Relative Singularity Categories

Martin Kalck

University of Bielefeld, Germany

Workshop on Matrix Factorizations 2013, Oberwolfach
4. September 2013
Motivation

\[X = \mathbb{C}^2 / \mathbb{Z}_2 \]
Motivation

\[X = \mathbb{C}^2 / \mathbb{Z}_2 \]

\[\pi \]

\[Y \rightarrow X \]
Motivation

\[\mathcal{D}^b(Y) \xleftarrow{\mathbb{L}\pi^*} \xrightarrow{\pi} \text{Perf}(X) \]
Motivation

\[\mathcal{D}^b\left(\Pi(\circ \begin{array}{c} \rightsquigarrow \\ \end{array} \circ) \right) \cong \mathcal{D}^b(Y) \]

Kapranov & Vasserot
Bridgeland, King & Reid

\[\mathbb{L}_\pi \pi^* \]

Derived McKay Correspondence

\[\mathcal{D}^b(Y) \]

\[\pi \]

\[\text{Perf}(X) \]
Idea (Van den Bergh)

Replace $D^b(Y)$ by $D^b(A)$ for a “nice” algebra A (e.g. $\text{gl. dim}(A) < \infty$) and consider it as categorical resolution of X if there is an embedding

$$\text{Perf}(X) \hookrightarrow D^b(A).$$
Introduction

Idea (Van den Bergh)

Replace $\mathcal{D}^b(Y)$ by $\mathcal{D}^b(A)$ for a “nice” algebra A (e.g. $\text{gl. dim}(A) < \infty$) and consider it as categorical resolution of X if there is an embedding

$$\text{Perf}(X) \hookrightarrow \mathcal{D}^b(A).$$

Setup

Let k be an algebraically closed field and (R, m) be a commutative complete Gorenstein k-algebra with isolated singularity and $R/m \cong k$.
Introduction

Idea (Van den Bergh)

Replace $\mathcal{D}^b(Y)$ by $\mathcal{D}^b(A)$ for a “nice” algebra A (e.g. $\text{gl. dim}(A) < \infty$) and consider it as categorical resolution of X if there is an embedding

$$\text{Perf}(X) \hookrightarrow \mathcal{D}^b(A).$$

Setup

Let k be an algebraically closed field and (R, \mathfrak{m}) be a commutative complete Gorenstein k-algebra with isolated singularity and $R/\mathfrak{m} \cong k$.

Definition

Let $M \in \text{MCM}(R) := \{ N \in \text{mod} - R | \text{Ext}^i_R(N, R) = 0 \text{ for all } i > 0 \}$ be a maximal Cohen–Macaulay module and $A := \text{End}_R(R \oplus M)$.

Martin Kalck (Bielefeld)

Relative Singularity Categories

Matrix Factorizations 2013
Introduction

Idea (Van den Bergh)

Replace $\mathcal{D}^b(Y)$ by $\mathcal{D}^b(A)$ for a “nice” algebra A (e.g. $\text{gl. dim}(A) < \infty$) and consider it as categorical resolution of X if there is an embedding

$$\text{Perf}(X) \hookrightarrow \mathcal{D}^b(A).$$

Setup

Let k be an algebraically closed field and (R, m) be a commutative complete Gorenstein k-algebra with isolated singularity and $R/m \cong k$.

Definition

Let $M \in \text{MCM}(R) := \{ N \in \text{mod} - R | \text{Ext}_R^i(N, R) = 0 \text{ for all } i > 0 \}$ be a maximal Cohen–Macaulay module and $A := \text{End}_R(R \oplus M)$. If $\text{gl. dim}(A) < \infty$, then A is a non-commutative resolution (NCR) and $\mathcal{D}^b(A)$ is a categorical resolution of R.
Two triangulated categories

- R: Gorenstein Singularity
Two triangulated categories

- R: Gorenstein Singularity

$\mathcal{D}_{sg}(R) := \frac{\mathcal{D}^b(\text{mod} - R)}{\mathcal{K}^b(\text{proj} - R)}$

Classical Singularity Category
Two triangulated categories

- \(R \): Gorenstein Singularity

\[
D_{sg}(R) := \frac{D^b(\text{mod } - R)}{K^b(\text{proj } - R)}
\]

Classical Singularity Category

‘measures complexity of singularities of Spec(\(R \))’
Two triangulated categories

- \(R \): Gorenstein Singularity
- \(A \): non-commutative resolution of \(R \)

\[D_{sg}(R) := \frac{D^b(\text{mod } -R)}{K^b(\text{proj } -R)} \]

Classical Singularity Category

‘measures complexity of singularities of Spec(\(R \))’
Two triangulated categories

- \(R \): Gorenstein Singularity
- \(A \): non-commutative resolution of \(R \)

Classical Singularity Category

\[
D_{sg}(R) := \frac{D^b(\text{mod } -R)}{K^b(\text{proj } -R)}
\]

Relative Singularity Category

\[
\Delta_R(A) := \frac{D^b(\text{mod } -A)}{K^b(\text{proj } -R)}
\]

‘measures complexity of singularities of Spec(\(R \))’
Two triangulated categories

- R: Gorenstein Singularity
- A: non-commutative resolution of R

\[
D_{sg}(R) := \frac{D^b(\text{mod } - R)}{K^b(\text{proj } - R)}
\]

Classical Singularity Category

\[
\Delta_R(A) := \frac{D^b(\text{mod } - A)}{K^b(\text{proj } - R)}
\]

Relative Singularity Category

- Buchweitz Orlov
- Chen Thanhoffer de Völcsy & Van den Bergh
- Burban & Kalck

Classical Singularity Category 'measures complexity of singularities of Spec(R)'

Relative Singularity Category 'measures difference between categorical resolution $D^b(A)$ and smooth part $D^b(R) \supseteq K^b(\text{proj } - R) \subseteq D^b(A)$'
Let $A = \text{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := D^b(A)/K^b(\text{proj } R)$ satisfies:

1. $\Delta_R(A)$ is Hom-finite, by [TV] or [KY].
2. There is an equivalence of triangulated categories $\Delta_R(A) \sim D_{sg}(R)$, where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $A = \text{End}_R(M)$, by [TV] or [KY].
3. If $\text{add } M$ has almost split sequences, then $\text{thick } (S_1, \ldots, S_t)$ has a Serre functor ν, whose action on the generators S_i is given by $\nu^n(S_i) \sim = S_i[2^n]$ (fractionally CY), where $n(S_i)$ is given by the length of the τ–orbit of M_i, by [KY].
Properties of the relative singularity category

Let $A = \text{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := \mathcal{D}^b(A)/K^b(\text{proj} - R)$ satisfies:

- $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].
Properties of the relative singularity category

Let $A = \text{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := D^b(A)/K^b(\text{proj} - R)$ satisfies:

- $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].
- There is an equivalence of triangulated categories

$$\frac{\Delta_R(A)}{\text{thick}(S_1, \ldots, S_t)} \xrightarrow{\sim} D_{sg}(R),$$

where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $A = \text{End}_R(M)$, by [TV] or [KY].
Properties of the relative singularity category

Let $A = \text{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := \mathcal{D}^b(A)/K^b(\text{proj} - R)$ satisfies:

- $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].
- There is an equivalence of triangulated categories

$$\frac{\Delta_R(A)}{\text{thick}(S_1, \ldots, S_t)} \sim \mathcal{D}_{sg}(R),$$

where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $A = \text{End}_R(M)$, by [TV] or [KY].

- If $\text{add } M$ has almost split sequences, then $\text{thick}(S_1, \ldots, S_t)$ has a Serre functor ν,
Let $A = \text{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := D^b(A)/K^b(\text{proj} - R)$ satisfies:

- $\Delta_R(A)$ is Hom-finite, by [TV] or [KY].
- There is an equivalence of triangulated categories

$$\frac{\Delta_R(A)}{\text{thick}(S_1, \ldots, S_t)} \sim D_{sg}(R),$$

where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $A = \text{End}_R(M)$, by [TV] or [KY].

- If $\text{add } M$ has almost split sequences, then $\text{thick}(S_1, \ldots, S_t)$ has a Serre functor ν, whose action on the generators S_i is given by

$$\nu^n(S_i) \cong S_i[2n] \quad (\text{fractionally CY})$$
Properties of the relative singularity category

Let $A = \text{End}_R(R \oplus M)$ be a NCR of a Gorenstein k-algebra R as above. The relative singularity category $\Delta_R(A) := D^b(A)/K^b(\text{proj} - R)$ satisfies:

- $\Delta_R(A)$ is **Hom-finite**, by [TV] or [KY].
- There is an equivalence of triangulated categories

$$\frac{\Delta_R(A)}{\text{thick}(S_1, \ldots, S_t)} \xrightarrow{\sim} D_{sg}(R),$$

where S_1, \ldots, S_t denote the simple modules over the stable endomorphism algebra $A = \text{End}_R(M)$, by [TV] or [KY].
- If $\text{add } M$ has almost split sequences, then $\text{thick}(S_1, \ldots, S_t)$ has a Serre functor ν, whose action on the generators S_i is given by

$$\nu^n(S_i) \cong S_i[2n] \quad \text{(fractionally CY)}$$

where $n = n(S_i)$ is given by the length of the τ–orbit of M_i, by [KY].
A natural question

- R: Gorenstein Singularity
- A: non-commutative resolution of R

\[
D_{sg}(R) := \frac{D^b(\text{mod} - R)}{K^b(\text{proj} - R)}
\]

Classical Singularity Category

‘measures complexity of singularities of Spec(R)’

\[
\Delta_R(A) := \frac{D^b(\text{mod} - A)}{K^b(\text{proj} - R)}
\]

Relative Singularity Category

‘measures difference between categorical resolution $D^b(A)$ and smooth part $D^b(R) \supseteq K^b(\text{proj} - R) \subseteq D^b(A)$’

Buchweitz

Orlov

Chen

Thanhoffer de Völcsey & Van den Bergh

Burban & Kalck

Relation?
Main result

A first answer to this question was obtained in joint work with Dong Yang.
Main result

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be MCM–representation finite complete Gorenstein k-algebras with *Auslander algebras* $A = \text{Aus}(R)$ respectively $A' = \text{Aus}(R')$.

Remark

Kn"orrer's Periodicity yields a wealth of non-trivial examples for (i):

$$D_{sg}(S/(f)) \sim \rightarrow D_{sg}(S/J_{x,y}K/(f + xy)),$$

where $S = kJ_0, \ldots, z_d K$, $f \in (z_0, \ldots, z_d)$ and $d \geq 0$.
A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let \(R \) and \(R' \) be MCM–representation finite complete Gorenstein \(\kappa \)-algebras with \textbf{Auslander algebras} \(A = \text{Aus}(R) \) respectively \(A' = \text{Aus}(R') \). Then the following statements are equivalent.

(i) There is a triangle equivalence \(\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R') \).
Main result

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be MCM–representation finite complete Gorenstein k-algebras with Auslander algebras $A = \text{Aus}(R)$ respectively $A' = \text{Aus}(R')$. Then the following statements are equivalent.

(i) There is a triangle equivalence $\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$.

(ii) There is a triangle equivalence $\Delta_R(A) \cong \Delta_{R'}(A')$.
Main result

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be MCM–representation finite complete Gorenstein k-algebras with **Auslander algebras** $A = \text{Aus}(R)$ respectively $A' = \text{Aus}(R')$. Then the following statements are equivalent.

(i) There is a triangle equivalence $\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$.

(ii) There is a triangle equivalence $\Delta_R(A) \cong \Delta_{R'}(A')$.

The implication (ii) \Rightarrow (i) holds more generally for arbitrary NCRs A and A' of arbitrary isolated Gorenstein singularities R and R'.
Main result

A first answer to this question was obtained in joint work with Dong Yang.

Theorem

Let R and R' be MCM–*representation finite* complete Gorenstein k-algebras with *Auslander algebras* $A = \text{Aus}(R)$ respectively $A' = \text{Aus}(R')$. Then the following statements are equivalent.

(i) There is a triangle equivalence $\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$.

(ii) There is a triangle equivalence $\Delta_R(A) \cong \Delta_{R'}(A')$.

The implication (ii) \Rightarrow (i) holds more generally for arbitrary NCRs A and A' of arbitrary isolated Gorenstein singularities R and R'.

Remark

Kn"orrer’s Periodicity yields a wealth of non-trivial examples for (i):

$$\mathcal{D}_{sg}(S/(f)) \xrightarrow{\sim} \mathcal{D}_{sg}(S[[x, y]]/(f + xy)),$$

where $S = k[z_0, \ldots, z_d]$, $f \in (z_0, \ldots, z_d)$ and $d \geq 0$.
Let \(R = \mathbb{C}[x]/(x^2) \) and \(R' = \mathbb{C}[x, y, z]/(x^2 + yz) \). Knörrer’s equivalence and our theorem above yield a triangle equivalence

\[
\Delta_R(\text{Aus}(R)) \cong \Delta_{R'}(\text{Aus}(R')),
\]

where the right-hand side is the completion of the preprojective algebra of the Kronecker quiver \(\Pi \).
Let $R = \mathbb{C}[x]/(x^2)$ and $R' = \mathbb{C}[x, y, z]/(x^2 + yz)$. Knörrer's equivalence and our theorem above yield a triangle equivalence

$$\Delta_R(\text{Aus}(R)) \cong \Delta_{R'}(\text{Aus}(R')),$$

which may be written explicitly as

$$\mathcal{D}^b\left(\begin{array}{c}
1 & \rightarrow & 2 \\
\rightarrow & i & \rightarrow & \rightarrow \\
K^b(\text{add } P_1)
\end{array}\right) / (pi) \sim \mathcal{D}^b\left(\begin{array}{c}
1 & \rightarrow & 2 \\
\rightarrow & y & \rightarrow & x \\
\rightarrow & x & \rightarrow & \rightarrow \\
K^b(\text{add } P_1)
\end{array}\right) / (xy - yx).$$
Let $R = \mathbb{C}[x]/(x^2)$ and $R' = \mathbb{C}[x, y, z]/(x^2 + yz)$. Knörrer’s equivalence and our theorem above yield a triangle equivalence

$$\Delta_R(\text{Aus}(R)) \cong \Delta_{R'}(\text{Aus}(R')),$$

which may be written explicitly as

$$D^b\left(\frac{1 \quad p \quad 2}{i \quad (pi)} \right) \cong K^b(\text{add } P_1) \quad \rightsquigarrow \quad D^b\left(\frac{1 \quad x \quad y \quad 2}{y \quad p \quad x} \right) \cong K^b(\text{add } P_1).$$

The quiver algebra on the right hand side is the **completion** of the preprojective algebra of the Kronecker quiver $\Pi(\circ \quad \circ \quad \circ)$.

Example
Idea of the proof

Key Statement (Kalck & Yang)

There exists a dg-algebra $\Lambda_{dg}(R)$ such that

- $\text{per } \Lambda_{dg}(R) \cong \Delta_R(\text{Aus}(R))$.
Idea of the proof

Key Statement (Kalck & Yang)

There exists a dg-algebra $\Lambda_{dg}(R)$ such that

- $\text{per} \, \Lambda_{dg}(R) \cong \Delta_R(\text{Aus}(R))$.
- $\Lambda_{dg}(R)$ is determined by $\mathcal{D}_{sg}(R)$.
Idea of the proof

Key Statement (Kalck & Yang)

There exists a dg-algebra $\Lambda_{dg}(R)$ such that

- $\text{per } \Lambda_{dg}(R) \cong \Delta_R(\text{Aus}(R))$.
- $\Lambda_{dg}(R)$ is determined by $\mathcal{D}_{sg}(R)$.

We call $\Lambda_{dg}(R)$ the dg-Auslander algebra of $\mathcal{D}_{sg}(R)$.
Idea of the proof

Key Statement (Kalck & Yang)

There exists a dg-algebra $\Lambda_{dg}(R)$ such that

- $\text{per} \, \Lambda_{dg}(R) \cong \Delta_R(\text{Aus}(R))$.
- $\Lambda_{dg}(R)$ is determined by $\mathcal{D}_{sg}(R)$.

We call $\Lambda_{dg}(R)$ the dg-Auslander algebra of $\mathcal{D}_{sg}(R)$.

Corollary

$\mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R')$ implies $\Delta_R(\text{Aus}(R)) \cong \Delta_{R'}(\text{Aus}(R'))$.
Example: The dg-Auslander algebra of an odd-dimensional \mathbb{E}_8-singularity: $f = z_0^3 + z_1^5 + z_2^2 + \ldots + z_d^2$

degree $\mapsto 0$
Example: The dg-Auslander algebra of an odd-dimensional E_8-singularity: $f = z_0^3 + z_1^5 + z_2^2 + \ldots + z_d^2$

$$\begin{align*}
\text{degree } (\rightarrow) &= 0 \\
\text{degree } (\leftarrow) &= -1
\end{align*}$$
Example: The dg-Auslander algebra of an odd-dimensional E_8-singularity: $f = z_0^3 + z_1^5 + z_2^2 + \ldots + z_d^2$

$$d(\rho_4) = \alpha_2 \alpha_2^* + \alpha_3 \alpha_4^* = \text{mesh relation}$$
The converse direction:

\[\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R') \]
The converse direction:
\[\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R') \]

Proposition

Let \(A \) be a Noetherian ring and let \(e \in A \) be an idempotent. The exact functor \(\text{Hom}_A(eA, -) \) induces an equivalence of triangulated categories

\[
\frac{\mathcal{D}^b(\text{mod} -A)/\text{thick}(eA)}{\text{thick}(\text{mod} -A/AeA)} \sim \mathcal{D}_{sg}(eAe).
\]
The converse direction:
\[\Delta_R(A) \cong \Delta_{R'}(A') \implies D_{sg}(R) \cong D_{sg}(R') \]

Proposition

Let \(A \) be a Noetherian ring and let \(e \in A \) be an idempotent. The exact functor \(\text{Hom}_A(eA, -) \) induces an equivalence of triangulated categories

\[
\frac{\mathcal{D}^b(\text{mod } -A) / \text{thick}(eA)}{\text{thick}(\text{mod } -A/AeA)} \sim D_{sg}(eAe).
\]

Corollary

Let \(A = \text{End}_R(R \oplus M) \) be an NCR and \(e := \text{id}_R \in A \).
The converse direction:
\[\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R') \]

Proposition

Let \(A \) be a Noetherian ring and let \(e \in A \) be an idempotent. The exact functor \(\text{Hom}_A(eA, -) \) induces an equivalence of triangulated categories

\[
\frac{\mathcal{D}^b(\text{mod} - A)/\text{thick}(eA)}{\text{thick}(\text{mod} - A/AeA)} \sim \mathcal{D}_{sg}(eAe).
\]

Corollary

Let \(A = \text{End}_R(R \oplus M) \) be an NCR and \(e := \text{id}_R \in A \). Then \(R \cong eAe \), \(K^b(\text{proj} - R) \cong \text{thick}(eA) \).
The converse direction:
\[\Delta_R(A) \cong \Delta_{R'}(A') \implies \mathcal{D}_{sg}(R) \cong \mathcal{D}_{sg}(R') \]

Proposition

Let \(A \) be a Noetherian ring and let \(e \in A \) be an idempotent. The exact functor \(\text{Hom}_A(eA, -) \) induces an equivalence of triangulated categories

\[
\frac{\mathcal{D}^b(\text{mod } -A)/\text{thick}(eA)}{\text{thick}(\text{mod } -A/AeA)} \sim \mathcal{D}_{sg}(eAe).
\]

Corollary

Let \(A = \text{End}_R(R \oplus M) \) be an NCR and \(e := \text{id}_R \in A \). Then \(R \cong eAe \), \(K^b(\text{proj } -R) \cong \text{thick}(eA) \) and there is a triangle equivalence

\[
\frac{\Delta_R(A)}{\text{thick}(\text{mod } -A/AeA)} \sim \mathcal{D}_{sg}(R).
\]
A “purely commutative” application
Rational surface singularities

Setup

Let \((R, m)\) be a complete local \textbf{rational} normal surface singularity over an algebraically closed field of characteristic zero,
Rational surface singularities

Setup

Let \((R, \mathfrak{m})\) be a complete local rational normal surface singularity over an algebraically closed field of characteristic zero, i.e. \(H^1(X, \mathcal{O}_X) = 0\), where \(X \to \text{Spec}(R)\) is a resolution of singularities.

Example (Brieskorn) Quotient singularities \(\mathbb{C}^2/G\) are rational.

Definition A maximal Cohen–Macaulay \(R\)-module is special if \(\text{Ext}^1_R(M, R) = 0\).

Theorem (Wunram’s generalization of the McKay-Correspondence) There is a natural bijection between indecomposable special MCMs and irreducible components of the exceptional curve \(E = \pi^{-1}(\mathfrak{m})\), where \(\pi: Y \to \text{Spec}(R)\) is the minimal resolution of singularities.
Rational surface singularities

Setup

Let \((R, \mathfrak{m})\) be a complete local **rational** normal surface singularity over an algebraically closed field of characteristic zero, i.e. \(H^1(X, \mathcal{O}_X) = 0\), where \(X \to \text{Spec}(R)\) is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \(\mathbb{C}^2/G\) are rational.
Rational surface singularities

Setup

Let \((R, m)\) be a complete local rational normal surface singularity over an algebraically closed field of characteristic zero, i.e. \(H^1(X, \mathcal{O}_X) = 0\), where \(X \to \text{Spec}(R)\) is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \(\mathbb{C}^2/G\) are rational.

Definition

A maximal Cohen–Macaulay \(R\)-module is special if \(\text{Ext}^1_R(M, R) = 0\).
Rational surface singularities

Setup

Let \((R, \mathfrak{m})\) be a complete local \textbf{rational} normal surface singularity over an algebraically closed field of characteristic zero, i.e. \(H^1(X, \mathcal{O}_X) = 0\), where \(X \to \text{Spec}(R)\) is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \(\mathbb{C}^2/G\) are rational.

Definition

A maximal Cohen–Macaulay \(R\)-module is \textbf{special} if \(\text{Ext}^1_R(M, R) = 0\).

Theorem (Wunram’s generalization of the McKay-Correspondence)

\textit{There is a \textbf{natural bijection} between indecomposable \textbf{special} MCMs}
Rational surface singularities

Setup

Let (R, \mathfrak{m}) be a complete local rational normal surface singularity over an algebraically closed field of characteristic zero, i.e. $H^1(X, \mathcal{O}_X) = 0$, where $X \to \text{Spec}(R)$ is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \mathbb{C}^2 / G are rational.

Definition

A maximal Cohen–Macaulay R-module is special if $\text{Ext}^1_R(M, R) = 0$.

Theorem (Wunram’s generalization of the McKay-Correspondence)

There is a natural bijection between indecomposable special MCMs and irreducible components of the exceptional curve $E = \pi^{-1}(\mathfrak{m})$, where $\pi : Y \to \text{Spec}(R)$ is the minimal resolution of singularities.
Rational surface singularities

Setup

Let (R, \mathfrak{m}) be a complete local rational normal surface singularity over an algebraically closed field of characteristic zero, i.e. $H^1(X, \mathcal{O}_X) = 0$, where $X \to \text{Spec}(R)$ is a resolution of singularities.

Example (Brieskorn)

Quotient singularities \mathbb{C}^2/G are rational.

Definition

A maximal Cohen–Macaulay R-module is special if $\text{Ext}^1_R(M, R) = 0$.

Theorem (Wunram’s generalization of the McKay-Correspondence)

There is a natural bijection between indecomposable special MCMs and irreducible components of the exceptional curve $E = \pi^{-1}(\mathfrak{m})$, where $\pi: Y \to \text{Spec}(R)$ is the minimal resolution of singularities.
The Frobenius category of Special MCM-modules

In general, R is **not Gorenstein**. In that case, $\text{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.
The Frobenius category of Special MCM-modules

In general, R is **not Gorenstein**. In that case, $\text{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there “nice” triangulated categories for rational surface singularities?
In general, R is not Gorenstein. In that case, $\text{MCM}(R)$ is not Frobenius. Moreover, the singularity category is not Krull-Schmidt.

Question

Are there “nice” triangulated categories for rational surface singularities?

The category of special MCMs ($\text{SCM}(R)$) has the following properties:
- Wunram’s Theorem shows that $\text{SCM}(R)$ is representation-finite.
The Frobenius category of Special MCM-modules

In general, R is **not Gorenstein**. In that case, $\text{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there “nice” triangulated categories for rational surface singularities?

The category of special MCMs ($\text{SCM}(R)$) has the following properties:
- Wunram’s Theorem shows that $\text{SCM}(R)$ is **representation-finite**. Let $M_0 = R, M_1, \ldots, M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda := \text{End}_R(\bigoplus_i M_i)$
In general, R is not Gorenstein. In that case, $\text{MCM}(R)$ is not Frobenius. Moreover, the singularity category is not Krull-Schmidt.

Question

Are there “nice” triangulated categories for rational surface singularities?

The category of special MCMs ($\text{SCM}(R)$) has the following properties:

- Wunram’s Theorem shows that $\text{SCM}(R)$ is representation-finite. Let $M_0 = R, M_1, \ldots, M_t$ be the set of indecomposable special MCMs. The reconstruction algebra $\Lambda := \text{End}_R(\bigoplus_i M_i)$ has gl. dim ≤ 3, by work of Wemyss.
The Frobenius category of Special MCM-modules

In general, R is not Gorenstein. In that case, $\text{MCM}(R)$ is not Frobenius. Moreover, the singularity category is not Krull-Schmidt.

Question

Are there “nice” triangulated categories for rational surface singularities?

The category of special MCMs ($\text{SCM}(R)$) has the following properties:

- Wunram’s Theorem shows that $\text{SCM}(R)$ is representation-finite.
 Let $M_0 = R, M_1, \ldots, M_t$ be the set of indecomposable special MCMs. The reconstruction algebra $\Lambda := \text{End}_R(\bigoplus_i M_i)$ has $\text{gl. dim} \leq 3$, by work of Wemyss.

- $\text{SCM}(R)$ is a Frobenius category (Iyama & Wemyss),
The Frobenius category of Special MCM-modules

In general, R is **not Gorenstein**. In that case, $\text{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there “nice” triangulated categories for rational surface singularities?

The category of special MCMs ($\text{SCM}(R)$) has the following properties:

- Wunram’s Theorem shows that $\text{SCM}(R)$ is **representation-finite**. Let $M_0 = R, M_1, \ldots, M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda := \text{End}_R(\bigoplus_i M_i)$ has $\text{gl. dim} \leq 3$, by work of Wemyss.
- $\text{SCM}(R)$ is a **Frobenius category** (Iyama & Wemyss),
- and the **projectives** are in bijection with $(-n)$-curves $n \geq 3$.

...
In general, R is not Gorenstein. In that case, $\text{MCM}(R)$ is not Frobenius. Moreover, the singularity category is not Krull-Schmidt.

Question

Are there “nice” triangulated categories for rational surface singularities?

The category of special MCMs ($\text{SCM}(R)$) has the following properties:

- Wunram’s Theorem shows that $\text{SCM}(R)$ is representation-finite. Let $M_0 = R, M_1, \ldots, M_t$ be the set of indecomposable special MCMs. The reconstruction algebra $\Lambda := \text{End}_R(\bigoplus_i M_i)$ has $\text{gl. dim} \leq 3$, by work of Wemyss.
- $\text{SCM}(R)$ is a Frobenius category (Iyama & Wemyss), and the projectives are in bijection with $(-n)$-curves $n \geq 3$.

Answer

We may take the stable category $\text{SCM}(R)$.
The Frobenius category of Special MCM-modules

In general, R is **not Gorenstein**. In that case, $\text{MCM}(R)$ is **not Frobenius**. Moreover, the singularity category is **not Krull-Schmidt**.

Question

Are there “nice” triangulated categories for rational surface singularities?

The category of special MCMs ($\text{SCM}(R)$) has the following properties:

- Wunram’s Theorem shows that $\text{SCM}(R)$ is **representation-finite**. Let $M_0 = R, M_1, \ldots, M_t$ be the set of **indecomposable** special MCMs. The **reconstruction algebra** $\Lambda := \text{End}_R(\bigoplus_i M_i)$ has $\text{gl. dim} \leq 3$, by work of Wemyss.

- $\text{SCM}(R)$ is a **Frobenius category** (Iyama & Wemyss),

- and the **projectives** are in bijection with $(-n)$-curves $n \geq 3$.

Answer

We may take the **stable category** $\text{SCM}(R)$. If R is Gorenstein, then $\text{SCM}(R) \cong \text{MCM}(R) \cong \mathcal{D}_{sg}(R)$.

Martin Kalck (Bielefeld)
Relative Singularity Categories
Matrix Factorizations 2013
14 / 17
Description of the stable category $\text{SCM}(R)$

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

*Let R be a rational surface singularity with minimal resolution Y.

Then there are triangle equivalences

$$\text{SCM}(R) \sim = D_{sg}(X) \sim = \bigoplus_{x \in \text{Sing}(X)} \text{MCM}(\hat{O}_x).$$

In particular, $\text{SCM}(R)$ is 1-CY and there is a natural isomorphism $\sim = \text{id}$.

The second equivalence follows from Orlov's Localization Theorem and Buchweitz' equivalence.*
This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by **contracting the exceptional** (-2)-curves.

It is well-known that $\text{Sing}(X)$ consists of isolated singularities, which are rational double points. Then there are triangle equivalences $\text{SCM}(R) \sim D_{\text{sg}}(X) \sim \bigoplus_{x \in \text{Sing}(X)} MCM(\hat{\mathcal{O}}_x)$.

In particular, $\text{SCM}(R)$ is 1-CY and there is a natural isomorphism $\sim \cong \text{id}$.

The second equivalence follows from Orlov's Localization Theorem and Buchweitz' equivalence.
This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by **contracting the exceptional** (-2)-curves. It is well-known that $\text{Sing}(X)$ consists of isolated singularities, which are rational double points.

Then there are triangle equivalences

$$\text{SCM}(R) \cong \text{Dsg}(X) \cong \bigoplus_{x \in \text{Sing}(X)} \text{MCM}(\hat{\mathcal{O}}_x).$$

In particular, $\text{SCM}(R)$ is 1-CY and there is a natural isomorphism $\sim = \text{id}$. The second equivalence follows from Orlov's Localization Theorem and Buchweitz' equivalence.
Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by contracting the exceptional (-2)-curves. It is well-known that $\text{Sing}(X)$ consists of isolated singularities, which are rational double points. Then there are triangle equivalences

$$\frac{\text{SCM}(R)}{\text{SCM}(R)} \cong \mathcal{D}_{sg}(X) \cong \bigoplus_{x \in \text{Sing}(X)} \text{MCM}(\hat{\mathcal{O}}_x).$$

In particular, $\frac{\text{SCM}(R)}{\text{SCM}(R)}$ is 1-CY and there is a natural isomorphism $\sim \cong \text{id}$. The second equivalence follows from Orlov's Localization Theorem and Buchweitz' equivalence.
Description of the stable category \(\text{SCM}(R) \)

This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let \(R \) be a rational surface singularity with minimal resolution \(Y \). Let \(X \) be obtained from \(Y \) by **contracting the exceptional \((-2)\)-curves**. It is well-known that \(\text{Sing}(X) \) consists of isolated singularities, which are **rational double points**. Then there are triangle equivalences

\[
\text{SCM}(R) \cong \mathcal{D}_{sg}(X) \cong \bigoplus_{x \in \text{Sing}(X)} \text{MCM}(\widehat{\mathcal{O}}_x).
\]

In particular, \(\text{SCM}(R) \) is 1-CY and there is a natural isomorphism \([2] \cong \text{id}\).
This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by **contracting** the exceptional (-2)-curves. It is well-known that $\text{Sing}(X)$ consists of isolated singularities, which are **rational double points**. Then there are triangle equivalences

$$\text{SCM}(R) \cong \mathcal{D}_{sg}(X) \cong \bigoplus_{x \in \text{Sing}(X)} \text{MCM}(\hat{\mathcal{O}}_x).$$

In particular, $\text{SCM}(R)$ is 1-CY and there is a natural isomorphism $[2] \cong \text{id}$.

The second equivalence follows from Orlov’s Localization Theorem and Buchweitz’ equivalence.
This is joint work with Osamu Iyama, Michael Wemyss & Dong Yang.

Theorem

Let R be a rational surface singularity with minimal resolution Y. Let X be obtained from Y by **contracting the exceptional** (-2)-curves. It is well-known that $\text{Sing}(X)$ consists of isolated singularities, which are **rational double points**. Then there are triangle equivalences

$$
\text{SCM}(R) \cong \mathcal{D}_{sg}(X) \cong \bigoplus_{x \in \text{Sing}(X)} \text{MCM}(\mathcal{O}_x).
$$

In particular, $\text{SCM}(R)$ is 1-CY and there is a natural isomorphism $[2] \cong \text{id}$. The second equivalence follows from Orlov’s Localization Theorem and Buchweitz’ equivalence.
Sketch of the proof of $\text{SCM}(R) \cong D_{sg}(X)$

- $D^b(X) \cong D^b(e\Lambda e)$,
Sketch of the proof of $\text{SCM}(R) \cong D_{sg}(X)$

- $D^b(X) \cong D^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ: reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where $\text{add}(P) = \text{proj SCM}(R)$).

Recall from Part I that we always have a triangle equivalence $D^b(\text{mod } -\Lambda) / \text{thick}(e\Lambda) \cong \text{SCM}(R)$.
Sketch of the proof of $\text{SCM}(R) \cong \mathcal{D}_{sg}(X)$

1. $\mathcal{D}^b(X) \cong \mathcal{D}^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ: reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where $\text{add}(P) = \text{proj SCM}(R)$).

2. $\mathcal{D}_{sg}(X) \cong \mathcal{D}_{sg}(e\Lambda e)$
Sketch of the proof of \(\text{SCM}(R) \cong D_{sg}(X) \)

- \(D^b(X) \cong D^b(e\Lambda e) \), where
 - \(X \): rational double point resolution of \(R \),
 - \(\Lambda \): reconstruction algebra,
 - \(e = 1_P \in \Lambda \): idempotent (where \(\text{add}(P) = \text{proj SCM}(R) \)).

\[\implies D_{sg}(X) \cong D_{sg}(e\Lambda e) \]

Recall from Part I that we always have a triangle equivalence

\[
\frac{D^b(\text{mod } -\Lambda)/\text{thick}(e\Lambda)}{\text{thick}(\text{mod } -\Lambda/\Lambda e\Lambda)} \sim \Rightarrow D_{sg}(e\Lambda e)
\]

\[\Lambda \twoheadrightarrow \Lambda e \]
Sketch of the proof of $\text{SCM}(R) \cong D_{sg}(X)$

- $D^b(X) \cong D^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ: reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where $\text{add}(P) = \text{proj SCM}(R)$).

- $\implies D_{sg}(X) \cong D_{sg}(e\Lambda e)$

Recall from Part I that we always have a triangle equivalence

$$
\frac{D^b(\text{mod } -\Lambda)/\text{thick}(e\Lambda)}{\text{thick}(\text{mod } -\Lambda/\Lambda e\Lambda)} \sim D_{sg}(e\Lambda e) \xleftarrow{\text{Keller & Vossieck}} \underbrace{\text{SCM}(R)}_{\bigoplus_i M_i}
$$
Sketch of the proof of $\text{SCM}(R) \cong D_{sg}(X)$

- $D^b(X) \cong D^b(e\Lambda e)$, where
 - X: rational double point resolution of R,
 - Λ: reconstruction algebra,
 - $e = 1_P \in \Lambda$: idempotent (where $\text{add}(P) = \text{proj SCM}(R)$).

- $\Rightarrow D_{sg}(X) \cong D_{sg}(e\Lambda e)$

Recall from Part I that we always have a triangle equivalence

$D^b(\text{mod} - \Lambda)/\text{thick}(e\Lambda) \sim D_{sg}(e\Lambda e) \xleftarrow{\text{Keller & Vossieck}} \text{SCM}(R)$

$\Lambda \xrightarrow{} \Lambda e \xleftarrow{} \bigoplus_i M_i$

- $\text{gl. dim}(\Lambda) < \infty \Rightarrow D_{sg}(e\Lambda e) \cong \text{SCM}(R)$
Example

Let $G \subseteq \text{GL}(2, \mathbb{C})$ be the cyclic group of order 27 generated by

$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \text{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity.
Let $G \subseteq \text{GL}(2, \mathbb{C})$ be the cyclic group of order 27 generated by

$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \text{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity. Let $R_{27,19} := \mathbb{C}[x,y]^G$ be the corresponding quotient singularity.
Example

Let $G \subseteq \text{GL}(2, \mathbb{C})$ be the cyclic group of order 27 generated by

$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \text{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity. Let $R_{27,19} := \mathbb{C}[x, y]^G$ be the corresponding quotient singularity. The exceptional divisor of the minimal resolution of $\text{Spec}(R)$ is given by the following chain of rational curves.

$$E_1 -2 -2 -2 -2 -2 -2$$
Let $G \subseteq \text{GL}(2, \mathbb{C})$ be the cyclic group of order 27 generated by

$$g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \text{GL}(2, \mathbb{C}),$$

where ζ is a primitive 27th root of unity. Let $R_{27,19} := \mathbb{C}[x, y]^G$ be the corresponding quotient singularity. The exceptional divisor of the minimal resolution of $\text{Spec}(R)$ is given by the following chain of rational curves

$$A_2 \xrightarrow{-5} E_3 \xrightarrow{} A_3 \subseteq X$$
Example

Let \(G \subseteq \text{GL}(2, \mathbb{C}) \) be the cyclic group of order 27 generated by

\[
g = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{19} \end{pmatrix} \in \text{GL}(2, \mathbb{C}),
\]

where \(\zeta \) is a primitive 27th root of unity. Let \(R_{27,19} := \mathbb{C}[x,y]^G \) be the corresponding quotient singularity. The exceptional divisor of the minimal resolution of \(\text{Spec}(R) \) is given by the following chain of rational curves

\[
\begin{array}{c}
A_2 \\
\bullet \\
E_3 \\
\bullet \\
A_3 \\
-5 \\
\end{array}
\]

\(\subseteq X \)

Our Theorem yields a description of the stable category of SCMs:

\[
\underline{\text{SCM}}(R_{27,19}) \cong \mathcal{D}_{sg}(X) \cong \text{MCM} \left(\frac{\mathbb{C}[x,y,z]}{(x^3 + yz)} \right) \oplus \text{MCM} \left(\frac{\mathbb{C}[x,y,z]}{(x^4 + yz)} \right)
\]
Thank you!