapter IX]) shows:

Proposition 4.4.13.
This defines a finite-dimensional Hopf algebra with antipode given in [Kassel, Theorem IX.2.3].
Moreover, if (ei) is any basis of H with dual basis (ei) of H∗, then the element

R :=
∑
i

(1H∗ ⊗ ei)⊗ (ei ⊗ 1H) ∈ D(H)⊗D(H) ,

which, by a standard argument, is independent of the choice of basis, is a universal R-matrix
for D(H).

Definition 4.4.14
We call the quasi-triangular Hopf algebra (D(H), R) the Drinfeld double of the Hopf algebra
H.

Remarks 4.4.15.
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1. The Drinfeld double D(H) contains H and H∗ as Hopf subalgebras with embeddings

iH : H → D(H)
a 7→ 1⊗ a

and
iH∗ : H∗ → D(H)

f 7→ f ⊗ 1 .

2. One checks for the product in D(H) that

ιH∗(f) · ιH(a) = (f ⊗ 1) · (1⊗ a) = fε(S−11(3)?1(1))⊗ 1(2) · a = f ⊗ a

and therefore writes f ·a instead of f⊗a. The multiplication on D(H) is then determined
by the straightening formula

a · f = f(S−1a(3)?a(1)) · a(2) .

3. The Hopf algebra D(H) is quasi-triangular, even if the Hopf algebra H does not admit
an R-matrix. If (H,R) is already quasi-triangular, then one can show that the linear map

πR : D(H) → H
fa 7→ f(R1)R2 · a

is a morphism of Hopf algebras. The multiplicative inverse R of R gives a second projection
πR : D(H)→ H. For more details, we refer to the article [S].

We will see that the three braided monoidal categories

T (H−mod), H
HYD and D(H)-mod

are equivalent.
The next theorem provides the relation to the Drinfeld center. We can treat a left action

ρV of H∗ on V for a right coaction ∆V of H by

∆V : V
idV ⊗b̃H−→ V ⊗H∗ ⊗H

τV,H∗⊗idH−→ H∗ ⊗ V ⊗H ρ⊗idH−→ V ⊗H

and conversely,

ρV : H∗ ⊗ V idH∗⊗∆V−→ H∗ ⊗ V ⊗H
idH∗⊗τV,H−→ H∗ ⊗H ⊗ V dH⊗idV−→ V

Put differently, we have

f.v = 〈f, v(H)〉v(V ) for all f ∈ H∗ . (∗)

Theorem 4.4.16.
Let H be a finite-dimensional Hopf algebra.

1. By replacing the left H∗-action by a right H-coaction as above, any left D(H)-module
becomes a Yetter-Drinfeld module in HYDH .

2. Conversely, any Yetter-Drinfeld module in HYDH has a natural structure of a left module
over the Drinfeld double D(H).
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This leads to a braided monoidal equivalence HYDH ∼= D(H)-mod.

Proof.
We note that the structure of a left D(H)-module on a vector space V consists of the structure
of an H-module and of an H∗-module such that for all f ∈ H∗, h ∈ H and v ∈ V the following
consequence of the straightening formula holds:

a.(f.v) = f(S−1(a(3))?a(1)).
(
a(2).v

)
.

To show the second claim, we have to derive this relation from the Yetter-Drinfeld condition:

f(S−1(a(3)?a(1))).
(
a(2).v

)
= 〈f, S−1(a(3))(a(2)v)(H)a(1)〉(a(2)v)(V ) [equation (∗)]
= 〈f, S−1(a(3))a(2)v(H)〉a(1)v(V ) [YD condition]

= ε(a(2))〈f, v(H)〉a(1)v(V ) [lemma 2.5.8]

= 〈f, v(H)〉av(V ) = a.(f.v) [equation (∗)]

We leave the proof of the converse to the reader and refer for a more detailed account to [Kassel,
Theorem IX.5.2], where Yetter-Drinfeld modules in HYDH are called “crossed H-bimodules”. 2

Theorem 4.4.17.
For any finite-dimensional Hopf algebra H, the braided tensor categories Z(H−mod) and
D(H)−mod are equivalent as braided monoidal categories.

Proof.
• We construct a functor

Z(H−mod)→ HYDH .

To this end, we define on any object (V, c−V ) of the Drinfeld center Z(H−mod) a right
H-coaction. Consider

∆V : V → V ⊗H
v 7→ cH,V (1H ⊗ v) .

One checks that this defines a coassociative right coaction.

As in the proof of theorem 4.2.3, the naturality of the braiding allows us to express the
braiding in terms of the coaction ∆V : consider for x ∈ X the morphism x : H → X with
x(1) = x, i.e. x(h) = h.x. Then

cX,V (x⊗ v) = cX,V ◦ (x⊗ idV )(1H ⊗ v) = (idV ⊗ x) ◦ cH,V (1H ⊗ v)

= v(V ) ⊗ v(H) · x = ∆V (v) · (1H ⊗ x) (∗)

which is exactly the braiding on the category HYDH .

• Next, we use the fact that the braiding is H-linear:

a.cX,V (x⊗ v) = cX,V (a.(x⊗ v))

for all a ∈ H and v ∈ V, x ∈ X. Replacing the braiding cX,V by the expression (∗) yields
the equation

∆(a)∆V (v)(1H ⊗ x) = ∆V (a(2)v)(1H ⊗ a(1))(1H ⊗ x) .

Setting X = H and x = 1H yields

a(1).v(V ) ⊗ a(2) · v(H) = (a(2)v)V ⊗ (a(2)v)(H) · a(1)

which is just the Yetter-Drinfeld condition in HYDH .
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• For the the proof that this functor is essentially surjective and fully faithful, we refer to
[Kassel].

2

We conclude the section with an application of the Drinfeld center to representation theory:

Proposition 4.4.18.
Let H be a finite-dimensional Hopf algebra. Let t ∈ H be a non-zero right integral and T ∈ H∗
a non-zero left integral. Then T ⊗ t is a left and right integral for D(H). In particular, the
Drinfeld double of any finite-dimensional Hopf algebra is unimodular.

Proof.
We use the following identity for the right integral t ∈ H

S−1(t(3))a
−1t(1) ⊗ t(2) = 1⊗ t

where a ∈ H is the distinguished group-like element. For the proof, we refer to [Montgomery,
p. 192].

We then calculate for f ∈ H∗ and h ∈ H:

(T ⊗ t) · (f ⊗ h) = Ttfh

= Tf(S−1t(3)?t(1))⊗ t(2) · h [straightening formula]

= Tf(S−1t(3)a
−1t(1))⊗ t(2) · h [since Tf = 〈f, a−1〉T ]

= T 〈f, 1〉 ⊗ th [preceding identity]

= 〈f, 1〉ε(h)T ⊗ t

Thus T ⊗t is a right integral for D(H). The proof that it is a left integral for D(H) is similar. 2

Corollary 4.4.19.
Let H be a finite-dimensional Hopf algebra. Then the following assertions are equivalent:

1. D(H) is semisimple.

2. H is semisimple. and H∗ is semisimple.

We have already used in the proof of theorem 3.3.20 that H is semisimple, if and only if H∗

is semisimple.

Proof.
If both H and H∗ are semisimple, then, by Maschke’s theorem 3.2.22 ε(t) 6= 0 and ε∗(T ) 6= 0.
By proposition 4.4.18, this implies for D(H) that ε(T ⊗ t) 6= 0 and thus by Maschke’s theorem
that D(H) is semisimple. The converse follows by the same type of reasoning. 2

4.5 Factorizable Hopf algebras

We now turn to a subclass of quasi-triangular Hopf algebras for which the braiding obeys
additional constraints.

Definition 4.5.1
Let (H,R) be a quasi-triangular Hopf algebra.
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1. The invertible element
Q := R21 ·R12 ∈ H ⊗H

is called the monodromy element. We write Q = Q1 ⊗Q2 and note that

∆(h) ·Q = Q ·∆(h)

for all h ∈ H.

2. The linear map

FR : H∗ → H
φ 7→ (idH ⊗ φ)(R21 ·R12) = (idH ⊗ φ)Q

is called the Drinfeld map.

3. A quasi-triangular Hopf algebra is called factorizable, if the Drinfeld map is an isomor-
phism of vector spaces.

Remark 4.5.2.
The word factorizable is justified as follows: let (bi)i∈I be a basis of H and (bi)i∈I the dual basis
of H∗. If H is factorizable, then the vectors ci := FR(bi) form another basis of H. We write the
monodromy element as a linear combination

Q =
∑
i,j

λi,jci ⊗ bj

with λi,j ∈ K. We then have

ck = FR(bk) =
∑
i,j

λi,jcj ⊗ bk(bi) =
∑
j∈I

λk,jcj

and thus for the monodromy matrix

Q =
∑
i∈I

ci ⊗ bi ,

which explains the word factorizable.

Proposition 4.5.3.
The Drinfeld double D(H) of a finite-dimensional Hopf algebra H is factorizable.

Proof.
Recalling the R-matrix of the Drinfeld double from proposition 4.4.13

R =
∑
i

(1⊗ ei)⊗ (ei ⊗ 1)

we find for the monodromy matrix of D(H)

Q = R21 ·R12 =
∑
i,j

(eiej)⊗ (eie
j) .
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The family (eiej = ei ⊗ ej)i,j is a basis of D(H) = H∗ ⊗H. Moreover,

S(eie
j) = S(ej) · S(ei) = S(ej)⊗ S(ei)

and since S is invertible, the families (S(ei)) and (S(ei)) are bases of H∗ and H and hence the
family S(eie

j) is a basis of D(H). Again by the invertibility of S, the family (eie
j)i,j is a basis

of D(H) as well. Thus by remark 4.5.2 D(H) is factorizable. 2

Remark 4.5.4.
We sketch the categorical meaning of factorizibility:

1. Suppose that A and B are two algebras over the same field K. Then A⊗B is a K-algebra
as well. The Deligne product of two finite abelian categories is defined such that

A⊗B-mod ∼= A-mod �B-mod .

It can be characterized by a universal property for right exact functors A-mod×B-mod→
X where X is any finite category. For details, we refer to [D, section 5].

2. Let C be a braided tensor category. Using the braiding on C as a half-braiding gives a
functor

C → Z(C)
V 7→ (V, c−V )

which is obviously a braided monoidal functor.

3. Taking the inverse braiding
crevd
U,V := c−1

V,U

on the same monoidal category, gives another structure of braided tensor category Crevd.
We get another functor

Crevd → Z(C)
V 7→ (V, crevd

−V )

which is again a braided monoidal functor.

4. Altogether, we obtain a braided monoidal functor

Crevd � C → Z(C) .

5. Suppose that C is the category of representations of a quasi-triangular Hopf algebra
(H,R). Then (H,R) is factorizable, if and only if the functor Crevd � C → Z(C) is an
equivalence of braided monoidal categories.

6. It can be shown that for any tensor category C the Drinfeld center Z(C) is factorizable
[EGNO, Proposition 8.6.3].

We consider the following subspace of H∗:

C(H) := {f ∈ H∗ | f(xy) = f(yS2(x)) for all x, y ∈ H}

We call this subspace the space of central forms or the space of class functions or the
character algebra. We relate it to the center Z(H) of H.
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Lemma 4.5.5.
Let H be a finite-dimensional unimodular Hopf algebra with non-zero left cointegral λ ∈ H∗.
Then by theorem 3.1.14 the map

H → H∗

a 7→ λ(a · −) = (λ ↼ a)

is a bijection. It restricts to a bijection Z(H) ∼= C(H). In particular dimK Z(H) = dimKC(H).

Proof.
If H is unimodular, we have α = ε for the distinguished group-like element α. Then the
Nakayama involution for the Frobenius structure given by the right cointegral reads by lemma
3.3.9

ρ(h) = 〈α, h(1)〉S−2(h(2)) = 〈ε, h(1)〉S−2(h(2)) = S−2(h) .

For the Frobenius structure given by the left integral, one finds ρ(h) = S2(h) and thus

λ(a · b) = λ(b · S2(a)) (∗) .

Thus for any a ∈ H
(λ ↼ a)(yS2x) = λ(ayS2x)

(∗)
= λ(xay) .

Thus (λ ↼ a) ∈ C(H), if and only if for all x ∈ H, we have λ(xa) = λ(ax). But this amounts
to a ∈ Z(H). 2

Theorem 4.5.6 (Drinfeld).
Let (H,R) be a quasi-triangular Hopf algebra with Drinfeld map FR : H∗ → H. Then

1. For all β ∈ C(H), we have FR(β) ∈ Z(H).

2. For all β ∈ C(H) and α ∈ H∗, we have

FR(α · β) = FR(α) · FR(β) .

Proof.
• We calculate for β ∈ C(h) and h ∈ H:

h · FR(β) = h ·Q1β(Q2)

= h(1)Q1β(S−1(h(3))h(2)Q2) [S−1 is a skew antipode]

= Q1h(1)β(Q2h(2)S(h(3))) [Q∆ = ∆Q and β ∈ C(H)]

= Q1β(Q2) · h
= FR(β) · h

• For the second statement, consider α ∈ H∗ and β ∈ C(H) and calculate

FR(α · β) = R2R
′
1(α · β)(R1R

′
2) [Defn. Drinfeld map]

= R2R
′
1(α⊗ β)∆(R1R

′
2) [Defn. product]

= R2R
′
1(α⊗ β)∆(R1) ·∆(R′2) [coproduct is a morphism of algebras]

= R2r2s1t1α(R1t2)β(r1s2) [[QT2,QT3] with R = r = s = t]

= R2r2s1β(r1s2)t1α(R1t2)

= R2FR(β)t1α(R1t2) [Defn. Drinfeld map]

= FR(α) · FR(β) [FR(β) ∈ Z(H)]
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2

We will see below that any factorizable Hopf algebra is unimodular. From this fact we
conclude

Corollary 4.5.7.
Let (H,R) be a factorizable Hopf algebra. Then the restriction of the Drinfeld map gives an
algebra isomorphism

C(H)
∼=−→ Z(H) .

Proof.
By theorem 4.5.6.2, the restriction of the Drinfeld map F to C(H) is a morphism of algebras.
It is injective, since the Drinfeld map is injective, due to the assumption that H is factorizable.
Using the fact that H is unimodular, lemma 4.5.5 implies equality of dimensions. Hence, the
map is surjective also and thus an isomorphism of algebras. 2

We finally want to show that factorizable Hopf algebras are unimodular. To this end, we
need an alternative point of view on the Drinfeld double of a quasi-triangular Hopf algebra.

Let H be a Hopf algebra with invertible antipode. For an invertible element F ∈ H ⊗ H
consider the linear map

∆F : H → H ⊗H
∆F (a) = F∆(a)F−1

This is obviously a morphism of algebras.

Lemma 4.5.8.

1. A sufficient condition for ∆F to be coassociative is the identity

F12(∆⊗ idH)(F ) = F23(idH ⊗∆)(F )

in H⊗3.

2. A sufficient condition for ε to be a counit for ∆F is the identity

(id⊗ ε)(F ) = (ε⊗ id)(F ) = 1 .

3. Define
v := F1 · S(F2) and v−1 := S(G1)G2

with G = F−1 the multiplicative inverse in the algebra H ⊗H. Then SF with SF (h) :=
v · S(h) · v−1 is an antipode for the coproduct ∆F .

Proof.

1. To show coassociativity

(∆F ⊗ id) ◦∆F (a) = (id⊗∆F ) ◦∆F (a) ,

we compute the two sides of this equation separately:

(∆F ⊗ id)∆F (a) = (∆F ⊗ id)(F∆(a)F−1)

= (∆F ⊗ id)(F ) · F12 · (∆⊗ id)∆(a) · F−1
12 · (∆F ⊗ id)(F−1)
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where for the second equality we used that ∆F is a morphism of algebras. For the right
hand side, we find by an analogous computation

(id⊗∆F )∆F (a) = (id⊗∆F )(F∆(a)F−1)

= (id⊗∆F )(F ) · F23 · (id⊗∆)∆(a) · F−1
23 · (id⊗∆F )(F−1)

A sufficient condition for coassociativity to hold is the identity

(∆F ⊗ id)(F ) · F12 = (id⊗∆F )(F ) · F23

which, by taking inverses in the algebra H⊗3, implies

F−1
12 (∆F ⊗ id)(F−1) = F−1

23 (id⊗∆F )(F−1)

and which is equivalent to

F12(∆⊗ idH)(F ) = F23(idH ⊗∆)(F ) .

2. We leave the rest of the proofs to the reader.

2

Definition 4.5.9
Let H be a Hopf algebra with invertible antipode. An invertible element F ∈ H ⊗H satisfying

F12(∆⊗ id)(F ) = F23(id⊗∆)(F )
(id⊗ ε)(F ) = (ε⊗ id)(F ) = 1

is called a 2-cocycle for H or a gauge transformation. We denote the twisted Hopf algebra with

coproduct ∆F , counit ε and antipode SF by HF .

Examples 4.5.10.

1. Let H be a finite-dimensional Hopf algebra with basis {ei} and dual basis {ei}. Consider

H̃ := H∗ ⊗Hopp

and in H̃ ⊗ H̃ the basis-independent element

F̃ =
dimH∑
i=1

(1H∗ ⊗ ei)⊗ (ei ⊗ 1H)

A direct calculation shows that this element is a 2-cocycle for H̃.

2. Let (H,R) be a finite-dimensional quasi-triangular Hopf algebra. Then

FR := 1⊗R2 ⊗R1 ⊗ 1

is a 2-cocycle for H ⊗H with the tensor product Hopf algebra structure. For a proof, we
refer to [S, Theorem 4.3].

The proof of the following theorem can be found in [S, Theorem 4.3]:
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Theorem 4.5.11.
Let (H,R) be a finite-dimensional quasi-triangular Hopf algebra. The map

δR : D(H) → (H ⊗H)FR

x 7→ πR(x(1))⊗ πR(x(2))

with πR and πR as in remark 4.4.15.3 is a Hopf algebra morphism. It is bijective, if and only
if the quasi-triangular Hopf algebra (H,R) is factorizable. Thus factorizable Hopf algebras are
related by a gauge transformation to tensor products.

Corollary 4.5.12.
Let (H,R) be a factorizable Hopf algebra. Then H is unimodular.

Proof.
Let Λ be a left integral in H. Then Λ ⊗ Λ is a left integral in (H ⊗ H)FR , since the algebra
structure and the counit ε are not changed by the twist. Since H is factorizable, the Hopf
algebra (H ⊗ H)FR is by theorem 4.5.11 isomorphic to D(H). We have seen in proposition
4.4.18 that the Drinfeld double of any Hopf algebra is unimodular. Thus Λ⊗ Λ is also a right
integral of (H ⊗H)FR . Hence Λ is also a right integral of H. 2

One can show the corresponding statement for categories [EGNO, Proposition 8.10.10]:
if C is a factorizable finite tensor category, then C is unimodular. Since Drinfeld centers of
finite tensor categories are factorizable by remark 4.5.4.5, they are in particular unimodular,
cf. proposition 4.4.18 for the corresponding statement for Hopf algebras.
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5 Topological field theories and quantum codes

5.1 Pivotal categories and pivotal Hopf algebras

We need two last subsections with algebraic preparation. In the rigid monoidal category of finite-
dimensional vector spaces, the bidual is canonically isomorphic to the original vector space. For
a general monoidal category, this is not necessarily the case, but such an identification is needed
for TFT constructions on oriented manifolds. All algebras over fields and their modules in this
section will be finite-dimensional; all categories will be finite categories.

Definition 5.1.1

1. Let C be a right rigid monoidal category. A pivotal structure is a monoidal natural iso-
morphism

ω : idC →?∨∨ .

A right rigid monoidal category together with a choice of pivotal structure is called a
pivotal category.

2. A pivotal Hopf algebra is a pair (H,ω), where H is a Hopf algebra and ω ∈ G(H) is a
group-like element, called the pivot such that

S2(x) = ωxω−1 .

Remarks 5.1.2.

1. Note that we do not require that C is braided or that H has the structure of a quasi-
triangular Hopf algebra.

2. For a given Hopf algebra, the pivot is not necessarily unique. It is determined up to
multiplication by an element in the group G(H)∩Z(H). The choice of a pivot is thus an
additional structure on the Hopf algebra H.

3. Because of the theorem 3.3.20 of Larson-Radford, any finite-dimensional semisimple Hopf
algebra H over a field of chacteristic zero admits the unit element 1H as a pivot. The
question whether any fusion category admits a pivot is open.

4. If the category C is rigid, a pivotal structure implies an identification

∨X ∼= (∨X)∨∨ ∼= X∨

of left and right duals which respects the opposite monoidal structure of the functors of
taking duals. Here we first used the isomorphism ω∨X and then the canonical identification
(∨X)∨.

5. A pivotal category is called strict, if the unitality and associativity isomorphisms, the
pivotal structure ω, and the canonical isomorphism (V ⊗W )∨ ∼= W∨⊗ V ∨ are identities.
It has been shown in [NgS, Theorem 2.2] that every pivotal category C is equivalent to
a strict pivotal category Cstr ; equivalence as pivotal categories means that the monoidal
equivalence C → Cstr preserves pivotal structures in a suitable sense. In a strict pivotal
category, we will denote the dual of V also by V ∗.
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6. If C is only right rigid, but pivotal, a left evaluation and a left coevaluation can be defined
by

b̃V : I bV ∨−→ V ∨⊗V ∨∨
idV ∨⊗ω

−1
V−→ V ∨⊗V

and

d̃V : V⊗V ∨ ωV ⊗idV ∨−→ V ∨∨⊗V ∨ dV ∨−→ I .

It is straightforward to show that these morphisms obey the axioms of a left duality. Since
ω is natural, one has on morphisms ∨f = f∨. One obtains a strict pivotal category.

Proposition 5.1.3.
Let H be a finite-dimensional Hopf algebra.

1. If ω ∈ G(H) is a pivot for H, then the action with ω endows the category H−modfd of
finite-dimensional H-modules with a pivotal structure.

2. Conversely, if ω is a pivotal structure on the category H−modfd, then ωH(1H) ∈ H is a
pivot for the Hopf algebra H.

Proof.

1. Assume that ω is a pivot for the Hopf algebra H. We know from proposition 2.5.16 that
the category H−modfd is rigid. Let (V, ρV ) be a finite-dimensional H-module. Identifying
canonically the bidual V ∗∗ of the underlying fiite-dimensional vector space V with V , the
right bidual of the H-module (V, ρV ) is the H-module (V, ρV ◦ S2). Use the pivot ω to
define the linear isomorphism

ωV : V → V
v 7→ ω.v .

This is actually a morphism V → V ∨∨ of H-modules:

a.ωV (v) = S2(a) · ω.v = ω · a · ω−1ω.v = ω · a.v = ωV (a.v) .

Implicitly assuming that the category of vector spaces has been replaced by an equivalent
strict monoidal category, the natural transformation is monoidal by definition 2.4.8.3, if
ωV ⊗ωW = ωV⊗W . This holds, since ω.v⊗ω.w = ω.(v⊗w) for all v ∈ V and w ∈ W , since
ω is a grouplike element. For this reason, the natural transformation (ωV ) is invertible as
well.
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2. Conversely, suppose that H−modfd is a pivotal category. We canonically identify H as
a vector space with its bidual H∗∗ as a finite-dimensional K-vector space. The action on
H∨∨ then translates to an H-action on H where h ∈ H acts by S2(h). We consider the
linear endomorphism

ωH : H → H∗∗ ∼= H .

All right translations by a ∈ A

Ra : H → H
h 7→ h · a

are H-linear. The naturality of the pivotal structure ω thus implies

ωH(h · a) = ωH(h) · a for all h, a ∈ H . (∗)

Since ωH is a morphism of H-modules, we have

ωH(a · b) = S2(a)ωH(b) for all a, b ∈ H . (∗∗)

Altogether, we find

S2(a)ωH(1)
(∗∗)
= ωH(a · 1) = ωH(1 · a)

(∗)
= ωH(1) · a .

To show that ω := ωH(1) is a pivot for the Hopf algebra H, it remains to show that
ω is grouplike. As in the proof of theorem 4.2.3, one shows that for v ∈ V , ωV (v) =
ωH(1).v = ω.v. Monoidality of the natural transformation now implies that ω is grouplike
by reversing the arguments in the first part of the proof.

2

For pivotal categories, the graphical calculus can be cast into a different geometric form.

Lemma 5.1.4.
Let C be a pivotal category and X1, . . . Xn ∈ C. Then there are ismorphisms

Hom(1, X1 ⊗X2 ⊗ · · · ⊗Xn)→ Hom(1, X2 ⊗X3 ⊗ · · · ⊗Xn ⊗X1)

of spaces of invariant tensors. For n = 3, we have

Applying the corresponding isomorphisms n times yields the identity on Hom(1, X1⊗X2⊗
· · ·⊗Xn). Thus, up to a canonical isomorphism, the space HomC(I, V1⊗· · ·⊗Vn) only depends
on the cyclic order of the objects V1, . . . , Vn.

Proof.
We arrive at
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where we used that in a strict pivotal category left and right dual morphisms coincide and
then applied the zigzag identity for a left duality. 2

Remarks 5.1.5.

1. For a pivotal tensor category, it is therefore possible to represent morphisms by round
coupons,

The orientation induces a cyclic ordering of the edges ending at a round coupon. We also
include the convention that an oriented edge labellex by X ∈ C can be replace by an edge
with opposite orientation labelled by X∗.

2. On can then develop a graphical calculus which gives evaluations on discs, rather than
on (2-framed) squares:

To this end, one makes choices to rewrite a disc diagram on a 2-square where ingoing
and outgoing edges only end on the upper and lower boundary of the square. One then
evaluates it as usual. For example, the right diagram can be evaluated as

(idf1⊗f2 ⊗ bf3)◦
(
c̃1 ⊗ d̃f3

)
◦c̃2 : f ∗4 → f1⊗f2⊗f3⊗f ∗3

The axioms of a pivotal tensor category ensure that this evaluation does not depend on
the choices.

We need to single out a specific class of pivotal structures. To this end, we introduce the
notion of a trace:
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Lemma 5.1.6.
In any monoidal category, the associative monoid End (I) is commutative.

Proof.
Identifying I ∼= I⊗ I, and ϕ with ϕ⊗ idI and ϕ′ with idI ⊗ ϕ′, we see

ϕ ◦ ϕ′ = (ϕ⊗ idI) ◦ (idI ⊗ ϕ′) = ϕ⊗ ϕ′

and
ϕ′ ◦ ϕ = (idI ⊗ ϕ′) ◦ (ϕ⊗ idI) = ϕ⊗ ϕ′ .

2

Definition 5.1.7
Let C be a strict pivotal category.

1. Let X be an object of C and f ∈ EndC(X). We define left and right pivotal traces:

Trl : EndC(X) → EndC(I)
f 7→ dX ◦ (idX∗ ⊗ f) ◦ b̃X

Trlf =

Note that dX : X∨ ⊗X → I and b̃X : I→ ∨X ⊗X, so that we need the pivotal structure
to identify the objects X∨ and ∨X.

Trr : EndC(X)→ EndC(I)
f 7→ d̃X ◦ (f ⊗ idX∗) ◦ bX

Trrf =

2. One also defines left and right dimensions:

dimlX := TrlidX and dimrX := TrridX .

Note that dimlX ∈ EndC(I) and dimrX ∈ EndC(I).

Some authors call this trace the quantum trace or the categorical trace.

Lemma 5.1.8.
The two traces have the following properties:

1. The traces are cyclic: for any pair of morphisms g : X → Y and f : Y → X in C, we have

Trl(g ◦ f) = Trl(f ◦ g) and Trr(g ◦ f) = Trr(f ◦ g) .

2. We have
Trl(f) = Trr(f

∗) = Trl(f
∗∗)

for any endomorphism f , and similar relations with left and right trace interchanged.
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3. Suppose that

α⊗ idX = idX ⊗ α for all α ∈ EndC(I) and all objects X ∈ C . (∗)

Then the traces are multiplicative for the tensor product:

Trl(f ⊗ g) = Trl(f) · Trl(g) and Trr(f ⊗ g) = Trr(f) · Trr(g)

for all endomorphisms f, g.

Remark 5.1.9.
The condition (∗) always holds for K-linear categories for which EndC(I) ∼= KidI and thus in
particular for categories of modules over Hopf algebras. It also holds for all braided pivotal
categories, since cX,I ∼= cI,X ∼= idX , cf. remark 4.1.2.2.

Proof.
We only show the assertions for the left trace. We first show that the left trace is cyclic:

Here, the empty circle stands for the components ω∨X of the pivotal structure and the full
circle for its inverse.

For the second assertion, we note that

Using that the pivotal structure ω is monoidal, one shows that the expression in the green
box equals ω−1 so that we obtain Trl(f).

Finally, the third assertion follows from

Trl(f ⊗ g) = = Trlf · Trlg

2

Corollary 5.1.10.
From the properties of the traces, we immediately deduce the following properties of the left
and right dimensions:

1. Isomorphic objects have the same left and right dimension.
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2. dimlX = dimrX
∗ = dimlX

∗∗, and similarly with left and right dimension interchanged.

3. diml I = dimr I = idI.

4. Suppose, condition (∗) holds. Then the dimensions are multiplicative:

diml(X ⊗ Y ) = dimlX · diml Y and dimr(X ⊗ Y ) = dimrX · dimr Y

for all objects X, Y of C.

5. The dimension is additive for exact sequences: from

0→ V ′ → V → V ′′ → 0

we conclude dimV = dimV ′ + dimV ′′.

Proof.

1. Choose f : X → Y and g : Y → X such that idX = g ◦ f and idY = f ◦ g. Then by the
symmetry of the trace

dimlX = TrlidX = Trlg ◦ f = Trlf ◦ g = TrlidY = diml Y .

2. The axioms of a duality imply that id∗X = idX∗ . Now the claim follows from the second
identity of lemma 5.1.8.

3. Follows from the canonical identification I ∼= I⊗ I∗.

4. Follows from the identity idX⊗Y = idX ⊗ idY which is part of the definition of a tensor
product.

5. We refer to [AAITC, 2.3.1].

2

Definition 5.1.11

1. A (trace)spherical category is a pivotal category whose left and right traces are equal,

Trl(f) = Trr(f)

for all endomorphisms f .

2. A pivotal Hopf algebra (H,ω) is called spherical, if for all finite-dimensional representa-
tions V of H and all f ∈ EndH(V ), we have

TrV f ◦ ρV (ω) = TrV f ◦ ρV (ω−1) ,

where ω stands for the endomorphism of V given by the left action of the pivot ω. In this
case, the pivot ω is called a spherical element.

Remarks 5.1.12.
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1. For an example of a pivotal Hopf algebra that is not spherical, we refer to [AAITC,
Example 2.2].

2. In a spherical category, we write Tr(f) and call it the trace of the endomorphism f . In
particular, left and right dimensions of all objects are equal, dimlX = dimrX. We call
this element of EndC(I) the dimension dimX of X.

3. The strictification of a spherical category is again spherical [NgS].

4. An example of a spherical tensor category is the category of super vector spaces which
we have seen in remark 4.1.2.5 as a braided category with underyling category vect(Z2).
Morphisms are thus grade-preserving linear maps. An endomorphis f : V0⊕V1 → V0⊕V1

thus as two components f0 : V0 → V0 and f1 : V1 → V1. The supertrace is then given by
Trf0−Trf1. Writing this category as modules over the commutative Hopf algebra K(Z2)
of functions on Z2 with basis (δ0, δ1), Vi is the image of δi. Hence the pivot is the grouplike
elements δ0 − δ1.

5. Suppose that C = H−mod. Then the traces are given by

Trl(f) = TrV (fρV (ω−1)), Trr(f) = TrV (fρV (ω)) for f ∈ EndH(V ).

Thus, H−mod is a spherical category, whenever H is a spherical Hopf algebra. One can
show [AAITC, Proposition 2.1] that it is sufficient to verify the trace condition on simple
H-modules to show that a pivotal Hopf algebra is spherical.

6. For spherical categories, the graphical calculus has the following additional property:
Consider an oriented graph Γ embedded in the sphere S2 with standard orientation,
where each edge e is colored by an object V (e) ∈ C, and each vertex v is colored by a
morphism ϕv ∈ HomC(I, V (e1)± ⊗ · · · ⊗ V (en)±), where e1, . . . , en are the edges adjacent
to vertex v, taken in clockwise order, and V (ei)

± = V (ei) if ei is outgoing edge, and V ∗(ei)
if ei is the incoming edge.

By removing a point pt from S2 and identifying S2 \ pt ' R2, we can consider Γ as a
planar graph

to which our rules assign an element Z(Γ) ∈ EndC(I).
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One shows that this number is an invariant of the coloured graph on the sphere: morphisms
represented by diagrams are invariant under isotopies of the diagrams in the two-sphere
S2 = R2 ∪ {∞}. They are thus preserved under pushing arcs through the point ∞. Left
and right traces are related by such an isotopy. This explains the name “spherical”.

7. Note that up to this point, only graphs on S2 without crossings were allowed. We general-
ize this setup by allowing finitely many non-intersecting edges of a different type, labelled
by objects of the Drinfeld double Z(C). These edges are supposed to start and end at the
vertices as well. We colour edges of such a graph Γ̂ with objects in C and Z(C) respectively
and morphisms as before. We get an invariant Z(Γ) ∈ K for this type of graph as well:

5.2 Ribbon categories

We also consider analogous additional structure on braided tensor categories. Recall from remark
5.1.9 that for a braided category, the trace is always multiplicative.

Definition 5.2.1
Let C be a braided (strict) pivotal category.

1. For any object X of C, define the endomorphism

θX = (idX⊗ d̃X)◦ (cX,X⊗ idX∗)◦ (idX⊗ bX) .

This endomorphism is called the twist on the object X.

2. A ribbon category is a braided pivotal category where all twists are selfdual, i.e.

(θX)∗ = θX∗ for all X ∈ C .

Lemma 5.2.2.
Let C be a braided pivotal category.

1. The twist is invertible with inverse

θ−1
X = (dX ⊗ idX) ◦ (idX∗ ⊗ c−1

X,X) ◦ (b̃X ⊗ idX) .

2. We have θI = idI and
θV⊗W = cW,V ◦ cV,W ◦ (θV ⊗ θW ) .
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3. The twist is natural: for all morphisms f : X → Y , we have f ◦ θX = θY ◦ f .

4. A braided pivotal category is a ribbon category, if and only if the identity

θX = (dX ⊗ idX) ◦ (idX∗ ⊗ cX,X) ◦ (b̃X ⊗ idX)

holds.

Proof.

1. In a pivotal braided category, we have for the twist

; the inverse of the twist is

We compute

where we use naturality of the braiding and the zig-zag relations for the duality.

2. We compute graphically

3. Using properties of the duality, one shows for f : U → V that

d̃U ◦ (idU ⊗ f ∗) = d̃V ◦ (f ⊗ idV ∗)

and similar relations for the other duality morphisms. The naturality of the twist now
follows from these relations and the naturality of the braiding and its inverse.

4. Follows from a graphical calculation that is left to the reader.
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2

Proposition 5.2.3.
A ribbon category C is spherical

Proof.
To this end, one notes that

dV := dV ◦ cV,V ∗ ◦ (θ−1
V ⊗ idV ∗) = dV ◦ ◦cV,V ∗ ◦ (idV ⊗ θ−1

V ∗)

bV := (θ−1
V ∗ ⊗ idV ) ◦ cV,V ∗ ◦ bV = (idV ∗ ⊗ θ−1

V ) ◦ cV,V ∗ ◦ bV

form another left duality. Graphically, one has

The proof of this assertion can be found in [Kassel, p. 351-353], with left and right dual-
ity interchanged as compared to our statement of the assertion. Since all (left) dualities are
equivalent by lemma 2.5.15, the sphericality can be seen as follows:

Here we first insert the definition, then use the naturality of the twist and then of the
braiding. 2

We finally express these structures on the level of Hopf algebras.

Definition 5.2.4
A ribbon Hopf algebra is a quasi-triangular Hopf algebra (H,R) together with an invertible
central element ν ∈ H such that

∆(ν) = (R21 ·R)−1 · (ν ⊗ ν) , ε(ν) = 1 and S(ν) = ν .

The element ν is called a ribbon element.

A ribbon element is not unique, but only determined up to multiplication by an element in
{g ∈ G(H)∩Z(H) | g2 = 1}, see [AAITC, Definition 2.13]. This reflects the fact that the pivot
is structure.

Proposition 5.2.5.

1. Let (H,R, ν) be a ribbon Hopf algebra. For V ∈ H−modfd, consider the endomorphism

θV : V → V
v 7→ ν−1.v

This defines a twist that is compatible with the dualities.
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2. Conversely, suppose that (H,R) is a quasi-triangular Hopf algebra and that there is an
element ν ∈ H such that for any V ∈ H−modfd the endomorphism θV (v) := ν−1.v is a
twist on the braided category H−modfd. Then ν is a ribbon element.

Proof.

• If ν is central and invertible, then all θV are H-linear isomorphisms. Conversely, for any
algebra A any natural transformation θ : idA−mod → idA−mod is given by the action of an
element of the center, since Z(A) of A, End(idA−mod) = Z(A).

• We compute for x ∈ V ⊗W :

cW,V cV,W (θV ⊗ θW )(x) = R21R(ν−1x(1) ⊗ ν−1x(2)) = ∆(ν−1) · x = θV⊗W (x) .

The compatibility of twist and braiding is thus equivalent to the property (R21R)−1(ν ⊗
ν) = ∆(ν).

• It remains to show that

(θV ∗ ⊗ idV )bV (1) = (idV ∗ ⊗ θV )bV (1) .

With {ei} a basis of V , this amounts to∑
i

νe∗i ⊗ ei =
∑
i

e∗i ⊗ νei

Evaluating this identity on any v ∈ V yields∑
i

νe∗i (v)⊗ ei =
∑
e∗i (v)⊗ νei

⇐⇒ S(ν) · v = ν · v

This shows that S(ν) = ν is a sufficient condition. Applying this to V = H and v = 1
shows that S(ν) = ν is necessary as well.

2

Definition 5.2.6

1. A link in R3 is a finite set of disjoint smoothly embedded circles (without parametrization
and orientation). A link with a single component, i.e. a smoothly embedded circle, is called
a knot.

2. An isotopy of a link is a smooth deformation of R3 which does not induce intersections
and self intersections of the link.

3. A framed link is a link with a non-zero normal vector field.

4. A (k, l)-tangle is a finite set of disjoint circles and intervals that are smoothly embedded
in R2 × [0, 1] such that

• The end points of the intervals are precisely the points (1, 0, 0), . . . (k, 0, 0) and
(1, 0, 1), . . . , (l, 0, 1).

• The circles are contained in the open subset (R2 × (0, 1)).
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5. Isotopies of tangles and framed tangles are defined in complete analogy to 2.

Links in the topological field theories of our interest are framed oriented links.

Examples 5.2.7.

1. A special example is the so-called unknot which is given by the unit circle in the x-y-plane
of R3.

2. Other important examples of well-known knots and links:

trefoil knot Hopf link Borromean link

Remark 5.2.8.

1. If one projects a link L ⊂ R3 to the plane R2, we can represent the link by a link diagram.
This is a set of circles in R2 with information about intersections which are, for a generic
projection, only double transversal intersections.

2. By taking the direction orthogonal to the plane containing the link diagram, we obtain a
framing for the link represented by a link diagram. Thus any framed link can be repre-
sented by a link diagram.

3. Warning: if three knots differ locally by the following configurations,

, ,

then they are isotopic as knots, but not as framed knots.

4. Two link diagrams in R2 represent isotopic framed links in R3, if they are related by an
isotopy of R2 or one of the Reidemeister moves Ω±1

0 ,Ω±1
2 ,Ω±1

3

Ω0 Ω2 Ω3

These moves are local, i.e. only affect a part of a link contained in a small disc.
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5. We define the linking number lk(K,K ′) of two knots K,K ′ in a link as the sum of the
signs ±1 for each over and undercrossing. The matrix of linking numbers is a symmetric
link invariant.

For framed knots, one can define the self linking number: one deforms the knot along
its normal vector field and defined the self linking number as the linking number of the
original knot with its deformation.

Remarks 5.2.9.

1. Since any link in R3 can be smoothly deformed to a link in R2 × (0, 1), we identify links
and (0, 0) tangles.

2. Tangle diagrams are projections of tangles to R × [0, 1] with only double transversal
intersections. We only consider oriented tangle diagrams.

3. Tangle diagrams represent isotopic tangles, if they are related by an isotopy of R× [0, 1]
or the Reidemeister moves Ω±1

0 ,Ω±1
2 ,Ω±1

3 from remark 5.2.8.4.

Definition 5.2.10

1. We define a category T of framed tangles:

• Its objects are the non-negative integers.

• A morphism k → l is an isotopy class of framed (k, l)-tangles.

The composition is concatenation of tangles, followed by a rescaling to the interval [0, 1].
The identity tangles are given by parallel lines.

2. We endow T with a monoidal structure. On objects, we define k⊗l := k+l; on morphisms,
we take juxtaposition of tangles. The tensor unit is 0 ∈ Z≥0.

3. The category T is endowed with the structure of a braided monoidal category by the
following isomorphisms:

ck,l : k ⊗ l→ l ⊗ k

. . .︸ ︷︷ ︸ . . .︸︷︷︸
k l

The axioms of a braiding follow from obvious isotopies.

4. The braided category T has the dualities
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︷ ︸︸ ︷. . . ︷ ︸︸ ︷. . .
k k

and

. . .︸︷︷︸ . . .︸︷︷︸
k kand the twist θk : k → k

which turn it into a ribbon category.

Let now C be a ribbon category. We describe the category TC of C-coloured framed oriented
tangles.

Observation 5.2.11.

1. Tangles are now assumed to be framed and oriented. Each component of a tangle is
labelled with an object of C. Isotopies preserve the orientation, framing and C-coloring.

2. The objects of TC are finite sequences of pairs

(V1, ε1) . . . (Vn, εn) Vi ∈ C εi ∈ {±1} ,

including the empty sequence.

3. Morphisms are isotopy classes of framed oriented tangles. If the source object has label
ε = +1, the tangle is upward directed and labelled with V . It has to end on either an
object (V,+1) at t = 1 or at (V,−1) at t = 0, where t ∈ [0, 1] parametrizes the tangle.

4. The category TC is endowed with a ribbon structure in complete analogy to the ribbon
structure on the category T of framed oriented tangles.

The following theorem describes the graphical calculus for ribbon categories:

Proposition 5.2.12.
Let C be a ribbon category. Then there is a unique braided tensor functor

F = FC : TC → C,

such that

1. F acts on objects as F (V,+) = V and F (V,−) = V ∗.

2. For all objects V,W of C, we have

V W

cV,W
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V

θV

bV

dV

Proof.
One can show that any tangle can be decomposed into the building blocks listed above. One
then has to show the compatibility of F with the Reidemeister moves. This follows from the
axioms of a ribbon category. 2

Definition 5.2.13
A modular tensor category is a finite ribbon category in which the braiding is non-degenerate
in the sense that the braided monoidal functor

Crevd � C → Z(C)

from remark 4.5.4.4 is an equivalence.

Remarks 5.2.14.
1. For a modular fusion category, we choose representatives (Vi)i∈I for the isomorphism

classes of simple objects, assuming without loss of generality that V0 = I. The non-
degeneracy condition is then equivalent to the statement that the |I| × |I|-matrix with
entries

Sij = Tr cVj ,Vi ◦ cVi,Vj ∈ End (I) ∼= K
is invertible over K. The symmetry of the trace implies that the matrix S is symmetric,
Sij = Sji.

2. The matrix element Sij of a modular fusion category equals the invariant of the Hopf link
with the two components coloured by the objects Vi and Vj.

3. Let H be a complex semi-simple ribbon factorizable Hopf algebra. Then the category
H−modfd is a modular tensor category.

4. Let H be a semi-simple complex Hopf algebra. Then the category of finite-dimensional
modules over its Drinfeld double D(H)-modfd is modular.

One can show that the Drinfeld center of any spherical finite tensor category is a ribbon
category [Sh, Theorem 5.11]. Here, if C is not semisimple, spherical is not trace-spherical
in the sense of definition 5.1.11, but is defined as in [DSPS1, Definition 4.5.2] (the pivotal
structure squares to the Radford isomorphism).
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5.3 Stringnets and extended TFTs

We now work towards the construction of a three-dimensional topological field theory. Our
input datum is a (strictly) spherical tensor category C, and our first goal is to construct a
vector space for a compact oriented surface Σ, possibly with boundaries.

The idea is to globalize the graphical calculus on discs for pivotal tensor categories that we
developped in remark 5.1.5.

Definition 5.3.1

1. A boundary datum b consists of finitely many points on the boundary ∂Σ, where we
require that each boundary component contains at least one point. For every point, an
object of C is chosen as a label.

2. Denote by G(Σ, b) the set of all finite C-colored graphs on Σ with prescribed boundary
datum b, and by KG(Σ, b) the K-vector space freely generated by it.

3. A null graph on Σ is an element
∑

i λiΓi of KG(Σ, b) such that there exists an embedding
ϕ : D ↪→ int(Σ) of the standard disk D to the interior of Σ that satisfies the following
requirements:

• the circle ϕ(∂D) does not contain any vertex of any of the graphs Γi;

• any intersection of ϕ(∂D) and an edge of any of the graphs Γi is transversal;

• on the complement Σ \ϕ(D) all graphs Γi coincide;

• and the values of the graphs pulled back by ϕ sum up to zero,
∑

i λi 〈Γi∩ϕ(D)〉D = 0.
Here, we use the evaluation explained in remark 5.1.5 on the disc D.

4. The (bare) string-net space SN(Σ, b) is the quotient

SN(Σ, b) := KG(Σ, b)/N(Σ, b) ,

where N(Σ, b) is the subspace of KG(Σ, b) spanned by all null graphs on Σ. We call
elements of SN(Σ, b) string-nets.

Examples 5.3.2.

1. For any spherical category, the string-net space associated to the sphere S2 is one-
dimensional and spanned by the empty graph.

2. Assume for simplicity that C is a spherical fusion category. For the torus T 2, we find

SN(T 2) = ⊕X,Y Hom(X, Y ⊗X ⊗ ∨Y ) ,

where the sum is over isomorphism classes of simple objects of C.
Taking C = vectCZ2, we obtain a four-dimensional vector space. This shows that the
dimension of the string-net space is sensitive to the topology of Σ.

Remark 5.3.3.
For a three-dimensional topological field theory, we indeed need to associate vector spaces to
surfaces. We do not discuss arbitrary three-manifolds with boundary, representing a general
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cobordism. We rather observe that any diffeomorphism ϕ of Σ gives a cobordism Σ → Σ,
namely the cylinder Σ× [0, 1] with identification

Σ t Σ
idtϕ−→ Σ× [0, 1] .

We call this a ϕ-twisted cylinder. Mapping class group elements are isotopy classes of diffeo-
morphisms. Diffeomorphisms act on string-nets, isotopic diffeomorphisms map a string-net to
two string-nets that differ by a null graph. Hence, the mapping class group acts geometrically
on string-nets.

We therefore introduce a symmetric monoidal subcategory Cob2+ε,2 of Cob3,2 that contains
as morphisms only (classes of) twisted cylinders. The string-net construction then provides for
any pivotal finite tensor category C a symmetric monoidal functor

Cob2+ε,2 → vect .

It can be shown [B22] that if C is C-linear and semisimple, i.e. a pivotal complex fusion category,
this functor extends to a three-dimensional topological field theory

tftC : Cob3,2 → vect

(The construction uses ideas from Morse theory to build a a three-manifold.)
Here, we extend the construction to one-dimensional manifolds.

Definition 5.3.4
Let C be a strictly pivotal category and ` a closed oriented 1-manifold. If ` is non-empty, the
cylinder category Cyl(C, `) for C over ` is the following category:

• An object of Cyl(C, `) is a C-boundary datum on `.

• A morphism of Cyl(C, `) between two boundary data is given by a string-net on the
cylinder `× I that matches the boundary data at `× {0} and `× {1}.

• The composition of morphisms is given by the concatenation of string-nets.

For the empty 1-manifold ∅, we set Cyl(C, ∅) := vect.

Example 5.3.5.
For instance, for any choice of α and β,

is a morphism in Cyl(C, S1).

Remarks 5.3.6.
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1. For the circle ` = S1, we describe the category more explicity. Using the equivalence
relation in the definition of string-nets, any object is isomorphic to an object given by a
boundary datum with one point. Moreover, any morphism can be brought to the following
standard form:

Seeing X, Y ∈ C as elements in the cylinder category, we find, if C is a spherical fusion
category

HomCyl(C,S1)(X, Y ) = ⊕ZHomC(X,Z ⊗ Y ⊗ ∨Z) ∼= HomC(X,⊕ZZ ⊗ Y ⊗ ∨Z)

where the sum is over isomorphism classes of simple objects of C.

2. Now recall the forgetful functor U : Z(C)→ C. It has a left adjoint I a U which for the
case when C is a fusion category gives the object

⊕ZZ ⊗ c⊗ ∨Z

of C with a certain half-braiding. Thus

UI(c) = ⊕ZZ ⊗ c⊗ ∨Z .

We thus find for the cylinder category

HomCyl(C,S1)(X, Y ) ∼= HomC(X,UI(Y )) ∼= HomZ(C)(IX, IY ) .

We have thus recovered (part of the) Drinfeld center from the string-net construction; for
more information, we refer to [Ki11, Section 6].

Example 5.3.7.
Let C be a monoidal category. We then obtain a bicategory BC with a single object and
endomorphism category C. This is a higher-categorical generalization of the construction that
obtains from an associative monoid M a category with a single object ∗ and Hom(∗, ∗) = M .

These results suggest to extend the idea of topological field theories and to consider (at
least) three-layered structures. For a three-dimensional extended topological field theory, we
want to associate categories to one-manifolds. To this end, we have to go beyond categories,
and our topological field theory should take values in Cat, consisting of (Categories, functors,
natural transformations). This is a bicategory:

Definition 5.3.8
A bicategory B consists of the following data subject to the following axioms. The data are

• A class ob B with elements A,B, . . . which we depict as 0-cells.

• Categories Hom(A,B) for each pair A,B ∈ ob B, whose objects f, g we call a 1-cells or
1-morphisms and whose arrows α, β, . . . we call 2-cells or 2-morphisms.
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• Composition functors for any triple A,B,C ∈ ob B

cABC : Hom(B,C)× Hom(A,B) → Hom(A,C)
(g, f) 7→ g ◦ f
(β, α) 7→ β ◦ α

and an identity functor IdA : 1 := ∗//id∗ → Hom(A,A) for any object A ∈ ob B. Note
that this gives for each object A of a bicategory an identity 1-morphism IdA and an
identity 2-morphism IdA → IdA.

• Natural isomorphisms a, r, l of functors expressing associativity:

Hom(C,D)× Hom(B,C)× Hom(A,B)
id×cABC //

cBCD×id
��

Hom(C,D)× Hom(A,C)

cACD
��

Hom(B,D)× Hom(A,B); cABD
//

aABCD

/7

Hom(A,D)

and unitality
Hom(A,B)× 1

1×IdA
��

∼

++
Hom(A,B)× Hom(A,A); cAAB

//

rAB 08

Hom(A,B)

and
1× Hom(A,B)

IdB×1
��

∼

++
Hom(B,B)× Hom(A,B); cABB

//

lAB 08

Hom(A,B)

thus 2-cells
ahgf : (hg)f

∼→ h(gf)

rf : f ◦ IA
∼→ f

lf : IB ◦ f
∼→ f.

Axioms: the following diagrams commute:

• Pentagon diagrams
(kh)(gf)

α

&&
((kh)g)f

αid
��

α
88

k(h(gf))

(k(hg))f α
// k((hg)f)

idα

OO

• Triangle diagrams

(gid)f a //

r∗1 ""

g(idf)

1∗l||
gf
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We should now proceed and introduce the notion of a (symmetric) monoidal bicategory.
These notions encode a huge amount of structure. The following examples are relevant for us:

Definition 5.3.9
Cob3,2,1 and Cob2+ε,2,1 are the following two symmetric monoidal bicategories:

• Objects are compact, closed, oriented 1-manifolds S.

• 1-Morphisms are 2-dimensional, compact, oriented collared cobordisms S × I ↪→ Σ ←↩
S ′ × I.

• 2-Morphisms

– of Cob3,2,1 are generated by diffeomorphisms of cobordisms fixing the collar and 3-
dimensional collared, oriented cobordisms with corners M , up to diffeomorphisms
preserving the orientation and boundary.

– of Cob2+ε,2,1 are twisted cylinders over surfaces.

• Composition of 1-morphisms is by gluing along collars.

• The monoidal structure is given by disjoint union with the empty set ∅ as the monoidal
unit.

We are now ready to present the definition of an (once) extended topological field theory
and of a modular functor:

Definition 5.3.10
Let S be any symmetric monoidal bicategory.

1. A once extended topological field theory with values in the target category S is a sym-
metric monoidal 2-functor

tft : Cob3,2,1 → S .

2. A modular functor with values in S is a symmetric monoidal 2-functor

MF : Cob2+ε,2,1 → S .

An important target category S is the following symmetric monoidal bicategory:

Definition 5.3.11
Let K be a field. The bicategory Lex is defined as follows:

1. Objects are K-linear finite tensor categories.

2. 1-morphisms are left exact K-linear functors.

3. 2-morphisms are K-linear transformations.

4. The Deligne tensor product � endows this bicategory with the structure of a symmetric
monoidal bicategory. The category of finite-dimensional K-vector spaces is the monoidal
unit.

Remarks 5.3.12.
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1. The full subbicategory whose objects are semisimple finite categories is called the bicat-
egory 2vect(K) of 2-vector spaces.

2. One can also consider right exact functors as 1-morphisms and obtains another symmetric
monoidal bicategory.

For an account of extended topological field theories, see [L, Section 1.2] and for an informal
account see [NS]. We justify the terminology extended topological field theory.

Remark 5.3.13.

1. Consider an extended topological field theory with values in the bicategory of 2-vector
space. Thus we have as a zeroth layer finitely semisimple categories associated to closed
oriented 1-manifolds. At the first layer, we will have not only closed surfaces, but also 2-
manifolds with boundary. After having chosen an object for each boundary circle, we get
a vector space which depends functorially on the choice of objects. On the third level, we
have three-manifolds with corners relating the 2-manifolds with boundaries. In particular,
we obtain invariants of knots and links in three-manifolds generalizing the constructions
of the previous subsection and thus to representations of braid groups.

2. We note that the monoidal 2-functor tft has to send the monoidal unit ∅ in Cob3,2,1 to
the monoidal unit which is the category vect(K). The 2-functor tft restricts to a monoidal
functor tft|∅ from the endomorphisms of ∅ in Cob1,2,3 to the endomorphisms of vect(K).

3. It follows directly from the definition that

EndCob1,2,3

(
∅
) ∼= Cob3,2 .

Using the fact that the morphisms are additive (which follows from K-linearity of
functors in the definition), it is also easy to see that the equivalence of categories
End2vect(K)

(
vect(K)

) ∼= vect(K) holds. This equivalence maps a K-linear functor φ ∈
End2vect(K)(vectK) to φ(K) ∈ vect(K).

4. We have seen that for the spherical fusion category C := vectC(Z2), the string-net space is
four-dimensional. The Drinfeld center Z(C) has four simple objects. Indeed, SN(T 2) has
a basis labelled by simple objects of Z(C).

We add some comments which relate a famous link invariant to four-dimensional topological
field theories:

Definition 5.3.14
Fix a ∈ C×. Let E(a) be the complex vector space, freely generated by all link diagrams up to
isotopy of R2 modulo the two Kauffman relations:

link link= −(a2 + a−2)

a= + a−1

170



The vector space E(a) is called the skein module. The class of a link diagram D determines
a vector 〈D〉(a) ∈ E(a).

Theorem 5.3.15.

1. The skein module is one-dimensional, dimCE(a) = 1. A generator is given by the skein
class 〈∅〉 of the empty knot which we use to identify it with C.

2. The skein class of a link is invariant under the Reidemeister moves Ω±1
0 ,Ω±1

2 ,Ω±1
3 and

thus an isotopy invariant of links, cf. remark 5.2.8.4.

Proof.

1. The Kauffman relations are sufficient to unknot any knot. The unknot is the identified
with the complex number −a2 − a−2.

2. To show invariance under the Reidemeister move Ω0 from remark 5.2.8.4, we compute:

a= + a−1 = (a(−a2 − a−2) + a−1) = − a3

In a similar way, we show for the opposite curl:

= − a−3

We conclude invariance under the Reidemeister move Ω±1
0 .

3. Invariance under the Reidemeister move Ω±1
2 is shown by a similar computation:

= a + a−1 =

= a2 + + (−a3)a−1 =

In the third identity, we used the result of 2. for the positive curl. We leave it to the
reader to show invariance under the Reidemeister move Ω±1

3 .

2
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Remark 5.3.16.
The string-net construction can be generalized to higher dimensions. In particular, given a
ribbon fusion category, one can develop a graphical calculus on full three-balls. One uses pro-
jections to the plane which yields link diagrams which can be evaluated by proposition 5.2.12.
For suitable values of the parameter a, the skein module is then the vector space associated to
S3 for a ribbon fusion category associated to sl(2). (For this category, labels can be eliminated
since the decomposition of tensor products the defining two-dimensional representation contain
all simple objects.)

Definition 5.3.17
Let a ∈ C× be such that a2 + a−2 6= 0. Let L be a framed link. Choose any link diagram D
representing L. Then the bracket polynomial of L is defined by

〈L〉(a) =
〈D〉(a)

−a2 − a−2
.

This is a Laurent polynomial in a. This function of a is an isotopy invariant of the link L.

Examples 5.3.18.

1. It is obvious that the unknot with trivial framing has bracket polynomial 〈L〉(a) = 1.

2. We obtain for the Hopf link by applying the Kauffman relation at the upper braiding the
following element of E(a):

= a +a−1

= a(−a+3) + a−1(−a−3) = −a4 − a−4

Here we used the results for the positive and negative curl obtained in the proof of theorem
5.3.15.

3. We obtain for the trefoil knot by applying the Kauffman relation to the upper right
braiding the following element of E(a):

= a +a−1

= a(−a+4 − a−4) + a−1(a−3)2

= −a5 − a−3 + a−7

One should check that this Laurent polynomial is again divisible by −a2 − a−2. Here we
used in the second equality the results for the Hopf link and the curls. We remark that
the invariant of the trefoil knot and the unknot are different. Hence the trefoil knot is
not isotopic to the trivial knot. One can show that for the mirror image L of a link L, we
have 〈L〉(a) = 〈L〉(a−1). We conclude that the trefoil knot is not isotopic to its mirror.
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In passing, we mention:

Definition 5.3.19
Let L be an oriented link in R3 without framing. Choose a framing for each component Li such
that the self-linking number of Li is

−
∑
j 6=i

lk(Li, Lj)

to obtain a framed link Lf . The Jones polynomial 3 for L is the Laurent polynomial

VL(q) = 〈Lf〉(q−1/2) .

5.4 State sum TFT

We now discuss the construction of an extended three-dimensional topological field theory in
the sense of definition 5.3.10. Our input is a spherical fusion category over the field C of complex
numbers. Our exposition closely follows [BK1]. In particular, we have to achieve the following
goals:

• To a closed oriented three-manifolds we want to assign an invariant with values in EndC(I).
This invariant should be a topological invariant.

• To closed oriented two-manifolds, we want to assign a finite-dimensional complex vector

space. To a three-manifold M with boundary representing a cobordism ∂−M
M−→ ∂+M ,

we want to assign a linear map. This expresses a locality property of our invariants.

• We want to obtain an extended topological field theory and thus assign categories to
closed oriented 1-manifolds.

The following proposition will be used:

Proposition 5.4.1. [ENO, Theorem 2.3]
If C is a spherical fusion category over the field C, then the so-called global dimension of C is
non-zero:

D2 :=
∑
i∈I

(dimVi)
2 6= 0 .

(We do not suppose that a square root D of the right hand side has been chosen; the notation
will just be convenient later.)

Observation 5.4.2.

1. All manifolds are compact, oriented and piecewise linear. We fix as a combinatorial datum
a polytope decomposition ∆, in which we allow individual cells to be arbitrary polytopes
(rather than just simplices). Moreover, we allow the attaching maps to identify some of
the boundary points, for example gluing polytopes so that some of the vertices coincide.
On the other hand, we do not want to consider arbitrary polytope decompositions, since
it would make describing the elementary moves between two such decompositions more
complicated. We call a piecewise linear manifold M with a polytope decomposition ∆ a
combinatorial manifold.

3Vaughan F. R. Jones, 1952-2020, Field medal 1990 with Drinfeld, Mori and Witten.
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2. The moves are then:

(M1): Removing a (regular) vertex (M2) Removing a (regular) edge
(M3) Removing a (regular) 2-cell

Observation 5.4.3.
Let C be a spherical fusion category over the field of complex numbers.

1. A (simple) labeling l of a combinatorial manifold (M,∆) is a map that assigns to each
edge e of ∆ a (simple) object of C such that l(e) = l(e)∗ for the edge e with opposite
orientation.

2. We assign to any 2-cell C with labeling l

the vector space of invariant tensors

H(C, l) := HomC(I, l(e1)⊗ . . .⊗ l(en)) ,

cf. lemma 5.1.4. Here the edges e1, . . . , en of the 2-cell C are taken counterclockwise with
respect to the orientation of C. We have shown that the properties of a spherical category
imply:

• Up to canonical isomorphism, the vector space H(C, l) does not depend on the
choice of starting point in the counterclockwise enumeration of the edges e1, . . . , en,
cf. lemma 5.1.4.

• To the 2-cell with the reversed orientation, we assign the vector space

H(C, l) := HomC(I, l(en)∗ ⊗ . . . l(e1)∗)

which is canonically in duality with H(C, l).

3. Let now (Σ,∆) be a combinatorial 2-manifold with labelling l. We assign to a labelled
combinatorial surface (Σ,∆, l) the vector space

H(Σ,∆, l) =
⊗
C∈∆

H(C, l) ,

i.e. the tensor product over the vector spaces of invariant tensors assigned to all faces C
of the polytope decomposition ∆ of Σ, and then sum over all labelings by simple objects,

H(Σ,∆) :=
⊕
l

H(Σ,∆, l) .
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• This vector space depends on the choice of polytope decomposition ∆ and is there-
fore not the vector space assigned to Σ by the topological field theory we want to
construct.

• The assignment is tensorial: for a disjoint union Σ1tΣ2 of 2-manifolds with polytope
decomposition ∆1 t∆2, we obtain the vector space

H(Σ1 t Σ2,∆1 t∆2) = H(Σ1,∆1)⊗H(Σ2,∆2) .

• Upon change of orientation, we obtain the dual vector space

H(Σ,∆) ∼= H(Σ,∆)∗ .

4. Our next goal is to assign to a 3-cell F with labeling l a vector

H(F, l) ∈ H(∂F, l)

in the vector space associated to the boundary ∂F with the induced labelling ∂l and
induced polytope decomposition ∂∆.

The boundary ∂F has the form of a sphere with an embedded graph whose surfaces are
faces and thus carry vector spaces H(C, l). Take the dual graph Γ on S2

The vertices of the dual graph are the faces of the original graph and thus labelled by
vector spaces H(C, l) which are Hom-spaces of C. Its edges are labeled by (simple) objects,

Choose for every face C ∈ ∂F an element in the dual vector space

ϕC ∈ H(C, l)∗ ∼= HomC(I, l(en)∗ ⊗ . . .⊗ l(e1)∗)

It defines a valid labelling of a graph Γ on the sphere S2 so that remark 5.1.12.6 gives a
number Z(Γ). We define the vector H(F, l) ∈ H(∂F, l) by its values on the vectors in the
dual vector space:

〈H(F, l),⊗C∈∂FϕC〉 = Z(Γ) .
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5. We now assign to a combinatorial labeled 3-manifold (M,∆, l) with boundary the com-
binatorial surface (∂F, ∂∆) a vector

H(M,∆, l) ∈ H(∂M, ∂∆, ∂l) .

We note that

⊗F∈∆H(F, l) ∈ ⊗FH(∂F, ∂∆, ∂l) = H(∂M, ∂l)⊗
⊗
c

H(c′, ∂l)⊗H(c′′, ∂l)

where F runs over all 3-cells of M and c runs over all 2-cells in the interior of M , which
appear for two faces, with opposite orientation. The associated vector spaces are thus in
duality and we can contract the corresponding components in ⊗F∈MH(F, l) by applying
the evaluation to them. We thus define

H(M,∆, l) := ev
(⊗
F∈∆

H(F, l)
)
∈ H(∂M, ∂∆, l)

6. We have finally to get rid of the labelling. This is done by a summation with weighting
factors which involve dimensions, hence depend on the pivotal structure:

ZTV (M,∆) := D−2v(M)
∑
l

(
H(M,∆, l)

∏
e

dnel(e)

)
where

• the sum is taken over all equivalence classes of simple labelings l of ∆,

• the product over e runs over the set of all (unoriented) edges of ∆

• D is the dimension of the category C from proposition 5.4.1 and

v(M) := number of internal vertices of M +
1

2
(number of vertices on ∂M)

• dl(e) is the categorical dimension of l(e) and ne = 1 for an internal edge, and 1/2
for an edge in the boundary ∂M . Here, we assume that some square root has been
chosen for each dimension of a simple object.

7. Consider a combinatorial 3-cobordism (M,∆) between two combinatorial surfaces
(N1,∆1) and (N2,∆2), i.e. a combinatorial 3-manifold (M,∆) with boundary ∂M =
N1 tN2 and the induced combinatorial structure ∂∆ = ∆1 t∆2 on the boundary. Then

H(∂M, ∂∆) ∼= H(N1,∆1)∗ ⊗H(N2,∆2) ∼= HomK(H(N1,∆1), H(N2,∆2))

so that we have a linear map

H(M,∆): H(N1,∆1)→ H(N2,∆2) .

One now proves, using the moves in obervation 5.4.2

Theorem 5.4.4.

1. For a closed PL manifold M , the scalar ZTV (M,∆) ∈ K does not depend on the choice
of polytope decomposition ∆. We write ZTV (M).
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2. More generally, if M is a 3-manifold with boundary and ∆,∆′ are two polytope decom-
positions of M that agree on the boundary, ∂∆ = ∂∆′, then we have the equality of
vectors

H(M,∆) = H(M,∆′) ∈ H(∂M, ∂∆) = H(∂M, ∂∆′) .

3. For a combinatorial 2-manifold (N,∆), consider the linear maps associated to the cylin-
ders

AN,∆ := H(N × [0, 1]) : H(N,∆)→ H(N,∆) .

The composition of two cylinders is again a cylinder. Thus, as a consequence of 2, the
maps are idempotents: A2

N,∆ = AN,∆. If we already had a topological field theory, this
should be the identity, though.

4. To a combinatorial 2-manifold (N,∆), we therefore assign the vector space

ZTV (N,∆) := Im (AN,∆) ⊂ H(N,∆) .

It is an invariant of PL manifolds: for different polytope decompositions, one has canonical
isomorphisms ZTV (N,∆) ∼= ZTV (N,∆′). We write ZTV (N).

5. We denote this vector space by ZTV (N). For a cobordism N1
M−→ N2, we denote by

ZTV (M) the restriction of the linear map H(M,∆) to ZTV (N). This defines a three-
dimensional topological field theory ZTV : Cob(3, 2)→ vect(K).

For the proof of all these statements, we refer to [BK1]; an excellent introduction that uses a
Poincaré dual picture (and a different combinatorial description of manifolds) is the book [TV].
The essential step is to show that the properties of a finitely semisimple spherical category
imply the independence under the three moves changing the polytope decomposition.

In our construction, we have assigned objects of a spherical fusion category to edges; no
braiding on this category is required.

Observation 5.4.5.

1. We now allow surfaces with boundaries. To reduce them to closed surfaces, we glue a disc
to the boundary circle and work with surfaces with marked discs instead. These discs are
supposed to be faces of the triangulation and actually are faces of a new type. For later
use, we mark a vertex on the boundary of the disc. We assign to a marked disc an object
in the Drinfeld double Z(C).

2. The three-manifolds are now manifolds with corners. Three-manifolds with corners and
surfaces with marked discs form an extended cobordism bicategory, cf. definition 5.3.9.
They contain two types of tubes: open tubes, ending at the boundaries or closed tubes.
They will lead to 3-cells of a new type. We suppose that all components of tubes are
labelled with objects in Z(C).
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3. We extend the TV invariants to such extended surfaces and cobordisms:

(a) Define, for every labelled extended surface N , a vector space ZTV (N, {Yα}) which

• functorially depends on the colors Yα ∈ Z(C),
• is functorial under homeomorphisms of extended surfaces,

• has natural isomorphisms ZTV (N, {Y ∗α }) = ZTV (N, {Yα})∗,
• satisfies the gluing axiom for surfaces.

(b) Define, for any colored extended 3-cobordism M between colored extended surfaces
N1, N2, a linear map ZTV (M) : ZTV (N1)→ ZTV (N2) so that this satisfies the gluing
axiom for extended 3-manifolds.

4. We repeat the steps in the previous construction, with the following modifications:

(a) There is now an additional type of 2-cell corresponding to an embedded disc with
label Y ∈ Z(C). To such a 2-cell, we assign the vector space

HomC(I, U(Y )⊗ l(e1)⊗ . . .⊗ l(en)) .

Here we applied the forgetful functor U : Z(C) → C from proposition 4.4.2. We
needed to specify a point to get a linear order on the objects, because now the position
of U(Y ) ∈ C matters. We then continue to define vector spaces H(N,∆, {Yα}) as
above by summing over labellings of inner edges.

(b) There are now two different types of 3-cells: tube cells and usual cells. To assign
vectors to tube cells, we use observation 5.1.12.7. Then the construction continues
as above.

5. A new feature is now the fact that we have a gluing axiom for extended surfaces. We refer
to [BK1, Theorem 8.5].

One can now show [Ki11, Theorem 5.1]:

Theorem 5.4.6.
Let C a spherical fusion category. The vector spaces assigned to a closed oriented surface Σ by
the string-net construction and the Turaev-Viro construction are canonically isomorphic.
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5.5 Quantum codes and pivotal tensor categories

There are two basic tasks in computing, both for classical and quantum computing:

• Storing information in a medium and transmitting information.

• Doing computations by processing information.

The first question leads to the mathematical notion of codes, the second to the notion of gates.
We start our discussion with classical computing.

5.5.1 Classical codes

Implicitly, assumptions made on storage devices and manipulation of information in classical
information theory is based on classical physics, as opposed to quantum mechanics.

Information is stored in the form of binary numbers, hence in terms of elements of the
standard vector space Fn2 over the field F2 = {0, 1} of two elements. (Note that the standard
basis of Fn2 plays a distinguished role.) We identify the elements of F2 = {0, 1} with either
on/off or with the truth values 0 = false and 1 = true. If we are dealing with an element of Fn2 ,
we say that we have n bits of information.

For storing and transmitting information, it is important that errors occurring in the trans-
mission or by the dynamics of the storage device can be corrected. For this reason, only a subset
C ⊂ Fn2 should correspond to valid information.

Definition 5.5.1

1. A subset C ⊂ (F2)n is called a code. The natural number n is called the length of the
code. One says that a code word c ∈ C is composed of n bits.

2. A code C ⊂ (F2)n is called linear, if C is a vector subspace. Then dimF2 C =: k is called
the dimension of the code.

One can also allow instead of the field F2 an arbitrary finite field. We will not discuss this
in more detail.

To deal with error correction, one defines:

Definition 5.5.2
Let K = F2 and V = Kn. The map

dH : V × V → N
dH(v, w) :=|{j ∈ {1, . . . , n}| vj 6= wj}|

is called Hemming distance. It equals the number of components (bits) in which the two code
words v and w differ.

Lemma 5.5.3.
The Hemming distance has the following properties:

1. dH(v, w) ≥ 0 for all v, w ∈ V and dH(v, w) = 0, if and only v = w

2. dH(v, w) = dH(w, v) for all v, w ∈ V (symmetry)

3. dH(u,w) ≤ dH(u, v) + dH(v, w) for all u, v, w ∈ V (triangle inequality)
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4. dH(v, w) = dH(v + u,w + u) for all u, v, w ∈ V (translation invariance)

Definition 5.5.4
For λ ∈ N, a subset C ⊂ (F2)n is called a λ–error correcting code, if

dH(u, v) ≥ 2λ+ 1 for all u, v ∈ C with u 6= v .

The reason for this name is the following

Lemma 5.5.5.
Let C ⊂ V be a λ-error correcting code. Then for any v ∈ V , there is at most one w ∈ C with
dH(v, w) ≤ λ.

Proof.
Suppose we have w1, w2 ∈ C with dH(v, wi) ≤ λ for i = 1, 2. Then the triangle inequality yields

dH(w1, w2) ≤ dH(w1, v) + dH(v, w2) ≤ 2λ .

Since the code C is supposed to be λ-error correcting, we have w1 = w2. 2

Remarks 5.5.6.

1. It is important to keep in mind the relative situation: a code C is a subspace of Fn2 . The
Hemming distance gives an indication to what extent the subspace C of code words is
spread out in V .

2. We say that information is stored in the code, if an element c ∈ C is selected.

3. If C ⊂ Fn2 , we say that a codeword of C is composed of n bits. If C is a linear code with
dimF2 C = k, we refer to a [n, k] code. Denote by

d := min
c∈C\{0}

dH(c, 0)

the minimal distance of a code. We refer to an [n, k, d] code. In practice, the length n
of the code has to be kept small, because this causes costs for storing and transmitting.
The minimal distance d has to be big, since by lemma 5.5.5 this allows to many correct
errors. The dimension k of the code has to be big enough to allow enough code words.
From elementary linear algebra, one derives the singleton bound

k + d ≤ n+ 1

which shows that these goals are in competition.

Lemma 5.5.7.
Let q be the size of the alphabet of a code C, e.g. q = 2 for a code over F2. Let n be the length
of the code and d the minimum distance. Then we have

|C| ≤ qn−d+1 .

In particular, for a linear code over the field Fq of dimension k, we have |C| = qk so that we
obtain from |C| = qk ≤ qn−d+1 the singleton bound above.
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Proof.
Suppose that we have |C| > qn−d+1. Consider the first n− d+ 1 letters of the code words. The
offer qn−d+1 possibilities for the entries. Since we have more code words in C, by the pigeon
hole principle, there are two different code words c1, c2 ∈ C, c1 6= c2 whose first n−d+ 1 letters
coincide. Hence, they can differ in at most n − (n − d + 1) = d − 1 letters, which contradicts
the assumption that the distance is d. 2

Remarks 5.5.8.
1. Classical storage devices are typically localized, either in space (e.g. an electron or a

nuclear spin) or in momentum space (e.g. a photon polarization).

2. Many storage devices are magnetic, i.e. a collection of coupled spins. The Hamiltonian
is such that it favours the alignment of spins. So if one spin is kicked out by thermal
fluctuation, the Hamiltonian tends to push it back in the right position. Thus errors in
the storage device are corrected by the dynamics of the system. This idea will also enter
in the construction of quantum codes.

5.5.2 Classical gates

To process information, we need logical gates: A logical gate takes as an input n bits of infor-
mation an yields m bits as an output.

Definition 5.5.9
Let K = F2.

1. A gate is map f : Kn → Km. Typically, one requires a gate to act non-trivially only on
few, two or three) bits, i.e. to act as the identity on all except for a few summands of Kn.

2. A gate is called linear, if the map f is K-linear.

3. If the map f is invertible, the gate is called reversible.

4. A finite set of gates is called a library of gates. One then applies to Fn2 a sequence of gates
in the library acting on any subset of summands in Fn and as the identity elsewhere. The
composition of such maps is called a circuit.

5. A library of gates is called universal, for any Boolean function f(x1, x2, ..., xm), there
is a circuit consisting of gates in the library which takes x1, x2, . . . , xm and some extra
bits set to 0 or 1 and outputs x1, x2, . . . , xm, f(x1, x2, . . . , xm), and some extra bits (called
garbage). Essentially, this means that one can use the gates in the library to build systems
that perform any desired Boolean function computation.

We wish to use gates to implement the basic Boolean operations:

Examples 5.5.10.
1. Basic gates include negation NOT, AND and OR:

A ¬A
t f
f t

A B A ∧B
t t t
t f f
f t f
f f f

A B A ∨B
t t t
t f t
f t t
f f f
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These are gates acting on one bit resp. mapping two bits to one bit.

2. Also in use are the following gates acting on two bits:

A B NAND
t t f
t f t
f t t
f f t

A B NOR
t t f
t f f
f t f
f f t

A B XOR
t t f
t f t
f t t
f f f

3. It is an important theoretical question whether a library of gates is universal. For example,
the NAND gate is universal:

• To get the NOT gate, double the input and feed it into a NAND gate.

• To get the AND gate, take a NAND gate, followed by a NOT gate, which can be
constructed from a NAND gate.

• To get an OR gate, use de Morgan’s law: apply NOT gates to both inputs and feed
it into a NAND gate.

4. The Toffoli gate is the linear map

T : F3 → F3

given by the truth table
INPUT OUTPUT
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

It is the identity on the first two bits. If the first two bits are both one, then the last bit
is flipped. It thus acts

F3 → F3

(a, b, c) 7→ (a, b, c+ ab)

It is not linear, but universal: one can use Toffoli gates to build systems that will perform
any desired boolean function computation in a reversible manner.

5. To add two bits A and B, double the bits and feed them into a XOR gate to get the last
digit S of the sum and into an AND gate to get a carry-on bit C:

A B S=XOR C=AND
t=1 t=1 f=0 t=1
t=1 f=0 t=1 f=0
f=0 t=1 t=1 f=0
f=0 f=0 f=0 f=0

In such a way, one realizes the arithmetic operations on natural numbers.
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5.5.3 Codes and quantum computing

Quantum computation is based on quantum mechanical systems. Now states can be superposed,
which leads to a richer structure. On the other hand, the uncertainty principle introduces new
limitations, e.g. quantum information cannot be copied: there is no complete set of observables
characterizing a state completely that can be measured simultaneously. Moreover, there is no
canonical linear map V → V ⊗ V that can be defined without choosing a basis first.

We use the simplest possible quantum mechanical system: The state of the system is now not
a vector in Fn2 , but rather a vector in the following space: denote byH = C[Z2] the complex group
algebra of the cyclic group Z2. It will be essential that this is a finite-dimensional semisimple
Hopf algebra H with a two-sided integral. As a vector space, H ∼= C2, with a selected basis.
We can interpret this system as a non-interacting spin 1/2-particle with basis vectors | ↑〉 and
| ↓〉.

The analogue of the ambient vector space Fn2 is the tensor power V := H⊗n which we can
think of as n coupled spins. A quantum code is a linear subspace C ⊂ H⊗n on which the
dynamics should afford an error correction. We will say that a code vector v ∈ C is composed
of n qubits. We should mention that H has a natural unitary scalar product by declaring the
vectors of the canonical basis to be orthonormal.

To get a framework for quantum computing, we need to set up:

• Codes, i.e. interesting subspaces of H⊗n. To make quantum computing fault tolerant,
these subspaces should have special properties. In particular, in a physical realization,
the dynamics of the system should suppress errors.

• Gates, i.e. unitary operators acting on H⊗n that preserve these subspaces.

5.5.4 Quantum gates

First let us discuss quantum gates: for quantum computation, we need unitary operators H⊗n →
H⊗n to be realized by some time evolution. Unitarity implies reversibility.

Definition 5.5.11

1. A quantum gate on H⊗n is a unitary map H⊗n → H⊗n that acts as the identity on at
least n− 2 tensorands.

2. Consider a fixed finite set {Ui}i∈I of quantum gates, i.e. Ui ∈ U(H) or Ui ∈ U(H ⊗H),
called a library of quantum gates. Denote by Uαβ

i the gate Ui acting on the α and β
tensorand resp. Uα

i acting on the α tensorand of Hn. A quantum circuit based on this

library is a finite product of Uα
i and Uαβ

i . It is a unitary endomorphism of H⊗n.

3. A library of quantum gates is called universal, if for any n, the subgroup of U(H⊗n)
generated by all circuits is dense.

Examples 5.5.12.

1. An important example of a gate is the CNOT gate (controlled not gate) which acts on
two qubits: H⊗2 → H⊗2. The CNOT gate flips the second qubit (called the target qubit),
if and only if the first qubit (the control qubit) is 1. Here we write 1 = | ↑〉 and 0 = | ↓〉.
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Before After
Control Target Control Target

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

The resulting value of the second qubit corresponds to the result of a classical XOR gate
while the control qubit is unchanged.

An experimental realization of the CNOT gate was afforded by a single Beryllium ion in
a trap already in 1995 with a reliability of 90%. The two qubits were encoded into an
optical state and into the vibrational state of the ion.

2. The relative phase gate H → H acting on one qubit, a popular choice of which is in the
selected basis | ↑〉, | ↓〉: (

1 0
0 exp(2πi/5)

)
Similarly, the three Pauli matrices give rise to so-called Pauli gates acting on a single
qubit.

3. The library consisting of the CNOT gate and the relative phase gate can be shown to be
universal.

4. A universal gate is the Deutsch gate which depends on an angular parameter θ

H3 → H3

(a, b, c) 7→
{

i cos θ(a, b, c) + sin θ(a, b, 1− c) if a = b = 1
(a, b, c) else

For θ = π
2
, we recover the classical Toffoli gate. This is taken as an argument that all

operations possible in classical computing are possible in quantum computing.

5.5.5 Quantum codes

We can now define quantum codes. For a general reference, see [FKLW].

Definition 5.5.13
Denote by H again the complex group algebra of Z2 which is a Hopf algebra. We call a tensor
product V := H⊗n a discrete quantum medium. (Think of a system composed of n spin 1/2
particles.)

1. A quantum code is a linear subspace W ⊂ V of a quantum medium V . Sometimes, a
quantum code is also called a protected space.

2. Let 0 ≤ k ≤ n. A k-local operator is a linear map O : V → V which is the identity on
n− k tensorands of V . (By definition 5.5.11, quantum gates are thus at least 2-local.)

3. Denote by πW : V → W the orthogonal projection. A quantum code W ⊂ V is called a
k-code, if the linear operator

πW ◦O : W → W

is multiplication by a scalar for any k-local operator O.
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One can show the following analogue of a lemma 5.5.5:

Lemma 5.5.14.
If W is a k-code, then information cannot be degraded from errors operating on less than k

2
of

the n particles.

Remarks 5.5.15.

1. A first attempt to realize qubits might be to take isolated trapped particles, individual
atoms, trapped ions or quantum dots. Such a configuration is fragile and one has to
minimize any external interaction. On the other hand, external interaction is need to
write and read off information.

The idea of topological quantum computing is to use non-local degrees of freedom to
produce fault tolerant subspaces. Concretely, one needs non-abelian anyons in quasi two-
dimensional systems.

2. Storage devices are typically effectively two-dimensional. Thus the protected subspace
should be the space of states of a three-dimensional topological field theory. Maps de-
scribing gates and circuits are obtained from colored cobordisms, i.e. three-manifolds
containing links. For example, the quantum analogue of the XOR gate, the CNOT gate
can be realized to arbitrary precision by braids.

3. A theorem of Freedman, Kitaev and Wang asserts that quantum computers and classical
computers can perform exactly the same computations. But their efficiency is different,
e.g. for problems like factoring integers into primes.

5.5.6 Topological quantum computing and Turaev-Viro models

We now present a toy model for a system providing a quantum code where the Hamiltonian
describes a dynamics which tends to correct errors. It generalizes Kitaev’s toric code (which
is literally not suitable for quantum computing since it does not allow for universal gates for
which one needs more complicated, nonabelian representations of the braid group).

Since storage devices are (quasi)two-dimensional, we take a compact oriented surface Σ on
which the physical degrees of freedom are located. To get a discrete structure, take a polytope
decomposition ∆ of Σ.

Our input is a complex semisimple finite-dimensional ∗-Hopf algebra H. We give the defi-
nition and refer for more information to [KS97, Section 1.2.7].

Definition 5.5.16

1. Let H be a complex algebra. A conjugate-linear map ∗ : H → H which satisfies

(x∗)∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ H

is called an involution; an algebra with an involution is called a ∗-algebra. For a ∗-algebra,
we have 1∗H = 1H .

2. Let H be a coalgebra. A conjugate-linear map ∗ : H → H which satisfies

(x∗)∗ = x and ∆(x∗) = ∆(x)∗ for all x ∈ H

is called a ∗-coalgebra. Here the involution of H ⊗H is defined by (x⊗ y)∗ = x∗ ⊗ y∗. In
a ∗-coalgebra one always has ε(x∗) = ε(x), where the bar denotes complex conjugation.
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3. A bialgebra H with an involution for which it is both a ∗-algebra and a ∗-coalgebra is
called a ∗-bialgebra.

If a Hopf algebra H also has the structure of a ∗-bialgebra then the interplay between
antipode and involution is already determined:

S
(
S(x∗)∗

)
= x. for all x ∈ H

Consequently, a Hopf algebra with the structure of a ∗-bialgebra is called a Hopf ∗-algebra. Its
antipode is always invertible, even if H is not finite-dimensional.

Finally, one can show that the dual of a Hopf ∗-algebra H is again a Hopf ∗-algebra with
the involution given by

f ∗(x) = f
(
S(x)∗

)
for all f ∈ H∗ .

A finite-dimensional Hopf ∗-algebra H has a normalized two-sided integral, ε(Λ) = 1, called
the defindHaar integral. The Haar-integral λ ∈ H∗ allows to endow H with the structure of a
finite-dimensional Hilbert space by

〈h1, h2〉 := λ(h1 · h∗2) .

We allocate degrees of freedom to edges e of ∆ and consider as the discrete quantum medium
the K-vector space

V (Σ,∆) := ⊗e∈∆H .

Here we should first choose an orientation of the edges, and identify x 7→ S(x) if the orientation
is reversed. Since S2 = id, this isomorphism is well defined. It is clear that the discrete quantum
medium depends on the choice of a polytope decomposition.

To construct subspaces for quantum codes W ⊂ V , we need linear endomorphisms on V .

Definition 5.5.17

1. Let Σ be a two-dimensional manifold with a polytope decomposition ∆. A site of ∆ is a
pair (v, p), consisting of a face p and a vertex v adjacent to p.

2. For every site (v, p) of (Σ,∆) and every element a ∈ H, we define an endomorphism

A(v,p)(a) : V (Σ,∆)→ V (Σ,∆)

by a multiple coproduct and the left action of H on itself:

A(v,p)(a) :

p

v
xn

x2

x1

7→ v
a(n)xn

a(2)x2

a(1)x1

where the edges incident to the vertex v are indexed counterclockwise starting from p.
Here all edges incident to the vertex v are assumed to point away from v. Using the
antipode to change orientation, we see that for edges oriented towards the vertex v, the
left regular action has to be replaced by the following left action: instead of a(i)xi, we
have S

(
a(i)S(xi)

)
= xiS(a(i)).
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3. Given a site s = (v, p) of the polytope decomposition ∆ and every element α ∈ H∗, the
plaquette operator

B(v,p)(α) : V (Σ,∆)→ V (Σ,∆)

is defined by a multiple coproduct in H∗ and a left action where α.x = α ⇁ h of H∗ on
H.

B(v,p)(α) : p

v

xn

x2

x1

7→ p

v

α(n).xn

α(2).x2

α(1).x1

= 〈α, S(xn)(1) . . . (x1)(1))〉 p

v

(xn)(2)

(x2)(2)

(x1)(2)

We need the following

Lemma 5.5.18.
Let X be a representation of H, and Y a representation of H∗. For h ∈ H, α ∈ H∗, define the
endomorphisms ph, qα ∈ End(H ⊗X ⊗ Y ⊗H) by

ph(u⊗ x⊗ y ⊗ v) = h(1)u⊗ h(2)x⊗ y ⊗ vS(h(3))

qα(u⊗ x⊗ y ⊗ v) = α(3) ⇁ u⊗ x⊗ α(2).y ⊗ α(1) ⇁ v

Then these endomorphisms satisfy the straightening formula of D(H). Then the map

D(H)→ End(H ⊗X ⊗ Y ⊗H)

h⊗ α 7→ phqα

is a morphism of algebras.

Proof.
It is obvious that we have actions a 7→ pa and α 7→ pα of H and H∗. It remains to show that
these endomorphisms satisfy the straightening formula of D(H), cf. remark 4.4.15.2. This is
done in a direct, but tedious calculation in [BMCA, Lemma 1, Theorem 1]. 2

This allows us to show:

Theorem 5.5.19.

1. If v, w are distinct vertices of ∆, then the operators A(v,p)(a), A(w,p′)(b) commute for any
pair a, b ∈ H.

2. Similarly, if p, q are distinct plaquettes, then the operators B(v,p)(α), B(v′,q)(β) commute
for any pair α, β ∈ H∗.

3. If the sites are different, then the operators A(v,p)(h) and B(v′,p′)(α) commute.
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4. For a given site s = (v, p), the operators A(v,p)(h) and and B(v,p)(α) satisfy the commu-
tation relations of the Drinfeld double Z(H): the map

ρs : D(H)→ End(V (Σ,∆)) (4)

a⊗ α 7→ A(v,p)(a)B(v,p)(α) (5)

is an algebra morphism.

Proof.

1. The operators A−(v,−), A
−
(w,−) obviously commute if the edges incident to the vertex v and

those incident to the vertex w are disjoint. We therefore assume that the vertices v and w
are adjacent, i.e. at least one edge connects them. Clearly, we need only to check that the
actions of A−(v,−) and A−(w,−) commute on their common support. Suppose such an edge e

is oriented so that it points from the vertex v to the vertex w. Then A−(v,−) acts on the

corresponding copy of H via the left regular representation, and A−(w,−) acts on the copy
of H associated the edge e via the right regular representation. These are commuting
actions by associativity.

2. This statement is dual to 1, using coassociativity.

3. Follows by the same type of argument.

4. Follows from lemma 5.5.18.

2

Observation 5.5.20.

1. Let h ∈ H be a cocommutative element, i.e. ∆(h) = ∆opp(h). Then the multiple coproduct
∆(n)(h) ∈ H⊗n is cyclically invariant. As a consequence, the endomorphism A(s,p)(h) is
independent of the plaquette p which was previously used to construct a linear order on
the edges incident to the vertex v. We denote the endomorphism by As(h). Similarly,
Bp(f) for a cocommutative element f ∈ H∗ is independent on the vertex.

2. Recall that both H and H∗ have, as *-Hopf algebras, Haar integrals, i.e. normalized two-
sided integrals Λ ∈ H and λ ∈ H∗. Two-sided integrals are cocommutative. We thus get
an endomorphism Av := Av(Λ) for each vertex and Bp := Bp(λ) for each plaquette.

Lemma 5.5.21.
All endomorphisms Av and Bp commute with each other and are idempotents,

A2
v = Av and B2

p = Bp .

Proof.
For a normalized integral, we have Λ · Λ = ε(Λ)Λ = Λ. Theorem 5.5.19 now implies that the
endomorphisms are idempotents. A two-sided integral is central, Λ · h = ε(h)Λ = h · Λ for all
h ∈ H, which implies again with theorem 5.5.16 that the endomorphisms commute. 2
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One shows that with respect to the scalar product on the quantum medium H⊗n, these
endomorphisms are hermitian. We now define as a Hamiltonian the sum of these commuting
endomorphisms:

H :=
∑
v

(id− Av) +
∑
p

(id−Bp) .

As a sum over commuting hermitian endomorphisms, the Hamiltonian is Hermitian and
diagonalizable. Note that this Hamiltonian has to property to favour allignment of spins.

Definition 5.5.22
The ground state or protected subspace is the zero eigenspace of H:

K(Σ,∆) := {v ∈ H⊗n : Hv = 0}

It is a quantum code.

Note that the information is not stored here in a localized way, which gives hope that the
code will be fault tolerant.

Remarks 5.5.23.

1. One shows that x ∈ K(Σ,∆), if and only if Avx = x and Bpx = x for all vertices v and
all plaquettes p.

2. Up to canonical isomorphism, the ground space does not depend on the choice of polytope
decomposition ∆ of Σ.

3. In the case of a group algebra of a finite group, H = C[G], we use the distinguished basis
of H consisting of group elements of G. (Kitaev’s toric code uses the cyclic group Z2.) A
basis of V (Σ,∆) is given by assigning to any edge of ∆ a group element g. We interpret
the group elements g as the holonomy of a connection along the edge.

• The projection by the operator Av implements gauge invariance at the vertex v by
averaging with respect to the Haar measure.

• The projection by the operator Bp implements that locally on the face p the field
strength vanishes, i.e. that the connection is locally flat. Indeed, integrals project to
invariants and thus for the holonomy around a plaquette, we have ε(g1 ·g2 ·. . .·gn) = 1
which amounts to the flatness condition g1 · g2 · . . . · gn = e.

4. One can then easily modify at single sites the projection condition: instead of requiring
invariance under the action of the double associated to the site, one only keeps states
transforming in a specific representation of the double. In this way, again the category of
D(H−mod) appears in the description of degrees of freedoms at insertions.

One can now show [BK2]:

Theorem 5.5.24.
Let H be a finite-dimensional semisimple Hopf algebra. The vector spaces of ground states
constructed from the Hopf algebra H are canonically isomorphic to the vector spaces of the
Turaev-Viro topological field theory based on H and thus, by theorem 5.4.6 also to the vector
spaces appearing in the string-net construction.
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A Facts from linear algebra

A.1 Free vector spaces

Let K be a fixed field. To any K-vector space, we can associate the underlying set. Any K-linear
map is in particular a map of sets. We thus have a so-called forgetful functor U : vect(K)→ Set.
The functor U is faithful, but neither full nor essentially surjective. We also need a functor from
sets to K-vector spaces.

Definition A.1.1
Let S be a set and K be a field. A K-vector space V (S), together with a map of sets ιS : S →
V (S), is called the free vector space on the set S, if for any K-vector space W and any map

f : S → W of sets, there is a unique K-linear map f̃ : V (S) → W such that f̃ ◦ ιS = f . As a
commuting diagram:

S
ιS //

f !!

V (S)

∃!f̃
��
W

Remarks A.1.2.

1. A free vector space, if it exists, is unique up to unique isomorphism. Suppose that (V ′, ι′)
is another free vector space on the same set S. Consider the commutative diagram

V (S)

∃!φ
��

S

ιS
==

ιS

!!

ι′ // V ′

∃!φ′
��

V (S)

By the defining property of V (S), applied to the map ι′ of sets, we find a (unique) K-linear
map φ : V (S)→ V ′ such that the upper triangle commutes. By the defining property of
V ′, applied to the map ιS of sets, we find a (unique) K-linear map φ′ : V ′ → V (S) such
that the lower triangle commutes. Thus the outer triangle commutes, ιS = φ′ ◦ φ ◦ ιS. On
the other hand, ιS = idV (S) ◦ ιS, and by the defining property of V (S), such a map is
unique. Thus φ′ ◦ φ = idV (S). Exchanging the roles of V (S) and V ′, we find φ ◦ φ′ = idV .
Thus V (S) and V are isomorphic with distinguished isomorphisms.

2. The free vector space exists: take V (S) the set of maps S → K which take value zero
0 ∈ K almost everywhere. Adding the values of two maps (f + g)(s) := f(s) + g(s)
and taking scalar multiplication on the values (λf)(s) := λ · f(s) endows V (S) with the
structure of a K-vector space. To define the map ιS, let ιS(s) for s ∈ S be the map which
takes value 1 on the element s and zero on all other elements,

ιS(s)(s) = 1 ιS(s)(t) = 0 for t 6= s .

Then the set ιS(S) ⊂ V (S) is a K-basis. The condition f̃ ◦ ιS(s) = f(s) then fixes f̃
uniquely by its values on a basis. This shows that we have constructed the free vector
space on the set S.
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3. Let f : S → S ′ be any map of sets. Applying in the diagram

S
ιS //

f

��

V (S)

V (f)

��
S ′ ιS′

// V (S ′)

the defining property of the free vector space V (S) to the map ιS′ ◦ f of sets, we find a
unique K-linear map V (f) : V (S)→ V (S ′).

One checks that this defines a functor V : Set→ vect(K). For any K-vector space W and
any set S, we have a bijection of morphism spaces:

HomK(V (S),W ) ∼= HomSet(S, U(W ))

that is compatible with morphism of sets and K-linear maps. The functor V assigning to
a set the vector space generated by the set is thus a left adjoint to the forgetful functor
U , cf. definition 2.5.22.

A.2 Tensor products of vector spaces

We summarize some facts about tensor products of vector spaces over a field K.

Definition A.2.1
Let K be a field and let V,W and X be K-vector spaces. A K-bilinear map is a map

α : V ×W → X

that is K-linear in both arguments, i.e. α(λv + λ′v′, w) = λα(v, w) + λ′α(v′, w) and α(v, λw +
λ′w′) = λα(v, w) + λ′α(v, w′) for all λ, λ′ ∈ K and v, v′ ∈ V , w,w′ ∈ W .

Given any K-linear map ϕ : X → X ′, the map ϕ ◦ α : V ×W → X ′ is K-bilinear as well.
This raises the question of whether for two given K-vector spaces V,W , there is a “universal”
K-vector space with a universal bilinear map such that all bilinear maps out of V ×W can be
described in terms of linear maps out of this vector space.

Definition A.2.2
The tensor product of two K-vector spaces V,W is a pair, consisting of a K-vector space V ⊗W
and a bilinear map

κ : V ×W → V ⊗W
(v, w) 7→ v ⊗ w

with the following universal property: for any K-bilinear map

α : V ×W → U

there exists a unique linear map α̃ : V ⊗W → U such that

α = α̃ ◦ κ .

As a diagram:

V ×W α //

κ &&

U

V ⊗W
∃!α̃

;;
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Remarks A.2.3.

1. This reduces bilinear maps to linear maps.

2. We first show that the tensor product, if it exists, is unique up to unique isomorphism.
Suppose we have two bilinear maps

κ : V ×W → V ⊗W κ̃ : V ×W → V ⊗̃W .

having each the universal property.

Using the universal property of κ for the specific bilinear map κ̃, we find a unique linear
map Φκ̃ : V ⊗W → V ⊗̃W with Φκ̃ ◦ κ = κ̃.

Exchanging the roles of κ and κ̃, we obtain a linear map Φκ : V ⊗̃W → V ⊗ W with
Φκ ◦ κ̃ = κ. The maps κ = idV⊗W ◦ κ and Φκ ◦ Φκ̃ ◦ κ describe the same bilinear map
V ×W → V ⊗W . The uniqueness statement in the universal property implies Φκ ◦Φκ̃ =
idV⊗W . Similarly, we conclude Φκ̃ ◦ Φκ = idV ⊗̃W . Note that this is the same argument as
in remark A.1.2.

3. To show the existence of the tensor product, chose a basis B := (bi)i∈I of V and B′ :=
(b′i)i∈I′ of W . Since a bilinear map is uniquely determined by its values on all pairs
(bi, b

′
j)i∈I,j∈I′ , we need a vector space with a basis indexed by these pairs. Thus define

V ⊗W as the vector space freely generated by the set of these pairs. We denote by bi⊗ b′j
the corresponding element of the basis of V ⊗W .

The bilinear map κ is then defined by κ(bi, b
′
j) := bi ⊗ b′j. It has the universal property:

to any bilinear map α : V ×W → X, we associate the linear map α̃ : V ⊗W → X with
α̃(bi ⊗ b′j) = α(bi, b

′
j). By the uniqueness argument in 1. any two realizations, e.g. based

on different bases, are isomorphic up to unique isomorphism.

4. As a corollary, we conclude that for finite-dimensional vector spaces V,W , the dimension
of the tensor product is dimV ⊗W = dimV · dimW .

5. The elements of V ⊗W are called tensors; elements of the form v ⊗ w with v ∈ V and
w ∈ W are called simple tensors. The simple tensors span V ⊗W , but there are elements
of V ⊗W that are not tensor products of a vector v ∈ V and w ∈ W .

Observation A.2.4.
Given K-linear maps

ϕ : V → V ′ ψ : W → W ′

we obtain a K-linear map
ϕ⊗ ψ : V ⊗W → V ′ ⊗W ′

on the tensor products. To this end, consider the commuting diagram:

V ×W ⊗
//

ϕ×ψ
��

V ⊗W
∃!ϕ⊗ψ
��

V ′ ×W ′
⊗
// V ′ ⊗W ′

Since the map ⊗ ◦ (ϕ× ψ) is bilinear, the universal property of the tensor product implies the
existence of a map ϕ⊗ ψ for which the identity

(ϕ⊗ ψ)(v ⊗ w) = ϕ(v)⊗ ψ(w)

holds.
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Remarks A.2.5.

1. The bilinearity of κ implies that the tensor product of linear maps is bilinear:

(λ1ϕ1 + λ2ϕ2)⊗ ψ = λ1ϕ1 ⊗ ψ + λ2ϕ2 ⊗ ψ
ϕ⊗ (λ1ψ1 + λ2ψ2) = ϕ⊗ λ1ψ1 + ϕ⊗ λ2ψ2

2. Similarly, one deduces the following compatibility with direct sums:

(V1 ⊕ V2)⊗W ∼= (V1 ⊗W )⊕ (V2 ⊗W ) ,

and analogously in the second argument.

3. There are canonical isomorphisms

aU,V,W : (U ⊗ V )⊗W ∼−→ U ⊗ (V ⊗W )
u⊗ (v ⊗ w) 7→ (u⊗ v)⊗ w

which allow to identify the K-vector spaces U ⊗ (V ⊗W ) and (U ⊗ V ) ⊗W . With this
identification, the tensor product is strictly associative.

One verifies that the following diagram commutes:

(U ⊗ V )⊗ (W ⊗X) (U ⊗ V )⊗ (W ⊗X)

αU,V,W⊗X
��

((U ⊗ V )⊗W )⊗X
αU,V,W⊗idX

��

αU⊗V,W,X

OO

U ⊗ (V ⊗ (W ⊗X))

(U ⊗ (V ⊗W ))⊗X αU,V⊗W,X
// U ⊗ ((V ⊗W )⊗X)

idU⊗αV,W,X

OO

One can show that, as a consequence, any bracketing of multiple tensor products gives
canonically isomorphic vector spaces.

4. There are canonical isomorphisms

K⊗ V ∼−→ V
λ⊗ v 7→ λ · v

with inverse map v 7→ 1⊗ v which allow to consider the ground field K as a unit for the
tensor product. There is also a similar canonical isomorphism V ⊗K ∼= V . We will tacitly
apply the identifications described in 3. and 4. This shows that vect(K) is a monoidal
category.

5. For any pair U, V of K-vector spaces, there are canonical isomorphisms

cU,V : U ⊗ V → V ⊗ U
u⊗ v 7→ v ⊗ u ,

which allow to permute the factors. One has cV,U ◦ cU,V = idU⊗V as well as the identity

(cV,W ⊗ idU) ◦ (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW ) = (idW ⊗ cU,V ) ◦ (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W )

Note that in this identify, we have tacitly used the identification (U⊗V )⊗W ∼= U⊗(V ⊗
W ) from 3. This shows that vect(K) is a braided (even symmetric) monoidal category.
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6. For any pair of K-vector spaces vector spaces V,W , the canonical map

V ∗ ⊗W ∗ → (V ⊗W )∗

α⊗ β 7→ (v ⊗ w 7→ α(v) · β(w))

is an injection. If both V and W are finite-dimensional, this is an isomorphism. (Give an
example of a pair of infinite-dimensional vector spaces and an element that is not in the
image!)

7. For any pair of K-vector spaces V,W , the canonical map

V ∗ ⊗W → HomK(V,W )
α⊗ w 7→ (v 7→ α(v)w)

is an injection. If both V and W are finite-dimensional, this is an isomorphism. (Give
again an example of a pair of infinite-dimensional vector spaces and an element that is
not in the image!)

B Abelian categories

We start by requiring additional algebraic structure on the morphisms sets of categories. For
example, in the category R−Mod the morphisms sets were abelian groups. It is then natural
to study the class of functors that respect these structures.

Definition B.0.1
1. A category C is called additive, if

(a) All Hom-sets are abelian groups and the composition ◦ is bilinear.

(b) All finite products and coproducts exist in C.

2. Let C and D be additive categories. A functor F : C → D is called additive, if for every
pair X, Y of objects of C the map F : HomC(X, Y ) → HomD(F (X), F (Y )) is a group
homomorphism.

Remark B.0.2.
1. These axioms have many implications. In particular, additive categories have an initial

object, i.e. an object 0 ∈ C, from which there exists a unique morphism to every object
of C, and a terminal object. Initial and terminal object coincide.

2. For a given category it is thus a property to be an additive category, and this does not
require choosing any additional structure.

Definition B.0.3
1. Let f : a → b be a morphism in an additive category C. A morphism ι : k → a is called

kernel of f , and we write ι = ker(f), if f ◦ ι = 0 and for every morphism d
g→ a with

f ◦ g = 0 there exists a unique morphism d→ k, such that the diagram

k ι // a
f // b

d
∃!

^^

g

OO

0

@@

commutes.
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2. Dually, a morphism p : b → c is called cokernel of f , and we write p = coker(f), if for
every morphism g : b→ d with g ◦ f there exists a unique morphism c→ d such that the
following diagram commutes.

a
f //

0 ��

b

��

p // c

∃!��
d

In a general category, not every morphism has to have a kernel resp. cokernel. As usual for
object defined via universal properties, one can show that kernels, cokernels and images are
unique up to unique isomorphism, if they exist.

Definition B.0.4 Let C be a category.

1. A morphism ι : a → b is called a monomorphism, if ι ◦ f = ι ◦ f ′ implies f = f ′ for all
morphism f and f ′ with source b and equal target. (In an additive category it is sufficient
to require this for f ′ = 0.)

2. A morphism p : a → b is called an epimorphism, if f ◦ p = f ′ ◦ p implies f = f ′ for all
morphisms f, f ′ with target a and equal source.

Lemma B.0.5.
Let C be an additive category. Let f ∈ HomC(A,B) be a morphism that has a kernel K

ι→ A.
Then the kernel ι is a monomorphism. Dually, if f has a cokernel, then the cokernel is an
epimorphism.

Proof.
For an arbitrary object X we consider the zero morphism X

0→ A. By the universal property
of the kernel there exists a unique morphism φ, such that the diagram

ker f // A
f // B

X

0

OO

∃φ

bb

0

??

commutes. For the choice 0 for φ the diagram commutes as well, so we must have φ = 0. Given
X

g→ ker f with ker f ◦ g = 0, then we must have g = 0, so ker f is a monomorphism. 2

Definition B.0.6
Let C be a category. An additive category is called an abelian category, if every morphism has
a kernel and a cokernel, and the following compatibility condition holds:

– For every monomorphism ι : a → b one has ι = ker(coker(ι)). In the diagram for the
monomorphism

a
ι // b

cokerι // cokerι

ker cokerι

ker

OO

the left horizontal arrow and the vertical arrow have the same universal property.
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– For every epimorphism p : a→ b one has p = coker(ker(p)).

Remarks B.0.7.

1. For a given category it is again a property to be an abelian category, without choice of
an additional structure.

2. If a morphism in an arbitrary category f : a→ b can be decomposed as f = ι ◦ p, where
p : a → x is an epimorphism and ι : x → b a monomorphism, then the object x is called
an image of f and we write x = Im (f).

3. In abelian categories every morphism f can be written as f = ι◦p with ι a monomorphism
and p an epimorphism, and so all images exist.

Examples B.0.8.

1. For every ring R the category of R-modules is abelian, because kernels and cokernels are
defined on the level of the underlying abelian groups.

The converse also holds and is known as the full embedding theorem: every small abelian
category can be fully faithfully embedded in the category of modules over a suitable ring,
such that exactness properties are preserved, See e.g. B. Mitchell, Theory of categories,
Academic Press 1965, London-New York, p. 151.

2. If C is an abelian category, then so is the opposite category Copp. The kernels in Copp
are the cokernels in C and vice versa. Categorical language generally follows the design
principle that an X in C corresponds to a co-X in Copp.

We now have all required notions to make sense of exact sequences in abelian categories.
Abelian categories are thus a natural framework for homological algebra.

Definition B.0.9
Let F : C → D be an additive functor between abelian categories. We consider all short exact
sequences 0→ a′ → a→ a′′ → 0 in C. Now F is called

left exact, if 0 = F (0)→ F (a′)→ F (a)→ F (a′′) is exact for all short exact sequences in C;
right exact, if F (a′)→ F (a)→ F (a′′)→ 0 is exact for all short exact sequences in C;
exact, if 0→ F (a′)→ F (a)→ F (a′′)→ 0 is exact for all short exact sequences in C.

Examples B.0.10.

1. Let M be an R-right module. The functor M ⊗R − : R−Mod → Ab is right exact. It is
exact if and only if the module M is flat.

2. Let M be an R-module. The functor HomR(M,−) : R−Mod → Ab is left exact. It is
exact if and only if the module M is projective.

3. Let M be an R-module. The functor HomR(−,M) : (R−Mod)opp → Ab is left exact.

196



C Tanaka-Krein reconstruction

Let K be a field. In this subsection, we explain under what conditions a finite tensor category
over a field K can be described as the category of modules or comodules over a Hopf algebra.
We assume that the field K is algebraically closed of characteristic zero and that all categories
are essentially small, i.e. equivalent to a small category, a category in which the class of objects
is a set.

Definition C.0.1
Let C,D be abelian tensor categories. A fibre functor is an exact faithful tensor functor Φ :
C → D.

Examples C.0.2.

1. Let H be a bialgebra over a field K. The forgetful functor

F : H−mod → vect(K) ,

is a strict tensor functor. It is faithful, since by definition HomH−mod(V,W ) ⊂
Homvect(K)(V,W ). It is exact, since the kernels and images in the categories H−mod
and vect(K) are the same. Thus the forgetful functor F is a fibre functor.

2. There are tensor categories that do not admit a fibre functor to vector spaces. Deligne has
characterized [D, Theorem 7.1] those K-linear semisimple ribbon categories over a field
K of characteristic zero that admit a fibre functor: these are those categories for which
all objects have categorical dimensions that are non-negative integers.

We only sketch the proof of the following result:

Theorem C.0.3.
Let K be a field and C a K-linear abelian tensor category and

Φ : C → vectfd(K)

a fibre functor in the category of finite-dimensional K-vector spaces. Then there is a K-Hopf
algebra H and an equivalence of tensor categories

ω : C ∼−→ comod- H ,

such that the following diagram of monoidal functors commutes:

C

ω

��

Φ

))
vectfd(K)

comod−H
F

55

where F is the forgetful functor.

Proof.
We only sketch the idea and refer for details to the book by Chari and Pressley.
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• For any K-vector space M , consider the functor

Φ⊗M : C → vectfd(K)
U 7→ Φ(U)⊗K M ,

which is not monoidal, in general. We use these functors to construct a functor

Nat(Φ,Φ⊗−) : vectfd(K) → vectfd(K)

M 7→ Nat (Φ,Φ⊗M)

which is representable: there is a vector space H ∈ vectfd(K) and a natural isomorphism
of functors τ : vectfd(K)→ vectfd(K)

Hom(H,−)→ Nat (Φ,Φ⊗−)

i.e. natural isomorphisms of vector spaces for any M ∈ vectfd(K)

τM : HomK(H,M)
∼−→ Nat (Φ,Φ⊗M) .

• The natural identification

e : Φ→ Φ⊗K ∈ Nat(Φ,Φ⊗K)

gives a linear form ε := τ−1
K (e) ∈ Hom (H,K).

• Consider
δ := τH(idH) ∈ Nat(Φ,Φ⊗H)

which gives for any object U of C a natural K-linear map

δU : Φ(U)→ Φ(U)⊗K H .

Consider the natural transformation

(δ ⊗ idH) ◦ δ : Φ→ Φ⊗H → (Φ⊗H)⊗H ∼= Φ⊗ (H ⊗H) .

Then define
∆ := τ−1

H⊗H

(
(δ ⊗ idH) ◦ δ

)
∈ Hom(H,H ⊗H) .

One can show that ε and ∆ endow the vector space H with the structure of a counital
coassociative coalgebra over the field K.

• For the algebra structure on H, we use the monoidal structure on the functor Φ: consider

mU,V : Φ(U)⊗ Φ(V ) ∼= Φ(U ⊗ V )
δU⊗V−→ Φ(U ⊗ V )⊗H

∼= Φ(U)⊗ Φ(V )⊗H

which is an element in

Nat (Φ2,Φ2 ⊗H) ∼= Hom(H ⊗H,H) .

This gives an associative product with unit element

η : K ∼= Φ(I) δI−→ Φ(I)⊗H ∼= H .
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• In a similar way, one uses the duality on C to obtain an antipode on H and shows that
H becomes a Hopf algebra.

• One finally shows that H−mod ∼= C as monoidal categories.

2

Remark C.0.4.
There exist generalizations: by [BLV, Theorem 7.6], any finite tensor category C over a field
K is equivalent, as a tensor category, to the category of modules over a finite-dimensional left
Hopf algebroid over K.
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D Glossary German-English

For the benefit of German speaking students, we include a table with German versions of
important notions.

English German
abelian Lie algebra abelsche Lie-Algebra
absolutely simple object absolut einfaches Objekt
additive tensor category additive Tensorkategorie
adjoint functor adjungierter Funktor
alternating algebra alternierende Algebra
antipode Antipode
associator Assoziator
augmentation ideal Augmentationsideal
autonomous category autonome Kategorie

Boltzmann weights Boltzmann-Gewichte
braid Zopf
braid group Zopfgruppe
braided tensor category verzopfte Tensorkategorie
braided tensor functor verzopfter Tensorfunktor
braided vector space verzopfter Vektorraum
braiding Verzopfung

character Charakter
class function Klassenfunktion
coaction Kowirkung
code Code
coevaluation Koevaluation
coinvariant Koinvariante
commutativity constraint Kommutatitivitätsisomorphismus
convolution product Konvolutionsprodukt, Faltungsprodukt
coopposed coalgebra koopponierte Algebra
counitality Kounitarität

derivation Derivation
distinguished group-like element ausgezeichnetes gruppenartiges Element
dominating family dominierende Familie
Drinfeld center Drinfeld Zentrum
Drinfeld double Drinfeld-Doppel

enriched category angereicherte Kategorie
enveloping algebra einhüllende Algebra
error correcting code fehlerkorrigierender Code
essentially small category wesentlich kleine Kategorie
evaluation Evaluation
exterior algebra äußere Algebra
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English German
factorizable Hopf algebra faktorisierbare Hopf-Algebra
fibre functor Faserfunktor
forgetful functor Vergissfunktor
free vector space freier Vektorraum
fundamental groupoid Fundamentalgruppoid
fusion category Fusionskategorie

gate Gatter
gauge transformation Eichtransformation
group-like element gruppenartiges Element
groupoid Gruppoid

Hamming distance Hamming-Abstand
Haar integral Haarsches Maß
hexagon axioms Hexagon-Axiome
Hopf algebra Hopf-Algebra

isotopy Isotopie

knot Knoten

left adjoint functor linksadjungierter Funktor
left integral Linksintegral
left module Linksmodul
link Verschlingung
linking number Verschlingungszahl
modular category modulare Kategorie
modular element modulares Element
monodromy element Monodromie-Element

opposite algebra opponierte Algebra

pentagon axiom Pentagon-Axiom
pivotal category pivotale Kategorie
primitive element primitives Element
projective module projektiver Modul
pullback of a representation Pullback einer Darstellung

quantum circuit Quantenschaltkreis
quantum code Quantenkode
quantum gate Quantengatter
quantum group Quantengruppe
quasi-triangular bialgebra quasitrianguläre Bialgebra
Reidemeister move Reidemeister-Bewegung
representation Darstellung
right adjoint functor rechtsadjungierter Funktor
right integral Rechtsintegral
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English German
semisimple algebra halbeinfache Algebra
semisimple module halbeinfacher Modul (der)
separable algebra separable Algebra
simple module einfacher Modul (der)
skein Gebinde
skew antipode Schiefantipode
spherical category sphärische Kategorie
surgery Chirurgie

tensor unit Tensoreins
trace Spur
trefoil knot Kleeblattknoten
triangle axiom Dreiecksaxiom
trivial module trivialer Modul (der)

unimodular Hopf algebra unimodulare Hopf-Algebra
universal R-matrix universelle R-Matrix
universal enveloping algebra universelle einhüllende Algebra
universal quantum gate universelles Quantengatter
unknot trivialer Knoten, Unknoten

Yang-Baxter equation Yang-Baxter-Gleichung
Yetter-Drinfeld module Yetter-Drinfeld-Modul (der)
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Birkhäuser, Basel, 2017

205



Index

A-linear map, 9

abelian Lie algebra, 15
action groupoid, 12
adjoint equivalence, 53
adjoint functor, 51
algebra, 5
alternating algebra, 7
antialgebra map, 38
anticoalgebra map, 38
antipode, 37
associator, 29, 30
augmentation ideal, 28
autonomous category, 45

bialgebra, 26
bialgebra map, 27
bicategory, 165
biideal, 28
bilinear map, 184
Boltzmann weights, 127
bosonization, 137
boundary condition, 122
braid, 2
braid group, 2
braided tensor category, 108
braided tensor functor, 110
braided vector space, 1
braiding, 107

Cardy relation, 121
Casimir element, 93
categorical trace, 152
category, 10
central form, 143
character, 61, 103
character algebra, 143
class function, 143
coaction, 24
coalgebra, 21
coassociativity, 21
cobordism, 49
cocommutative coalgebra, 22
code, 172
coevaluation, 45
coideal, 24
cointegral, 71

coinvariant, 66
commutative algebra, 5
commutativity constraint, 107
convolution product, 37
coopposed coalgebra, 22
coproduct, 21
counit, 22

defining representation, 9
Deligne product, 143
Deligne tensor product, 167
derivation, 14
dimension, 152
distinguished group-like element, 78
Drinfeld center, 131
Drinfeld double, 138
Drinfeld map, 142
dual bases for a Frobenius form, 94

endomorphism, 10
enveloping algebra, 92
equivalence of categories, 19
error correcting code, 173
essentially small category, 187
evaluation, 45
exact functor, 85
exterior algebra, 7

factorizable Hopf algebra, 142
fibre functor, 187
finite category, 87
forgetful functor, 183
framed link, 159
free boundary, 116
free vector space on a set, 183
Frobenius algebra, 82
Frobenius map, 76
functor, 17
fundamental groupoid, 12
fusion category, 90

gate, 174
gauge transformation, 146
global dimension, 168
group algebra, 5
group-like element, 60
groupoid, 11

206



Haar integral, 181
half-braiding, 130
Hemming distance, 173
hexagon axioms, 107
Hopf algebra, 37
Hopf ideal, 38
Hopf module, 65

integrable vertex model, 128
intertwiner, 10
invariant, 66
isomorphism, 10
isotopy, 2, 159

Jacobi identity, 14

knot, 158
knowledgeable Frobenius algebra, 122

left adjoint functor, 51
left dual object, 45
left exact functor, 85
left integral, 71
left module, 7
left regular module, 8
Leibniz rule, 14
length of a code, 172
Lie algebra, 14
linear code, 172
link, 158
linking number, 160

Milnor-Moore theorem, 59
modular element, 78
modular functor, 167
modular tensor category, 162
module over a monad, 32
monad, 32
monadic adjunction, 56
monodromy element, 141
monoidal category, 29
monoidal functor, 33
monoidal natural transformation, 34
morphism, 10

Nakayama automorphism, 98
Nakayama functor, 99
natural isomorphism, 19
natural transformation, 19
Nichols algebra, 136

object, 10

open-closed TFT, 116
opposite algebra, 5

pentagon axiom, 29
pivotal category, 148
pivotal Hopf algebra, 148
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