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und Prof. Dr. Helga Baum

Hamburg, den 25. März 2010

Prof. Dr. Reiner Lauterbach

Leiter des Departments Mathematik



Contents

Introduction 1

Acknowledgements 11

Chapter 1. Algebraic preliminaries 13
1. Structures on vector spaces defined by linear Lie groups 13
2. Representations of compact and non-compact forms of complex Lie groups 24
3. Stable forms 26
4. Relation between stable forms in dimensions six and seven 32

Chapter 2. Geometric structures defined by linear Lie groups 37
1. G-structures and holonomy 37
2. Intrinsic torsion 39
3. G-structures on pseudo-Riemannian manifolds 42

Chapter 3. Special ε-Hermitian geometry 45
1. Almost complex and almost para-complex geometry 45
2. Almost pseudo-Hermitian and almost para-Hermitian geometry 47
3. Almost special pseudo- and para-Hermitian geometry 51
4. Half-flat structures 56
5. Nearly pseudo-Kähler and nearly para-Kähler six-manifolds 58
6. Automorphism groups of SUε(p, q)-structures 61

Chapter 4. Classification results for Lie groups admitting half-flat structures 62
1. Three-dimensional Lie algebras 62
2. Classification of direct sums admitting a half-flat SU(3)-structure such that

the summands are orthogonal 65
3. Classification of direct sums admitting a half-flat SU(3)-structure 70
4. Half-flat SU(1, 2)-structures on direct sums 77
5. Half-flat SL(3,R)-structures on direct sums 78

Chapter 5. Description of all half-flat structures on certain Lie groups 80
1. Half-flat structures on S3 × S3 80
2. Half-flat structures on H3 ×H3 88
3. Nearly ε-Kähler structures on SL(2,R)× SL(2,R) 94

Chapter 6. Hitchin flow 101

1. Half-flat structures and parallel G
(∗)
2 -structures 101

2. Nearly half-flat structures and nearly parallel G
(∗)
2 -structures 106

3. Cocalibrated G
(∗)
2 -structures and parallel Spin(7)- and Spin0(3, 4)-structures 108

4. Evolution of nearly ε-Kähler manifolds 109
5. Evolution of half-flat structures on nilmanifolds Γ \H3×H3 112

Bibliography 119





Introduction

Let M be a smooth real six-dimensional manifold. An almost special Hermitian struc-

ture on M is defined as a tuple (g, J, ω,Ψ) consisting of a Riemannian metric g, an

orthogonal almost complex structure J , the fundamental two-form ω = g(. , J .) and a

complex-valued (3, 0)-form Ψ of non-zero constant length. The simultaneous stabiliser in

GL(TpM) of these tensors evaluated in a point p ∈ M is isomorphic to SU(3). Thus, an

almost special Hermitian structure is essentially the same as an SU(3)-structure, i.e. a

reduction of the frame bundle of M from GL(6,R) to SU(3). As thoroughly explained in

chapter 1, an SU(3)-structure (g, J, ω,Ψ) is completely determined by the pair (ω,ReΨ).

Alternatively, an SU(3)-structure can be reconstructed from the Riemannian metric g and

a non-trivial spinor field, see [LM, ch. IV, Proposition 9.13, p. 341].

The most important class of SU(3)-structures is the class of torsionfree SU(3)-struc-

tures characterised by the existence of a torsionfree SU(3)-connection. Such a connection

exists if and only if the holonomy of the metric is contained in SU(3), which implies in

particular that (M,J) is a complex manifold, g is a Ricci-flat Kähler metric and Ψ is

a holomorphic section of the canonical bundle. In other words, a compact torsionfree

almost special Hermitian manifold M is a Calabi-Yau manifold. Ever since the existence

of non-flat examples was proved by Yau in the end of the 70’s, Calabi-Yau manifolds have

attracted great attention in both mathematics and physics.

The deviation of an SU(3)-structure from being torsionfree is measured by the so-called

intrinsic torsion or structure function which is a section of a vector bundle of rank 42 with

fibre isomorphic to T ∗pM ⊗ su⊥(3) where su⊥(3) denotes the orthogonal complement of

su(3) in so(6,R). In fact, the complete information on the intrinsic torsion is contained

in the covariant derivatives ∇gω and ∇gΨ with respect to the Levi-Civita connection ∇g,

or, equivalently according to [ChSa], in the exterior derivatives dω and dΨ. For instance,

a torsionfree SU(3)-structure is also characterised by the exterior system

dω = 0 , dΨ = 0.

In this thesis, we like to draw the attention to the following class of SU(3)-structures.

A half-flat structure is defined as an SU(3)-structure (g, J, ω,Ψ) satisfying the exterior

differential system

(?) d(ω ∧ ω) = 0 , d(ReΨ) = 0.

The name has been chosen in [ChSa] referring to the fact that the exterior system is

satisfied if and only if the intrinsic torsion of the structure is contained in a certain

subbundle of rank 21 in the rank 42 bundle T ∗M ⊗ su⊥(3). Obviously, torsionfree SU(3)-

structures are in particular half-flat.

In the following, we roughly sketch the role of SU(3)-structures in string compactifi-

cations.



2 INTRODUCTION

SU(3)-structures in string theory. The spacetime background for the five standard

superstring theories is a real ten-dimensional manifold Y endowed, amongst other struc-

ture, with a pseudo-Riemannian metric, a spin structure and a number of spinor fields

encoding the supersymmetry of the theory. A process called (Kaluza-Klein) compactifi-

cation splits the pseudo-Riemannian background manifold in a six dimensional compact

Riemannian manifold M , which is called internal space, and a four-dimensional Lorentz

spacetime X, which is usually assumed to be flat:

Y 10 = X4 ×M6.

Analogous splittings are also studied in ten-dimensional supergravity theories, which arise

as the low energy limit of the superstring theories. In both cases, the geometry and topol-

ogy of the six-manifold M is directly related to the four-dimensional “effective” theory.

For instance, a standard requirement is the preservation of (a part of) the supersymmetry

implying that there is a non-trivial global spinor field, i.e. an SU(3)-structure, on the

six-manifold M . Traditionally, the spinor field on the six-manifold is moreover assumed

to be parallel such that the SU(3)-structure on M is in fact Calabi-Yau, see for instance

[CHSW].

Moreover, we like to mention briefly that there are important dualities between dif-

ferent string theories leading in particular to deep mathematical conjectures relating the

geometry of the corresponding internal spaces. For instance, the famous mirror symmetry

mysteriously interchanges the symplectic and complex geometry of two even topologically

different Calabi-Yau mirror partner manifolds. However, for the motivation of the struc-

tures studied in this thesis, it is more important that the string theory literature also

suggests non-torsionfree SU(3)-structures on the internal six-manifold, starting already in

the 80’s with [Str], see also [CCDLMZ] and references [2]–[26] therein. Non-torsionfree

SU(3)-structures turn out to be advantageous if geometrical background fluxes are to

be considered which can be encoded directly in the defining exterior forms ω and Ψ of

the SU(3)-structure. Non-torsionfree structures also appear when the four-dimensional

Lorentz spacetimes are not assumed to be flat.

For the first time in 2002, half-flat structures have been proposed in [GLMW] as

natural candidates for internal spaces of type IIA string theory with background flux. In

fact, it is argued that the half-flat structures arise as mirror partners of certain Calabi-Yau

internal spaces of type IIB string theory. Different string theory scenarios with half-flat

internal spaces are studied for instance in [GM], [GLM1], [GLM2], [To].

Evolution of half-flat structures. From the mathematical point of view, the main

motivation for studying half-flat structures is the possibility to construct metrics with

holonomy contained in G2 out of half-flat structures. In this context, half-flat structures

appeared first in the literature in [Hi1], although the term half-flat is not used. From

the physical point of view, this possibility relates string theories with half-flat internal

spaces to eleven-dimensional M-theory with seven-dimensional internal spaces. In fact,

similar to the case of ten-dimensional string theories, compactifications of M-theory are

demanded to preserve supersymmetry such that the internal spaces are usually endowed

with a metric with holonomy contained in G2.
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A Riemannian metric with holonomy contained in G2 on a seven-manifold M is in

fact equivalent to a torsionfree G2-structure on M , which is also called a parallel G2-

structure. Now, on the one hand, a parallel G2-structure on a seven-manifold induces

a half-flat SU(3)-structure on every oriented hypersurface. On the other hand, a six-

manifold M with half-flat SU(3)-structure can be embedded in a seven-manifold with

parallel G2-structure by the following evolution process.

In Hitchin [Hi1], a k-form ϕ on a differentiable manifold M is called stable if the orbit

of ϕp under GL(TpM) is open in ΛkT ∗pM for all p ∈ M . Stability is a rare phenomenom

occurring only in small dimension. Given an SU(3)-structure (g, J, ω,Ψ = ρ+ iJ∗ρρ) on a

six-manifold M , the two-form ω and the three-forms ρ and J∗ρρ are stable. Moreover, given

a family of SU(3)-structures depending on a time-parameter t ∈ I defined by (ω(t), ρ(t)),

the three-form

ϕ = ω(t) ∧ dt+ ρ(t)

is stable on M × I with stabiliser G2, i.e. ϕ defines a G2-structure. Since a G2-structure

is parallel if and only if

dϕ = 0 , d ∗ϕ ϕ = 0,

it is straightforward to check that ϕ = ω ∧ dt + ρ is parallel if and only if (ω(t), ρ(t)) is

half-flat for all t and if it satisfies the evolution equations

∂

∂t
ρ = dω,

∂

∂t
(ω2) = d(J∗ρρ).

These evolution equations are often referred to as the Hitchin flow equations for the

following reason. For compact manifolds M , Hitchin proved in [Hi1] that a family of

stable forms (ω(t), ρ(t)) which satisfies the evolution equations on an interval I and which

is a half-flat SU(3)-structure at an initial value t0 is automatically a half-flat SU(3)-

structure for all t. Thus, such a family defines in particular a metric with holonomy

contained in G2.

In order to prove his result, Hitchin considers the product of the infinite-dimensional

cohomology classes of the closed three-form ρ(t0) and the closed four-form ω2(t0) which is

endowed with a natural symplectic structure defined using integration over the compact

manifold. Now, it is possible to translate the evolution equations into a Hamiltonian

system on this symplectic manifold and to prove the result using in particular the theorem

of Stokes several times.

A main result of [CLSS], a collaboration of the author with Vicente Cortés, Thomas

Leistner and Lars Schäfer, is a new, direct proof of Hitchin’s result which avoids inte-

gration and which also holds for non-compact six-manifolds. As the author contributed

to this proof and as this theorem is the most important motivation for studying half-

flat structures, the theorem is also contained in this thesis in chapter 6, Theorem 1.2.

At the same time, the proof is extended to indefinite metrics, i.e. SU(p, q)-structures,

p + q = 3, and SL(3,R)-structures, where SL(3,R) is embedded in SO(3, 3) and sta-

bilises a so-called special para-Hermitian structure which is explained in detail in section

1.4 of chapter 1. When replacing SU(3) by a noncompact group, the stabiliser of the

three-form ϕ = ω ∧ dt + ρ on M × I is the noncompact form G∗2 of GC
2 and we obtain a

pseudo-Riemannian metric of signature (3, 4) with holonomy group in G∗2. As an applica-

tion, we prove that any six-manifold endowed with a real analytic half-flat G-structure,
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G = SU(p, q) or G = SL(3,R), can be extended to a Ricci-flat seven-manifold with

holonomy group in G2 or G∗2, depending on whether G is compact or noncompact.

More generally, an SU(3)-structure (ω, ρ) is called nearly half-flat if

dρ = ω2

and a G2-structure defined by a three-form ϕ is called nearly parallel if

dϕ = ∗ϕϕ.

For compact manifolds M , it was proven by Stock [St], generalising the proof of Hitchin,

that any solution I 3 t 7→
(
ω(t) = 2d̂ρ(t), ρ(t)

)
of the evolution equation

ρ̇ = dω − εJ∗ρρ

evolving from a nearly half-flat SU(3)-structure (ω(0), ρ(0)) on M defines a nearly parallel

G2-structure on M × I. Here, the two-form σ̂ is the stable two-form uniquely associated

to a stable four-form σ and an orientation by demanding σ̂2 = σ and σ̂3 > 0. In fact, our

new method of proving Hitchin’s result generalises to this situation as well, such that the

assumptions that M is compact and that the considered metrics are Riemannian can be

dropped resulting in Theorem 2.2 in chapter 6.

There is another type of Hitchin flow linking dimensions seven and eight. A G2- or

G∗2-structure defined by a three-form ϕ is called cocalibrated if

d ∗ϕ ϕ = 0.

Hitchin proposed the following equation for the evolution of a cocalibrated G2-structure

ϕ(0):
∂

∂t
(∗ϕϕ) = dϕ.

He proved that any solution I 3 t 7→ ϕ(t) on a compact manifold M defines a Riemannian

metric on M × I with holonomy group in Spin(7). We also generalise this theorem to

noncompact manifolds and show that any solution of the evolution equation starting from

a cocalibrated G∗2-structure defines a pseudo-Riemannian metric of signature (4, 4) and

holonomy group in Spin0(3, 4), see chapter 6, Theorem 3.1.

Existence of half-flat structures on Lie groups. We return to half-flat structures

in dimension six which shall be the main objects to be studied in this thesis. Considering

left-invariant half-flat structures on a Lie group G, the defining partial differential equa-

tions (?) reduce to a system of algebraic equations on the Lie algebra g of G. In the litera-

ture, half-flat structures are mainly studied on nilmanifolds, assuming that the structures

are left-invariant. For instance, a classification of nilmanifolds admitting left-invariant

half-flat SU(3)-structures with different additional premises is obtained in [CF], [ChSw]

and [CT]. Very recently, the classification of nilmanifolds admitting left-invariant half-flat

SU(3)-structures without any further restrictions has been obtained in [Con]. Apart from

the nilpotent case, examples and constructions of half-flat SU(3)-structures can be found

in [TV] and [AFFU]. The Ricci curvature of a half-flat SU(3)-structure is computed in

[BV] and [AC1].

The main goal of this thesis was to obtain new examples and classification results

concerning half-flat structures. In order to reasonably confine the class of considered
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structures and produce new examples which are not nilmanifolds, we focus the attention

on direct products of two three-dimensional Lie groups. Concerning existence, we ask the

question which of these products admit a left-invariant half-flat SU(3)-structure. There

are 12 isomorphism classes of three-dimensional Lie algebras including three classes de-

pending on a parameter (see tables 1 and 2 in chapter 4). Although Bianchi counted only

two classes depending on a parameter in his original classification, we had to split one of

the Bianchi classes into two classes which turned out to have different properties. Thus,

we have to consider 78 =
(

13
2

)
classes of direct sums in total.

Initially, we tried to find a classification by a direct proof which avoids the verification

of the existence or non-existence case by case. However, this was only successful when we

asked for the existence of a half-flat SU(3)-structure (g, J, ω,Ψ) such that the two factors

are orthogonal with respect to the metric g. The resulting classification result is presented

in section 2 of chapter 4. We prove that exactly 15 classes admit such an SU(3)-structure,

11 of which are unimodular and comply with a regular pattern, whereas the remaining four

do not seem to share many properties. Given, that the additional assumption is rather

strong and the proof is already quite technical, an answer to the initial question with this

method cannot be expected. However, an advantage of the assumption of a Riemannian

product is the fact that the curvature is completely determined by the Ricci tensors of

the three-dimensional factors and that the possible Ricci tensors of left-invariant metrics

on three-dimensional Lie groups are classified in [Mi].

A completely different method is used in [Con] for classifying the nilmanifolds admit-

ting an arbitrary half-flat SU(3)-structure. The result is that 24 out of the 34 isomorphism

classes of nilpotent six-dimensional Lie algebras admit a half-flat structure which is proved

by giving an explicit example. The non-existence on 8 out of the remaining 10 classes

is proved by introducing an obstruction to the existence of a half-flat SU(3)-structure in

terms of the cohomology of a certain double complex. However, two classes resist the

obstruction and the non-existence is proved by a different method.

In our situation, such a double complex can be constructed if and only if both Lie

groups are solvable. However, as the methods of homological algebra turn out not to be

advantageous for our problem, we prove a simplified version of the obstruction condition

in section 3.1 of chapter 4. This obstruction can be applied directly to 41 isomorphism

classes of direct sums in section 3.2 of chapter 4. Two classes resist the obstruction,

similar as in [Con], although they do not admit a half-flat structure. The non-existence

in these cases can be shown by an individual refinement of our standard obstruction. The

remaining 35 direct sums, including all unimodular direct sums and all non-solvable direct

sums, admit a half-flat SU(3)-structure which is proved by giving an explicit example in

each case. We point out that the products of unimodular three-dimensional Lie groups

are particularly interesting since they admit co-compact lattices, see [RV].

In fact, the most time-consuming part of the classification was the construction of

examples of half-flat structures for the 20=35-15 classes which do not admit an “orthog-

onal” half-flat SU(3)-structure. The construction essentially relies on the fact that a

left-invariant half-flat SU(3)-structure is defined by a pair (ω, ρ) ∈ Λ2g∗ × Λ3g∗ of stable

forms which satisfy

(??) ω ∧ ρ = 0, dω2 = 0, dρ = 0
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and which induce a Riemannian metric. Identifying g∗ with the left-invariant one-forms,

the Lie bracket of g contains the same information as the exterior derivative restricted

to g∗. Thus, fixing the structure constants of the Lie bracket, two of the equations are

quadratic and one is linear in the coefficients of ω and ρ. For each case separately, it is

thus straightforward to construct solutions of the system of equations (??) with the help of

a computer algebra system, for instance Maple. However, even after Maple was taught to

compute the induced metric, finding a solution inducing a positive definite metric required

a certain persistence, in particular for the non-unimodular direct sums. We remark that

in each case, all solutions of (??) in a small neighbourhood of the constructed example

give rise to a family of half-flat SU(3)-structures since the definiteness of the metric is an

open condition.

Considering more generally SU(p, q)-structures, p + q = 3, of arbitrary signature, we

give an obstruction to the existence of half-flat structures in section 4 of chapter 4 which

is stronger than the obstruction established for the definite case and applies to 15 classes.

Apart from giving an example of a Lie algebra admitting a half-flat SU(1, 2)-structure, but

no half-flat SU(3)-structure, we abstain from completing the classification in the indefinite

case since it would involve constructing approximately 62=78-15-1 explicit examples of

half-flat SU(1, 2)-structures.

In section 5 of chapter 4, we turn to the para-complex case of SL(3,R)-structures.

Again, we give an example of a Lie algebra admitting a half-flat SL(3,R)-structure, but

no half-flat SU(p, q)-structure for any signature. Then, we consider half-flat SL(3,R)-

structures on direct sums such that the summands are mutually orthogonal, as before, and

with the additional assumption, that the metric restricted to each summand is definite.

It turns out that the proof of the classification of “orthogonal” half-flat SU(3)-structures

generalises with some sign modifications and we end up with the same list of 15 Lie

algebras. Finally, we consider half-flat SL(3,R)-structures such that both summands are

isotropic. The straightforward result is that such a structure is admitted on a direct sum

of three-dimensional Lie algebras if and only if both summands are unimodular.

All results of chapter 4 concerning the existence problem of half-flat structures on

direct sums of three-dimensional Lie algebras are already submitted in [SH].

Further results on half-flat structures. In chapter 5, the problem of the unique-

ness of half-flat structures is studied. More precisely, we ask the question how many half-

flat structures exist on a fixed Lie algebra modulo Lie algebra automorphisms. We focus

on the probably most interesting direct sums: The only compact direct sum su(2)⊕ su(2)

and the only nilpotent direct sum h3 ⊕ h3 where h3 denotes the three-dimensional real

Heisenberg algebra. In both cases, most of the results apply to SU(3)-structures, SU(1, 2)-

structures and SL(3,R)-structures simultaneously.

The case of g = su(2)⊕ su(2) is discussed in section 1 and we obtain a complete and

explicit description of the space of all half-flat structures modulo Aut(g). The method

is to fix a standard basis for the Lie bracket and then to carefully classify the normal

forms of the defining stable forms ω and ρ under the action of Aut(g). In fact, we are also

able to explicitly describe all nearly half-flat structures modulo Aut(g) and those which

are half-flat such that the opposite structure (ω, J∗ρ) is nearly half-flat at the same time.
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As another application of this method, we prove that there is no left-invariant complex

structure on S3 × S3 admitting a holomorphic section of the canonical bundle.

The half-flat structures modulo Aut(g) for the Lie algebra g = h3 ⊕ h3 are studied in

section 2 of chapter 5, which is also contained in [CLSS]. To begin with, we explicitly

determine the orbits of the Aut(h3⊕ h3)-action on the space of non-degenerate two-forms

ω satisfying dω2 = 0. It turns out that there are exactly five orbits and we give a simple

standard representative in each case. Based on this result, we are able to describe all left-

invariant half-flat structures (ω, ρ) on H3 × H3. In particular, it is shown that half-flat

SU(3)-structures (ω, ρ) inducing a Riemannian metric are only possible if ω belongs to

the unique orbit characterised by ω(z, z) 6= 0 where z denotes the centre of g. A surprising

rigidity phenomenon occurs in indefinite signature. Under the assumption ω(z, z) = 0,

which corresponds to the vanishing of the projection of ω on a one-dimensional space,

the metric induced by a half-flat structure (ω, ρ) is always isometric to the product of a

flat R2 and the unique four-dimensional para-hyper-Kähler symmetric space with abelian

holonomy.

Due to the explicit characterisation of all half-flat structures on h3⊕h3, we are in fact

able to explicitly solve the Hitchin flow in all possible cases which is carried out in section

5 of chapter 6, also being part of [CLSS]. First of all, we remark that the evolution equa-

tions reduce from a PDE to an ODE due to the assumption of left-invariance. Moreover,

Lemma 5.1, ch. 6, shows how to simplify effectively the solution ansatz for a number of

nilpotent Lie algebras including h3 ⊕ h3. Using this ansatz for g = h3 ⊕ h3 and assuming

that ω(z, z) = 0, which is only possible for indefinite metrics, the evolution turns out to

be affine linear (Proposition 5.4). However, this evolution produces only metrics that are

decomposable and have one-dimensional holonomy group. The opposite case ω(z, z) 6= 0

is solved in Proposition 5.6: We are able to give an explicit formula in Proposition 5.6

for the parallel three-form ϕ resulting from the evolution of an arbitrary half-flat struc-

ture (ω, ρ) with ω(z, z) 6= 0. Even more surprising, the formula we obtain is completely

algebraic such that the integration of the differential equation is circumvented.

In particular, we give a number of explicit examples of half-flat structures of the sec-

ond kind on h3⊕h3 which evolve to new metrics with holonomy group equal to G2 and G∗2.

Moreover, we construct an eight-parameter family of half-flat deformations of the half-

flat examples which lift to an eight-parameter family of deformations of the corresponding

parallel stable three-forms in dimension seven. For obvious reasons, those examples of

G
(∗)
2 -metrics on M × (a, b) for which (a, b) 6= R are geodesically incomplete. However,

for SU(3)-structures on compact M , a conformal transformation produces complete Rie-

mannian metrics on M × R that are conformally parallel G2.

Results on nearly Kähler six-manifolds. Finally, this thesis contains some results

obtained by the author in collaboration with Lars Schäfer on nearly pseudo-Kähler and

nearly para-Kähler six-manifolds which form a subclass of the class of half-flat structures.

These results are already submitted in [SSH].

A nearly Kähler manifold is defined as an almost Hermitian manifold (M, g, J, ω)

such that (∇g
XJ)X = 0. These manifolds were first studied by A. Gray in a series of

papers summarised in [G3]. Since nearly Kähler manifolds are Einstein, admit Killing

spinors and admit a Hermitian connection with skew-symmetric torsion, these structures
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are very appealing to differential geometers, but also for physicists working in the context

of string compactifications. It is remarkable that, with the exception of dimension six,

nearly Kähler manifolds are classified in [Na1] and [Na2]. In dimension six, there are

only four known examples, S6, S3×S3, CP3 and F3, all of which are homogeneous three-

symmetric spaces. Another fact which is special to dimension six is the following. Due to

a result of [RC], a nearly Kähler six-manifold with ∇gJ 6= 0 is equivalently given by an

SU(3)-structure (ω, ρ) satisfying the exterior system

dω = 3ρ,(NK1)

d(J∗ρρ) = 2ω2.(NK2)

Hence, nearly Kähler manifolds induce a natural half-flat SU(3)-structure.

Almost all of the literature on nearly Kähler manifolds considers only Riemannian

metrics, one of the few exceptions is [G2]. When considering indefinite metrics and even

when replacing the almost complex structure J by an almost para-complex structure,

many properties are very similar to the definite case. However, some completely new

phenomena occur. For instance, Levi-Civita flat strict nearly pseudo-Kähler manifolds

only exist for split signature, see [CS1] and also [CS2] for the analogous para-complex

case.

The main question asked in [SSH] is the following. There is a left-invariant nearly

Kähler structure on S3×S3 which arises from a classical construction of three-symmetric

spaces by Ledger and Obata [LO]. It is shown in [Bu1] (compare also [Bu2]) that this

nearly Kähler structure is the only one on S3× S3 up to homothety. In fact, the proof of

this uniqueness result has been the most difficult step in the classification of homogeneous

nearly Kähler structures in dimension six. It is easy to see that the construction of

Ledger and Obata also yields a nearly pseudo-Kähler structure on SL(2,R) × SL(2,R)

with indefinite signature and the question arises whether the uniqueness result of [Bu1]

also holds for this structure.

In section 3 of chapter 5, we include the proof of the main theorem of [SSH] stating

that the left-invariant nearly pseudo-Kähler structure on SL(2,R)×SL(2,R) is also unique

up to homothety. It fits well into chapter 5 since the method of the proof is very similar

to the description of the “moduli space” of left-invariant half-flat structures on S3 × S3.

In fact, the idea is essentially the same as the one used in the Riemannian case by [Bu1],

however, the technical problems increase substantially in the indefinite case. As a by-

product, we prove that neither S3 × S3 nor SL(2,R) × SL(2,R) admit a left-invariant

nearly para-Kähler structure.

Since the starting point of the proof is the characterisation of a nearly Kähler manifold

by the exterior system (NK1), (NK2), first of all, this characterisation has to be extended

to nearly pseudo-Kähler manifolds with indefinite metrics. Similar as in [SSH], we spend

some effort in chapter 3 in order to give a self-contained proof of this characterisation which

also applies to the para-complex case. Unlike the original proof of [RC] in the Riemannian

case, we clarify the structure of the proof by elaborating the role of the Nijenhuis tensor.

Along the way, we obtain some useful characterisations for the skew-symmetry of the

Nijenhuis tensor for U(p, q)-, GL(m,R)-, SU(p, q)- and SL(m,R)-structures in terms of

the intrinsic torsion. As another application of the characterisation of nearly pseudo- and



INTRODUCTION 9

para-Kähler manifolds by an exterior system, we discuss the evolution of these structures

under the Hitchin flow in section 4 of chapter 6. In fact, this section is also contained in

[CLSS].

The structure of the thesis. The previous sections contain a detailed description

of all results obtained in this thesis including references where to find these results in this

thesis. Nevertheless, we briefly summarise the structure of the thesis.

Chapter 1 collects all necessary algebraic preliminaries. We have to be rather explicit

since we introduce a unified language which allows us to treat special pseudo- and special

para-Hermitian structures simultaneously, compare [AC2], [SSH]. In particular, we in-

troduce the algebraic models for all G-structures appearing in this thesis and extend many

important algebraic identities to all possible signatures. Moreover, an introduction to the

formalism of stable forms is contained and the algebraic constructions linking dimensions

six, seven and eight are presented and extended to arbitrary signature. The most im-

portant algebraic concept for this thesis is probably the characterisation of the groups

SU(p, q), p+q = 3, by a certain pair of a two-form and a three-form. To the author’s best

knowledge, our generalisation of this formalism to the groups SU(p, q), p + q = 2l − 1,

l ≥ 2, in sections 1.2 and 1.4, ch. 1, is not contained in the literature so far.

Chapter 2 is a brief introduction on G-structures in general focusing on the concept of

intrinsic torsion. We review different methods for characterising the intrinsic torsion, in

particular for structures with G ⊂ O(p, q), and the relation to the concept of holonomy.

In chapter 3, we deal with G-structures for the groups U(p, q)-, GL(m,R)-, SU(p, q)-

and SL(m,R) and discuss the characterisation of these structures in terms of the intrinsic

torsion. As mentioned already before, we focus on properties of the Nijenhuis tensor,

half-flat structures and nearly Kähler manifolds.

In fact, the first three introductory chapters contain extensions and unifications of

many well-known properties from the Hermitian to the pseudo-Hermitian and para-

Hermitian context. Although usually proved similarly or identically as in the Riemannian

case, many of these extensions are hard to find or not contained at all in the literature.

In chapter 4, we present our classification results concerning the existence of left-

invariant half-flat structures on direct products of three-dimensional Lie groups. In chap-

ter 5, we examine the half-flat and nearly pseudo- and para-Kähler structures on the

groups S3 × S3, SL(2,R) × SL(2,R) and H3 × H3, where H3 denotes the real three-

dimensional Heisenberg group. The final chapter 6 deals with the Hitchin flow and we

present proofs of its main properties. Examples for solutions of the Hitchin flow are pro-

vided by discussing the evolution of nearly pseudo- and para-Kähler manifolds and the

evolution of an arbitrary left-invariant half-flat structure on H3 ×H3.

Computer support. Some results of this thesis would have been hard to obtain

without computer support and we like to comment on the applied software which is in

fact self-programmed in substantial parts. Before doing so, we add the remark that almost

all of the proofs in this thesis are written in such a way that they can be completely verified

by the reader without using a computer.

The main tool has been the package “difforms” which is contained by default in Maple,

at least in Maple 10, 11 and 12. Although there are packages dealing more profoundly with

differential forms, this package has the following advantage. It is possible to explicitly set
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the exterior differential d of a frame of left-invariant one-forms on a Lie group G. Thus,

the Lie bracket of the corresponding Lie algebra g can be implemented with respect to

a basis of g∗ in a way which is well adapted to left-invariant exterior systems. With

respect to this basis, the wedge product of k-forms and the exterior differential of k-forms

can be computed for all k. Except for some minor additional procedures, the described

functions already exhaust the scope of operation of this package which is not sufficient

for our purposes.

In order to compute explicitly the almost complex structure and the metric induced by

a compatible pair of stable forms, we needed to teach Maple to compute the contraction

of a (multi-)vector and a k-form. In the course of time, we were able to implement a

large extension of the package difforms, written in the programming language contained

in Maple, which contains the following functionality. For instance, the new package

explicitly computes not only contractions, but also directly the tensors induced by stable

forms as well as the Hodge dual, pullbacks or infinitesimal pullbacks of forms, always

working with respect to a basis. Moreover it contains many useful routines for comparing

differential forms, for instance it is possible to translate an exterior system into a system

of coefficient equations with respect to a basis in such a way that the output is directly

accessible for the solve procedure of Maple. After applying the solve procedure to the

coefficient equations, there is another function translating the solution into assignments

which eliminate some of the coefficients.

Given any system of algebraic equations, the solve procedure of Maple uses recent com-

puter algebra methods, for instance Gröbner bases, in order to obtain solutions. However,

when a certain degree of complexity is exceeded, the return values of this procedure are

not useful or do not seem to be reliable. Even if the result seems reasonable, a manual

verification is needed, proving that indeed all solutions are found, in order to obtain clas-

sification results. Nevertheless, we admit that Maple’s solve function often turned out to

be an excellent source of inspiration. At times, an elegant basis-independent proof is much

easier to find after having verified the assertion by brute computational force. Apart from

that, the quick forming and solving of equations involving left-invariant forms turned out

to be useful when constructing examples. On the other hand, the current computer alge-

bra systems are not very helpful when trying to find a solution of a system of inequalities.

Despite this disadvantage, the construction of the half-flat structures given in tables 3,

4 and 5 of chapter 4 inducing positive definite metrics would have been hardly possible

without computer support.

Although there appear more and more packages for Maple and Mathematica or in-

dependent software containing implementations of almost all differential geometric con-

structions, there is currently no other package, to the author’s best knowledge, which is

as well adapted to solving left-invariant exterior systems on Lie groups (or homogeneous

spaces) as our package.

Finally, we mention that the package “tensor”, also contained in Maple by default,

has been used in the version contained in Maple 10 in section 2, ch. 5, and section 5.2,

ch. 6, to compute the curvature of a number of explicit left-invariant metrics on H3×H3.
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CHAPTER 1

Algebraic preliminaries

Notational conventions. When e1, . . . , en denotes the basis of a vector space or a

local frame of a manifold, we denote by e1, . . . , en the dual basis or dual frame. At least

in the context of indefinite metrics, this differs from the convention of some authors who

refer to the metric dual one-forms of an orthonormal basis by this notation. The wedge

product of basis vectors ei and ej is abbreviated by eij and the same abbreviation applies

to forms, i.e. eij = ei ∧ ej. Given a k-form α, the power αn denotes the n-fold wedge

product of α with itself.

We denote the contraction or interior product of a vector and a l-form by and extend

this operator to the contraction

: ΛkV × ΛlV ∗ → Λl−kV ∗

of k-vectors and l-forms, k ≤ l, by setting

(x1 ∧ . . . ∧ xk) α = xk (xk−1 . . . (x1 α))

for decomposable k-vectors. With this convention, the contraction coincides with the

adjoint operator of the wedge product satisfying

(v α)(w) = α(v ∧ w)

for all v ∈ ΛkV , α ∈ ΛlV ∗ and w ∈ Λl−kV . If a contraction and a wedge product appear

in an identity, we assume that the contraction is evaluated first.

Moreover, we will always follow the convention v ∧ w = v ⊗ w − w ⊗ v for the wedge

product, but v · w = 1
2
(v ⊗ w + w ⊗ v) for the symmetric product. The first convention

seems to reduce the number of fractions in calculations in a basis and is not applied to

the symmetric powers in order to have v2 = v · v = v ⊗ v.

For an endomorphism A of a vector space V , we denote by A∗ the endomorphism of

(V ∗)⊗k given by

A∗α(X1, . . . , Xk) = α(AX1, . . . , AXk)

for α ∈ (V ∗)⊗k and Xi ∈ V .

1. Structures on vector spaces defined by linear Lie groups

In this section, we discuss the algebraic models for the G-structures which appear in

this thesis. Although we are mainly interested in dimension six, we establish the basic

material for arbitrary dimension.

In the following, let V denote an n-dimensional real vector space and GL(V ) the real

general linear group of this vector space. If V is oriented, we denote by GL+(V ) the group

of orientation preserving automorphisms.
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1.1. The complex and the para-complex linear group. A complex structure J

on a 2m-dimensional vector space V is an anti-involution of V . The stabiliser in GL(V )

of a complex structure J is the complex general linear group GL(V, J) ∼= GL(m,C).

A product structure P on an n-dimensional vector space is an involution of V . Equiv-

alently, V = V + ⊕ V − splits as a direct sum where we denote by V ± the ±1-eigenspace

of P . A para-complex structure J on a 2m-dimensional vector space V is a product

structure with dimV + = dimV − = m. The stabiliser in GL(V ) of a para-complex

structure J is the para-complex general linear group GL(V, J) ∼= GL(V +) ⊕ GL(V −) ∼=
GL(m,R)⊕GL(m,R).

It turns out that many well-known notions for complex structures can be extended

to para-complex structures. In order to benefit from the similarities of complex and

para-complex structures, we unify the notation as follows, see also [AC2], [SSH].

Definition 1.1. Let ε = 1 or ε = −1 and let iε be a symbol satisfying iε
2 = ε.

(i) Let the ε-complex numbers be defined as Cε = R[iε]. We will use the name para-

complex numbers1 for the real algebra C := C1
∼= R⊕ R following [CMMS].

(ii) An ε-complex structure J on V is defined as an endomorphism which satisfies J2 =

εId and dimV + = dimV − = m for ε = 1. The pair (V, J) is called an ε-complex

vector space.

(iii) The stabiliser of an ε-complex structure J in GL(V ) is called the ε-complex general

linear group GL(V, J).

(iv) The ε-complexification of a real vector space V is defined as the Cε-module VCε =

V ⊗R Cε
∼= V ⊕ iεV .

Obviously, the unified language is chosen such that ε can be replaced by the word

“para” if ε = 1 whereas it can be omitted for ε = −1. The familiar notions of real part,

imaginary part and complex conjugation of a complex number are extended literally to

ε-complex numbers. We remark that the standard real inner product 〈z1, z2〉 = Re(z1z̄2)

on Cε has signature (1, 1) for ε = 1 such that the norm square |z|2 = zz̄ may vanish in

the para-complex world.

To summarise, the ε-complex general linear group satisfies

GL(V, J) ∼= GL(m,Cε) :=

{
GL(m,C) if ε = −1,

GL(m,R)⊕GL(m,R) if ε = 1.

In order to fix the notation, we discuss explicitly a number of properties of ε-complex

structures which are standard for complex structures.

Let (V, J) be an ε-complex vector space. By V 1,0 and V 0,1, we denote the +iε- and

−iε-eigenspace of J acting on the ε-complexification VCε which therefore splits into

VCε = V 1,0 ⊕ V 0,1 = V 1,0 ⊕ V 1,0.

Any v ∈ VCε can be projected onto V 1,0 and V 0,1 by

v1,0 =
1

2
(v + εiεJv) ∈ V 1,0 , v0,1 =

1

2
(v − εiεJv) ∈ V 0,1,

1In fact, there are many different names for the algebra C, for instance “split-complex numbers” or
“double numbers”.
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and the corresponding restrictions V → V 1,0 and V → V 0,1 are isomorphisms of real

vector spaces.

The dual ε-complex vector space (V ∗, J∗) satisfies (V 1,0)∗ = (V ∗)1,0. We define the

vector space of forms of type (r,s) or (r, s)-forms as

Λr,sV ∗ := Λr(V ∗)1,0 ⊗ Λs(V ∗)0,1

such that the space of ε-complex k-forms decomposes into

ΛkV ∗Cε =
⊕
r+s=k

Λr,sV ∗

for all k.

As we will be mainly interested in real representations, we define for r 6= s the space

of (real) forms of type (r, s) + (s, r), denoted by JΛr,sV ∗K, and for r = s the space of (real)

forms of type (r, r), denoted by [Λr,rV ∗], by the properties

JΛr,sV ∗K⊗ Cε = JΛr,sV ∗K⊕ iεJΛr,sV ∗K = Λr,sV ∗ ⊕ Λs,rV ∗,

[Λr,rV ∗]⊗ Cε = [Λr,rV ∗]⊕ iε[Λ
r,rV ∗] = Λr,rV ∗.

In consequence, we have the decompositions

Λ2lV ∗ =
l−1⊕
s=0

JΛ2l−s,sV ∗K⊕ [Λl,lV ∗],(1.1)

Λ2l+1V ∗ =
l⊕

s=0

JΛ2l+1−s,sV ∗K

as real GL(V, J)-modules for all l.

We collect a number of useful characterisations for some (r, s)-forms using the operator

J(i) which is defined by

J(i)α(X1, . . . , Xk) = α(X1, . . . , JXi, . . . , Xk)

for α ∈ ΛkV ∗. The real forms of type (r, 0) + (0, r) are given by

JΛr,0V ∗K = {α ∈ ΛrV ∗ | J(1)J(2)α = εα}(1.2)

= {α ∈ ΛrV ∗ | J(i)J(j)α = εα for all i 6= j}.

The first identity can easily be seen when expanding the expression α(X1,0, Y 0,1, . . . ) = 0

holding for any X, Y ∈ V and the second identity is obvious. Using a similar argument,

we find

[Λ1,1V ∗] = {α ∈ Λ2V ∗ | J∗α = −εα} ,(1.3)

JΛ2,1V ∗K = {α ∈ Λ3V ∗ | J(i)J(j)α = −εα for all i 6= j},(1.4)

[Λ2,2V ∗] = {α ∈ Λ4V ∗ | J(i)J(j)α = −εα for all i 6= j},(1.5)

JΛ3,1V ∗K = {α ∈ Λ4V ∗ | J∗α = −α}.(1.6)

In the para-complex world, there is of course a more natural decomposition of real

k-forms induced by the real eigendecomposition V = V +⊕V −. Indeed, the decomposition

ΛkV ∗ =
⊕
r+s=k

Λr(V +)∗ ⊗ Λs(V −)∗
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is GL(V, J)-invariant as it consists of J∗-eigenspaces. However, it is useful to introduce also

in the para-complex context the usual type decomposition, although it is more complicated

and not irreducible. The main reason is that it turns out to be possible to generalise well-

known results for complex structures to para-complex structures in a straightforward way.

In particular, it is often convenient to give unified proofs of identities involving ε-complex

structures without separating the two cases.

In fact, the two decompositions are related as follows:

JΛr,sV ∗K = Λr(V +)∗ ⊗ Λs(V −)∗ ⊕ Λs(V +)∗ ⊗ Λr(V −)∗,(1.7)

[Λr,rV ∗] = Λr(V +)∗ ⊗ Λr(V −)∗.

In the following, it will be advantageous to remember that it holds

JΛr,0V ∗K = Λr(V +)∗ ⊕ Λr(V −)∗.(1.8)

1.2. The complex and the para-complex special linear group. A complex

volume form on a complex 2m-dimensional vector space (V, J) is a non-zero complex-

valued (m, 0)-form Ψ. The stabiliser in GL(V ) of a complex volume form Ψ is the complex

special linear group SL(V,Ψ) ∼= SL(m,C). Note that the (m,m)-form Ψ∧ Ψ̄ is non-trivial

for a complex volume form. This motivates the following definition.

Definition 1.2. Let (V, J) be an 2m-dimensional ε-complex vector space.

(i) An ε-complex m-form Ψ = ψ+ +iεψ− ∈ ΛmV ∗Cε is called non-degenerate if Ψ∧Ψ̄ 6= 0.

(ii) An ε-complex volume form is defined as a non-degenerate ε-complex (m, 0)-form Ψ.

(iii) The stabiliser in GL(V ) of an ε-complex volume form Ψ is the ε-complex special

linear group SL(V,Ψ).

For ε = 1, the additional condition Ψ ∧ Ψ̄ 6= 0 guarantees that Ψ is not contained in

the para-complexification of one of the real summands of (1.8).

We collect a number of identities for ε-complex volume forms.

Lemma 1.3. Let Ψ = ψ+ + iεψ− be an ε-complex volume form on an ε-complex vector

space (V 2m, J), m ≥ 2, and let X ∈ V and α ∈ V ∗ be arbitrary. The real part and the

imaginary part of Ψ are related by the formulae

X ψ− = εJX ψ+, X ψ+ = JX ψ−,(1.9)

α ∧ ψ− = −εJ∗α ∧ ψ+, α ∧ ψ+ = −J∗α ∧ ψ−,(1.10)

X ψ+ ∧ ψ− = −X ψ− ∧ ψ+, X ψ+ ∧ ψ+ = −εX ψ− ∧ ψ−,(1.11)

and

J∗ψ+ = εl ψ−, J∗ψ− = εl−1 ψ+, if m = 2l − 1 is odd,(1.12)

J∗ψ+ = εl ψ+, J∗ψ− = εl ψ−, if m = 2l is even.(1.13)

Moreover, the 2m-form Ψ ∧ Ψ̄ satisfies

Ψ ∧ Ψ̄ = 2iεψ− ∧ ψ+, (ψ+)2 = (ψ−)2 = 0, if m is odd,(1.14)

Ψ ∧ Ψ̄ = 2(ψ+)2 = −2ε(ψ−)2, ψ+ ∧ ψ− = 0, if m is even,(1.15)

and both ψ+ and ψ− are non-degenerate in the sense that

X ψ+ = 0⇒ X = 0, α ∧ ψ+ = 0⇒ α = 0(1.16)
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X ψ− = 0⇒ X = 0, α ∧ ψ− = 0⇒ α = 0

for all X ∈ V and α ∈ V ∗. Finally, we have the useful characterisation

JΛm,1V ∗K = ψ+ ∧ V ∗ = ψ− ∧ V ∗.(1.17)

Proof. Since (V 1,0)∗ = (V ∗)1,0, the (m − 1)-form X0,1 Ψ is zero and the identities

(1.9) are immediate when expanding this expression. In analogy, the equations (1.10)

follow since the wedge product of the (m, 0)-form Ψ and the (1, 0)-form α+εiεJ
∗α vanishes.

The two formulae (1.11) correspond to the vanishing of the real and imaginary part of

the (2m− 1, 0)-form X Ψ ∧Ψ.

Taking the relation (1.2) into account, the identity (1.13) is obvious and (1.12) is

equivalent to (1.9). In the odd case, the properties (1.14) of the (m,m)-form Ψ ∧ Ψ̄ are

just a consequence of the skew-symmetry of the wedge product. In the even case, the

properties (1.15) can be seen for instance by expanding the vanishing (2m, 0)-form Ψ2

into real and imaginary part.

In order to show the non-degeneracy of ψ+ and ψ−, we assume that X ψ+ = 0 or

X ψ− = 0. In the even case, it follows X (Ψ∧Ψ̄) = 0 by (1.15). In the odd case, the same

identity holds taking (1.14) and (1.11) into account. Therefore, X has to be zero in both

cases since Ψ∧ Ψ̄ is a real volume form by the definition of an ε-complex volume form. If

α∧ψ+ = 0 or α∧ψ− = 0, the same arguments show that α(X)Ψ∧Ψ̄ = α∧(X (Ψ∧Ψ̄)) = 0

for all X ∈ V , which clearly yields α = 0.

The identification (1.17) can be seen as follows. Every real form of type (m, 1)+(1,m)

is the real part of an ε-complex (m, 1)-form Ψ ∧ θ0,1 for some real one-form θ ∈ V ∗.

Because of (1.10), the real part of Ψ ∧ θ0,1 is exactly ψ+ ∧ θ = −ψ− ∧ J∗θ and the proof

is finished. �

Notice that an ε-complex (m, 0)-form is always decomposable since the rank of the

Cε-module Λm,0V ∗ is one.

In the following, we show that an ε-complex volume form Ψ completely determines

the ε-complex structure J , thus proving SL(V,Ψ) ⊂ GL(V, J) and

SL(V,Ψ) = {A ∈ GL(V ) |A∗Ψ = Ψ} ∼= SL(m,Cε) :=

{
SL(m,C) if ε = −1,

SL(m,R)⊕ SL(m,R) if ε = 1.

More precisely, we give an explicit formula for the ε-complex structure J associated to

an ε-complex non-degenerate decomposable m-form Ψ such that Ψ is of type (m, 0) with

respect to J .

Let κ denote the natural isomorphism

κ : ΛkV ∗ → Λm−kV ∗ ⊗ Λ2mV ∗, ξ 7→ X ⊗ φ with X φ = ξ.

Proposition 1.4. Let Ψ = ψ+ + iεψ− be an ε-complex non-degenerate decomposable

m-form on a real vector space V 2m, m ≥ 2. Then, the 2m-form

(1.18) φ(Ψ) :=

{
1
4

Ψ ∧ Ψ̄ if m is even,
1

4iε
Ψ ∧ Ψ̄ if m is odd,
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is a real volume form and there is a unique ε-complex structure J such that Ψ is of type

(m, 0). The ε-complex structure J is characterised by the identities

(1.19) JX =

{
1

φ(Ψ)
κ(X ψ+ ∧ ψ+), if m is odd,

1
φ(Ψ)

κ(X ψ+ ∧ ψ−), if m is even.

for X ∈ V or, equivalently, by

(1.20) (JX α)φ(Ψ) =

{
α ∧ (X ψ+) ∧ ψ+, if m is odd,

α ∧ (X ψ+) ∧ ψ−, if m is even,

for X ∈ V , α ∈ V ∗.

Proof. First of all, we observe that, given an ε-complex decomposable m-form

Ψ = ψ+ + iεψ− = (e1 + εiεe
2) ∧ . . . ∧ (e2m−1 + εiεe

2m)

for some ei ∈ V ∗, the 2m-form (1.18) associated to Ψ is

φ(Ψ) = (−1)
m(m−1)

2 (−1)mεm 2m−2e1..2m ·

{
iε
m−1 if m = 2l − 1 is odd

iε
m if m = 2l is even,

(1.21)

= (−ε)l2m−2e1..2m

for both m = 2l and m = 2l − 1. In particular, e1, . . . , e2m is a basis since Ψ is non-

degenerate. With respect to this basis, the unique ε-complex structure such that Ψ is of

type (m, 0) is given by

(1.22) J∗e2k−1 = e2k, J∗e2k = εe2k−1, 1 ≤ k ≤ m,

on V ∗ since each factor e2k−1 + εiεe
2k has to be a (1, 0)-form.

For odd m, the explicit formula (1.19) follows from the computation

JX φ(Ψ)
(1.14)
=

1

2
JX (ψ− ∧ ψ+)

(1.11)
= JX ψ− ∧ ψ+

(1.9)
= X ψ+ ∧ ψ+

and the definition of κ. The identity (1.20) is equivalent since

α ∧ (X ψ+) ∧ ψ+ = α ∧ (JX φ(Ψ)) = (JX α)φ(Ψ).

For even m, the proof is completely analogous using the corresponding formulas of Lemma

1.3. �

Notice that the real volume form associated to Ψ = ψ+ + iεψ− satisfies

(1.23) φ(Ψ) =

{
1
4

Ψ ∧ Ψ̄ = 1
2
(ψ+)2 if m is even,

1
4iε

Ψ ∧ Ψ̄ = 1
2
ψ− ∧ ψ+ if m is odd,

due to (1.14) and (1.15).

If m is odd, the equality (1.19) suggests that it already suffices to know the real part

or equivalently the imaginary part, compare (1.11). However, it remains to construct the

volume form φ(Ψ) = 1
2
ψ− ∧ ψ+ without knowing ψ−. This can be achieved as follows by

generalising the construction established in [Hi2] for dimension six.
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Let V 2m be oriented and m = 2l− 1 ≥ 3 odd. For a real m-form ρ, we define the map

Kρ : V → V ⊗ Λ2mV ∗ by

KρX = κ((X ρ) ∧ ρ)(1.24)

and the quartic invariant

λ(ρ) =
1

2m
tr(K2

ρ) ∈ (Λ2mV ∗)⊗2.(1.25)

Recall that, for any one-dimensional vector space L, an element u ∈ L⊗2r is defined to be

positive, u > 0, if u = s⊗2r for some s ∈ L and negative if −u > 0. Therefore, the norm

of an element u ∈ L⊗2r is well-defined and we set

φ(ρ) =
√
|λ(ρ)|(1.26)

for the positively oriented square root. If φ(ρ) 6= 0, we furthermore define

Jρ =
1

φ(ρ)
Kρ.(1.27)

Proposition 1.5. Let V 2m be oriented, m = 2l − 1 ≥ 3 odd, and let ρ be a real

m-form lying in the GL+(V )-orbit of the real part of an ε-complex non-degenerate decom-

posable m-form Ψ with φ(Ψ) > 0. Then, the 2m-form φ(ρ) is a real volume form and the

endomorphism Jρ is an ε-complex structure such that Ψ = Ψρ = ρ + εl iεJ
∗
ρρ is of type

(m, 0) and φ(Ψ) = φ(ρ).

Proof. Considering the GL+(V )-equivariance of all involved expressions, Proposition

1.4 and formula (1.12), it suffices to show that φ(Ψ) = φ(ψ+) for an ε-complex non-

degenerate decomposable m-form Ψ = ψ+ + iεψ− with φ(Ψ) > 0. To see this, we observe

that
Kψ+
φ(Ψ)

is an ε-complex structure due to identity (1.19). Thus, tr(
Kψ+
φ(Ψ)

)2 = 2εm and,

by definition, λ(ψ+) = ε(φ(Ψ))⊗2. Now, the assertion φ(Ψ) = φ(ψ+) follows directly from

the definition of φ(ψ+) since φ(Ψ) > 0 by assumption. �

In fact, dimension six, i.e. m = 3, is distinguished by the property that the orbit of

such a three-form ρ is open. Indeed, the orbit under G = GL(6,R) of a real three-form

with stabiliser H = SL(3,Cε) has maximal dimension since

dimRG− dimRH = 36− 16 = 20 = dimR Λ3(R6)∗.

This phenomenon only occurs in few special cases and is discussed at length in section

3. In particular, Proposition 3.5 collects a number of convenient characterisations of the

two open GL+(V )-orbits on Λ3(R6)∗.

1.3. The unitary and the para-unitary group. A pseudo-Euclidean structure

on V is a real non-degenerate symmetric bilinear form g and the pair (V, g) is called a

pseudo-Euclidean vector space.

A pseudo-Hermitian structure (g, J) on V consists of a pseudo-Euclidean structure

g and an orthogonal complex structure J , i.e. J∗g = g. The non-degenerate two-form

ω = g(. , J .) is called the fundamental two-form and the tuple (V, g, J) is called a pseudo-

Hermitian vector space. The stabiliser in GL(V ) of a pseudo-Hermitian structure (J, g)
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is the unitary group U(V, g, J) ∼= U(p, q). Here, the pair (p, q) denotes the Hermitian

signature of g such that (2p, 2q) is the (real) signature2 of g.

Remark 1.6. We warn the reader that many authors define the fundamental two-form

with the opposite sign.

Similarly, a para-Hermitian structure (g, J) on V consists of a pseudo-Euclidean struc-

ture g and a product structure J which is antiorthogonal in the sense that J∗g = −g. The

two-form ω = g(. , J .) is also called the fundamental two-form and the tuple (V, g, J, ω)

is called a para-Hermitian vector space. The stabiliser in GL(V ) of a para-Hermitian

structure (J, g) is the para-unitary group U(V, g, J).

Notice that J is automatically a para-complex structure and the signature of g is

neutral. Indeed, due to the antiorthogonality, all eigenvectors X± = X ± JX, X ∈ V , of

the product structure J are isotropic. Using moreover the non-degeneracy of g, it is easy

to construct a basis ei
± = ei ± Jei of isotropic vectors such that the eigenspaces V ± of

J are spanned by the {e±i }. Thus the para-unitary group is isomorphic to GL(m,R) ⊂
SO(m,m) acting by the standard representation on V + and by the dual representation

on V −.

As before for ε-complex structures, the analogy suggests to unify the language. In

the Hermitian context, the notation is chosen in such a way that the prefix “ε” can be

replaced by “para” for ε = 1 and by “pseudo” for ε = −1.

Definition 1.7. An ε-Hermitian structure on V is defined as a pair (g, J) of a

pseudo-Euclidean structure g and an endomorphism J which satisfies J2 = εId and

J∗g = −εg. The tuple (V, g, J) is called an ε-Hermitian vector space and the stabiliser of

an ε-Hermitian structure is the ε-unitary group U(V, g, J).

Due to the observation (1.3), the fundamental two-form is in both cases of real type

(1, 1). Moreover, we remark that an ε-Hermitian structure can equivalently be char-

acterised by a pair (ω, J) of a non-degenerate two-form and an endomorphism J with

J2 = εId and J∗ω = −εω. Indeed, the induced pseudo-Euclidean structure defined by

(1.28) g = εω(. , J .) = −εω(J . , .)

turns the tuple (V, g, J, ω) in an ε-Hermitian vector space. Similarly, the ε-complex struc-

ture can be reconstructed from a pair (g, ω) satisfying an adequate compatibility. On

group level, these properties are reflected in the relation

U(V, g, J, ω) = GL(V, J) ∩O(V, g) = GL(V, J) ∩ Sp(V, ω) = O(V, g) ∩ Sp(V, ω),

where Sp(V, ω) denotes the real symplectic group which is defined as the stabiliser of a

non-degenerate two-form ω.

There are several ways to define an adapted basis. For instance, we can always choose

a g-orthonormal basis {e1, . . . , e2m} such that

(1.29) Je2k−1 = εe2k, Je2k = e2k−1, 1 ≤ k ≤ m, ω =
m∑
i=1

σ2i−1 e
(2i−1)(2i).

Here, the sign σj := g(ej, ej) ∈ {±1} depends on the signature of g for ε = −1, and in this

case we order the basis vectors such that the first 2p basis vectors are spacelike. However,

2We will follow the convention that 2p is the number of spacelike directions.
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as the signature of g is always (m,m) for ε = 1, it is more convenient in this case to order

the basis vectors such that σ2i−1 = −σ2i = 1 for all i. A basis satisfying (1.29) and the

sign conventions just explained will be denoted as an ε-unitary basis. Note that the dual

ε-complex structure J∗ in this basis is exactly (1.22).

The matrix group representing the ε-unitary group with respect to an ε-unitary basis

shall be denoted by

Uε(p, q) ∼=

{
U(p, q) ⊂ SO(2p, 2q) for ε = −1,

GL(m,R) ⊂ SO(m,m) for ε = 1.

An ε-Hermitian structure is naturally oriented by the fundamental two-form ω when

defining the Liouville volume form

φ(ω) =
1

m!
ωm

as positively oriented. Since

(1.30) φ(ω) =

{
(−1)qe1...2m for ε = −1,

e1...2m for ε = 1.

in an ε-unitary basis, the Liouville volume form φ(ω) is a metric volume form for both

values of ε.

Later, we will need the following interesting formula which is easily proved in an

ε-unitary basis.

Lemma 1.8. On an ε-Hermitian vector space (V, g, J, ω), the identity

α ∧ J∗β ∧ 1

(m− 1)!
ωm−1 = g(α, β)φ(ω)

holds for all α, β ∈ V ∗.

Finally, we briefly discuss the decomposition of the space of k-forms as a Uε(p, q)-

module. Let (V, g, J, ω) be an ε-Hermitian vector space. Recall that there is an induced

pseudo-Euclidean structure on ΛkV ∗ for all k defined by

g(x1 ∧ . . . ∧ xk, y1 ∧ . . . ∧ yk) = det(aij) , aij = g(xi, yj)

for decomposable k-forms and extending linearly.

Definition 1.9. (i) The Lefschetz operator on the Grassmann algebra Λ∗V ∗ is de-

fined by wedging with the fundamental (1, 1)-form ω.

(ii) A k-form α is called primitive or effective if α lies in the kernel of the adjoint operator

of the Lefschetz operator. We denote the space of all primitive k-forms by Λk
0V
∗.

In fact, it is well-known, see for instance [Huy], that for k > m, every primitive k-form

is trivial, and for k ≤ m, the primitive k-forms are given by

(1.31) Λk
0V
∗ = {α ∈ ΛkV ∗ | α ∧ ωm−k+1 = 0}.
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Since J∗ω = −εω, the Lefschetz operator preserves the type of a form such that the

decompositions

JΛr,sV ∗K =

min{r,s}⊕
i=0

ωi ∧ JΛr−i,s−i
0 V ∗K ,(1.32)

[Λr,rV ∗] =
r⊕
i=0

ωi ∧ [Λr−i,r−i
0 V ∗](1.33)

are U(V, g, J)-invariant, in particular orthogonal with respect to g. For the compact form

U(m), i.e. ε = −1 and g positive definite, these decompositions are in fact well-known to

be irreducible. For the non-compact forms U(p, q), the irreducibility can be deduced from

the irreducibility in the compact case which is explained thoroughly in section 2.

Combining (1.32) with the type decomposition (1.1), we have thus the decomposition

of ΛkV ∗ into irreducible components as U(p, q)-module.

In the para-complex context, ε = 1, the decomposition can be further refined using

(1.7).

1.4. The special unitary and the special para-unitary group. When intersect-

ing the groups defined in the previous two sections, we arrive at the structures we are

most interested in.

Definition 1.10. A special ε-Hermitian structure (g, J, ω,Ψ) on V is an ε-Hermitian

structure (g, J, ω) together with an ε-complex volume form Ψ = ψ+ +iεψ−. The stabiliser

in GL(V ) of a special ε-Hermitian structure (J, g, ω,Ψ) is the special ε-unitary group

SU(V, g, J, ω,Ψ).

First of all, we note that the real forms ψ+ and ψ− are primitive since ω is of type

(1, 1):

(1.34) ω ∧ ψ+ = 0, ω ∧ ψ− = 0.

Another interesting identity is the following, expressing the metric in terms of ω and Ψ.

Lemma 1.11. On a special ε-Hermitian vector space (V 2m, g, J, ω,Ψ = ψ+ +iεψ−) with

m ≥ 2, we have

g(X, Y )φ(Ψ) =

{
X ω ∧ Y ψ+ ∧ ψ+, if m is odd,

X ω ∧ Y ψ+ ∧ ψ−, if m is even
(1.35)

for all X, Y ∈ V .

Proof. Since g(X, Y ) = JY X ω, the identity follows immediately from (1.20)

when replacing α by X ω. �

In fact, a special ε-Hermitian structure (g, J, ω,Ψ) can always be reconstructed from

the forms ω and Ψ under the following assumptions.

Proposition 1.12. Let V be a real 2m-dimensional vector space, m ≥ 2. Moreover

let ω ∈ Λ2V ∗ be non-degenerate and let Ψ = ψ+ + iεψ− ∈ ΛmV ∗Cε be non-degenerate,

decomposable and compatible with ω in the sense that

ω ∧Ψ = 0.
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Then, the pair (ω,Ψ) can be extended to a unique special ε-complex structure (g, J, ω,Ψ)

where J is characterised by (1.19) and g by (1.28) or (1.35).

Proof. By Proposition 1.4, the m-form Ψ is of type (m, 0) with respect to the ε-

complex structure J uniquely defined by (1.19). Due to the compatibility ω ∧ Ψ = 0,

the two-form ω is of type (1, 1) or equivalently, J∗ρω = −εω by (1.3). Hence, with the

pseudo-Euclidian structure g uniquely defined by (1.28) or, equivalently, by (1.35), the

tuple (g, J, ω,Ψ) is a special ε-Hermitian structure. �

In the case of odd ε-complex dimension, already the pair (ω, ψ+) suffices under the

following assumptions.

Proposition 1.13. Let V be a 2m-dimensional vector space with m = 2l−1 ≥ 3 odd,

let ω ∈ Λ2V ∗ be non-degenerate and let ρ ∈ ΛmV ∗ be a real m-form lying in the GL(V )-

orbit of the real part of an ε-complex non-degenerate decomposable m-form. Furthermore,

assume that ω and ρ are compatible in the sense that

ω ∧ ρ = 0.

Then, there is a unique special ε-Hermitian structure (g, J, ω,Ψ) with fundamental two-

form ω and Re(Ψ) = ρ such that φ(Ψ) and φ(ω) induce the same orientation.

Proof. Let V be oriented by the Liouville volume form φ(ω). By Proposition 1.5,

there is a unique ε-complex structure Jρ such that Ψρ = ρ+εliεJ
∗
ρρ is an (m, 0)-form with

φ(Ψ) > 0. The explicit formula for Jρ is given by (1.27). We claim that the vanishing of

ω ∧ ρ also implies ω ∧ J∗ρρ = 0. Indeed, for all one-forms α, we have

0 = J∗ρα ∧ ρ ∧ ω
(1.10)
= −εl+1α ∧ J∗ρρ ∧ ω

and the claim follows. Since therefore ω ∧ Ψ = 0, the two-form ω is of type (1, 1)

or equivalently, J∗ρω = −εω by (1.3). Hence, with the pseudo-Euclidian structure g

defined by (1.28) or, equivalently, by (1.35), the tuple (g, Jρ, ω,Ψ) is a special ε-Hermitian

structure. �

A standard basis for a special ε-Hermitian vector space (V, g, J, ω,Ψ) can be defined

as follows. Since the rank of the Cε-module Λm,0V is one, the complex volume form Ψ

with respect to an ε-unitary basis {ei} is

(1.36) Ψ = ψ+ + iεψ− = z(e1 + εiεe
2) ∧ . . . ∧ (e2m−1 + εiεe

2m)

for an ε-complex number z with zz̄ 6= 0. Obviously, we can always choose an ε-unitary

basis such that z is real. Such a basis will be called an ε-unitary basis adapted to

the special ε-Hermitian structure. In an adapted basis, the special ε-unitary group is

represented by the matrix group

SUε(p, q) := Uε(p, q) ∩ SL(m,Cε) ∼=

{
SU(p, q) ⊂ SO(2p, 2q) for ε = −1,

SL(m,R) ⊂ SO(m,m) for ε = 1.

Obviously, the ε-complex volume form Ψ can always be multiplied by a constant such

that z = 1 in an adapted basis. This normalisation turns out to be important when

considering the corresponding G-structures on manifolds and we reformulate it as follows.
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Definition 1.14. A special ε-Hermitian structure (g, J, ω,Ψ) is called normalised if

gCε(Ψ,Ψ) =

{
(−1)q 2m for ε = −1,

± 2m for ε = 1.

Here, gCε denotes the extension of g to a Hermitian form on VCε = V ⊗Cε characterised

by

gCε(v ⊗ z1, w ⊗ z2) = z1z̄2 g(v, w),

for v, w ∈ VCε , z1, z2 ∈ Cε or, equivalently, by

gCε(v+ + iεv−, w+ + iεw−) = g(v+, w+)− εg(v−, w−) + iε(g(v−, w+)− g(v+, w−))

for v+, v−, w+, w− ∈ V . In analogy to the real case, there is an induced Hermitian form

on Λ∗VCε , also denoted by gCε .

Lemma 1.15. The following assertions are equivalent for a special ε-Hermitian struc-

ture (g, J, ω,Ψ).

(i) The structure is normalised.

(ii) For every ε-unitary basis, the constant z ∈ Cε appearing in (1.36) satisfies |z|2 = ±1.

(iii) The volume form φ(Ψ) associated to Ψ by (1.23) and the Liouville volume form φ(ω)

are related by the formula

(1.37) φ(Ψ) =

{
(−1)q 2m−2 φ(ω) for ε = −1,

± 2m−2 φ(ω) for ε = 1.

Proof. The equivalence of (i) and (ii) is easily seen when considering that e2k =

J∗e2k−1 for all k = 1, . . . ,m in an ε-unitary basis and thus

gCε(e
2k−1 + εiεe

2k, e2k−1 + εiεe
2k) = g(e2k−1, e2k−1)− εg(J∗e2k−1, J∗e2k−1) = 2σ2k−1.

The equivalence of (ii) and (iii) follows when comparing the volume forms in an ε-unitary

basis which we already computed in (1.21) and (1.30). �

Remark 1.16. Note that the third characterisation is very useful when reconstructing

a special ε-Hermitian structure out of the pair (ω, ψ+), or the tuple (ω, ψ+, ψ−), respec-

tively.

For ε = −1, the following proposition yields the irreducible decomposition of the

SU(p, q)-module of k-forms. Again, this is a well-known fact for the compact form SU(m)

and the result for the non-compact form follows with the arguments given in section 2.

Proposition 1.17. Let (g, J, ω,Ψ) be a special pseudo-Hermitian structure. The de-

composition (1.32) is also irreducible under SU(p, q) except for the forms of type (m, 0) +

(0,m) which can be decomposed in the one-dimensional summands

JΛm,0V ∗K = Rψ+ ⊕ Rψ−.

2. Representations of compact and non-compact forms of complex Lie groups

We shall apply several times the following facts on the irreducibility of complexified

representations.

Let g be a real Lie algebra and let V be a real g-module. The complexification

VC = V ⊗ C ∼= V ⊕ iV is a complex g-module in the obvious way. The other way round,
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the realification WR of a complex g-module W is simply the underlying real vector space

regarded as a real g-module. Moreover, recall that a real structure on a complex vector

space W is an antilinear involution. The real and complex representations are related as

follows, for proofs see for instance [On], §8.

Proposition 2.1. Let g be a real Lie algebra.

(a) A real g-module V is irreducible if and only if it satisfies one of the following two

conditions:

(i) The complexification VC is an irreducible complex g-module.

(ii) V is the realification of an irreducible complex g-module W which does not admit

an equivariant real structure and it holds VC ∼= W ⊕ W̄ .

(b) Moreover, two irreducible real g-modules V1 and V2 satisfying (i) are equivalent if and

only if (V1)C and (V2)C are equivalent. Two irreducible real g-modules V1 = (W1)R
and V2 = (W2)R satisfying (ii) are equivalent if and only if W1

∼= W2 or W1
∼= W̄2 as

complex g-modules. An irreducible real g-module satisfying (i) cannot be equivalent to

an irreducible real g-module satisfying (ii).

In a second step, we can also complexify the Lie algebra g. Identifying gC = g ⊕ ig,

the extension of a complex g-module W to a gC-module is obvious.

Lemma 2.2. A complex g-module W of g is irreducible if and only if W is irreducible

as a gC-module. Two complex g-modules are equivalent if and only if the corresponding

gC-modules are equivalent.

More specifically, we turn to the real forms u(p, q), p+q = m, and gl(m,R) of gl(m,C).

If ω is a two-form on a real vector space V , we denote by ωC the complex linear extension

of ω to VC.

Lemma 2.3. Let (J, ω) and (J ′, ω′) be ε-Hermitian structures on a 2m-dimensional real

vector space V . Let the Lie algebras of the stabilisers be denoted by u(J, ω) and u(J ′, ω′)

such that gl(m,C) ∼= uC(J, ω) ∼= uC(J ′, ω′).

Then, there is an equivariant isomorphism of the uC(J, ω)-module (VC, J, ωC) and the

uC(J ′, ω′)-module (VC, J
′, ω′C).

Proof. If ε = −1, an ε-complex structure J is completely determined by the decom-

position VC = W⊕W̄ where W = V 1,0 and dimCW = m. If ε = 1, an ε-complex structure

corresponds to the real decomposition V = V + ⊕ V − which can simply be tensored by C
such that VC = V +

C ⊕ V
−
C where the summands are complex m-dimensional as well.

Now, the complexified compatible two-form ωC is of type (1, 1), i.e. an element of

W ∗ ⊗ W̄ ∗ for ε = −1 by definition and an element of (V +
C )∗ ⊗ (V −C )∗ for ε = 1 by (1.7).

Thus, independently of the sign of ε and the signature of the induced metric, there is a

C-linear isomorphism VC → VC mapping the decomposition corresponding to J to that

corresponding to J ′ such that ωC is the pullback of ω′C. This implies the assertion since

uC(J, ω) and uC(J ′, ω′) are exactly the subalgebras of gl(VC) preserving the decomposition

of VC corresponding to J or J ′ and annihilating ωC or ω′C, respectively. �

Remark 2.4. Notice that the main difference of the complex and the para-complex

case is the fact that the defining representation is irreducible for ε = −1, whereas it splits

into the irreducible representations V ± for ε = 1.
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Corollary 2.5. Let (J, ω,Ψ) and (J ′, ω′,Ψ′) be two special pseudo-Hermitian struc-

tures on a 2m-dimensional real vector space V . Let the Lie algebras of the stabilisers be

denoted by su(J, ω) and su(J ′, ω′) such that sl(m,C) ∼= suC(J, ω) ∼= suC(J ′, ω′).

Then, there is an equivariant isomorphism of the suC(J, ω)-module (VC, J, ωC,Ψ) and

the suC(J ′, ω′)-module (VC, J
′, ω′C,Ψ

′).

Proof. Without restriction, we can assume that J = J ′. Let φ be the equivariant

isomorphism of VC = W ⊕ W̄ which was constructed in the proof of the previous lemma.

Since Ψ,Ψ′ ∈ ΛmW and dimC ΛmW = 1, there is a z ∈ C such that Ψ = zΨ′ and it is

easy to modify φ such that (ω,Ψ) is the pullback of (ω′,Ψ′). The rest of the argument is

analogous to the proof of the previous lemma. �

In combination, the lemmas can be applied as follows. Assume that we have a real

U(m)-module W contained in a tensor power V ⊗r⊗ (V ∗)⊗s of the defining representation

(V, g, J, ω). Moreover, assume that the decomposition into irreducible components is

known and that the components can be written in terms of the defining tensors. One

of the examples we have in mind is the decomposition of ΛkV as U(m)-module, see

(1.32). Now, when replacing the Euclidean structure g by a pseudo-Euclidean structure of

signature (p, q), p+q = m, we obtain a corresponding U(p, q)-module W̃ and an analogous

decomposition into invariant components. The question is whether the components of the

U(p, q)-module W̃ are also irreducible for indefinite signature.

First of all, the discussion can be reduced to the corresponding modules of the Lie

algebras u(p, q) by the standard Lie theory arguments. Secondly, by Proposition 2.1, it

suffices to compare the components of the complexified module W̃C with the irreducible

components of the corresponding module WC. Thirdly, due to Lemma 2.2, it suffices

to show that all of the components of WC and W̃C are isomorphic as gl(m,C)-modules.

However, an equivariant isomorphism of gl(m,C)-modules W → W̃ is given by extending

the isomorphism of the defining representations constructed in Lemma 2.3. The restriction

to each component is an isomorphism since the components are characterised by the

defining tensors.

Obviously, the same arguments can be applied to the groups SU(m) and SU(p, q),

p + q = m. Similarly, one can also show the irreducibility of those representations of

the non-compact form G∗2 of GC
2 which are defined completely analogous to well-known

irreducible representations of the compact form G2.

3. Stable forms

The following two sections are based on the first section of [CLSS].

The aim is to collect the basic facts about stable forms. Let V always denote an

n-dimensional real vector space.

Definition 3.1. A k-form ρ ∈ ΛkV ∗ is called stable if its orbit under GL(V ) is open.

It is easy to verify that a k-form ρ with stabiliser H in GL(V ) is stable if and only if

the dimension of the orbit GL(V )/H is maximal, i.e. if the dimension coincides with the

dimension of ΛkV ∗. In fact, stability occurs only in the following special cases.

Proposition 3.2. The group GL(V ) has an open orbit in ΛkV ∗, 0 ≤ k ≤
[
n
2

]
, if and

only if k ≤ 2 or if k = 3 and n = 6, 7 or 8.
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Proof. A real k-form ρ is stable if and only if the complex linear extension ρC of

ρ to ΛkV ∗C has an open orbit under GL(VC). However, the representation of GL(VC) ∼=
GL(n,C) on ΛkV ∗C

∼= Λk(Cn)∗ is irreducible and the result thus follows, for instance, from

the classification of irreducible complex prehomogeneous vector spaces, [KiSa]. �

Remark 3.3. An open orbit is unique in the complex case, since an orbit which is

open in the usual topology is also Zariski-open and Zariski-dense (Prop. 2.2, [Ki]). Over

the reals, the number of open orbits is finite by a well-known theorem of Whitney.

Proposition 3.4. Let V be oriented and assume that k ∈ {2, n− 2} and n even, or

k ∈ {3, n− 3} and n = 6, 7 or 8. Then, there is a GL+(V )-equivariant mapping

φ : ΛkV ∗ → ΛnV ∗,

homogeneous of degree n
k

, which assigns a volume form to a stable k-form and which

vanishes on non-stable forms. Given a stable k-form ρ, the derivative of φ in ρ defines a

dual (n− k)-form ρ̂ ∈ Λn−kV ∗ by the property

(3.1) dφρ(α) = ρ̂ ∧ α for all α ∈ ΛkV ∗.

The dual form ρ̂ is also stable and satisfies

(StabGL(V )(ρ))0 = (StabGL(V )(ρ̂))0.

A stable form, its volume form and its dual are related by the formula

(3.2) ρ̂ ∧ ρ =
n

k
φ(ρ).

Proof. This result can be viewed as a consequence of the theory of prehomogeneous

vector spaces, [Ki], as follows. Replacing V and GL(V ) by the complexifications VC and

GL(VC), the situations we are considering correspond to examples 2.3, 2.5, 2.6 and 2.7 of

§2, [Ki]. In all cases, the complement of the open orbit under GL(VC) is a hypersurface

in Λk(VC)∗ defined by a complex irreducible non-degenerate homogeneous polynomial f

which is invariant under GL(VC) up to a non-trivial character χ : GL(VC)→ C×.

Due to Proposition 4.1, [Ki], the polynomial f restricted to ΛkV ∗ is real-valued and

the character χ restricts to χ : GL(V ) → R×. Moreover, by Proposition 4.5, [Ki], the

complement of the zero set of f in ΛkV ∗ has a finite number of connected components

which are open GL(V )-orbits. Since the only characters of GL(V ) are the powers of the

determinant, there is an equivariant mapping from ΛkV ∗ to (ΛnV ∗)⊗s for some positive

integer s. Taking the s-th root, which depends on the choice of an orientation if s is

even, we obtain the GL+(V )-equivariant map φ. By construction, a k-form ρ is stable if

and only if φ(ρ) 6= 0. The equivariance under scalar matrices implies that the map φ is

homogeneous of degree n
k
.

The derivative

ΛkV ∗ → (ΛkV ∗)∗ ⊗ ΛnV ∗
=→ Λn−kV ∗ , ρ 7→ dρφ 7→ ρ̂

inherits the GL+(V )-equivariance from φ and is an immersion since f is non-degenerate,

compare Theorem 2.16, [Ki]. Therefore, it maps stable forms to stable forms such that

the connected components of the stabilisers are identical. Finally, formula (3.2) is just

Euler’s formula for the homogeneous mapping φ. �
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In the following, we discuss the basic properties of the stable forms which are relevant

in this thesis.

k = 2,n = 2m. The orbit of a non-degenerate two-form is open since

dim GL(2m,R)− dim Sp(2m,R) = 4m2 −m(2m+ 1) = m(2m− 1) = dim Λ2V ∗

and there is only one open orbit in Λ2V ∗. Thus, a two-form ω is stable if and only if it

is non-degenerate and its stabiliser is isomorphic to Sp(2m,R). The polynomial invariant

is the Pfaffian determinant. We normalise the associated equivariant volume form such

that is corresponds to the Liouville volume form

φ(ω) =
1

m!
ωm.

Differentiation of the homogeneous polynomial map ω 7→ φ(ω) yields

ω̂ =
1

(m− 1)!
ωm−1.

k = (n− 2),n = 2m,m even. Let σ ∈ Λn−2V ∗ be stable. Since Λn−2V ∗ = Λ2V ⊗
ΛnV ∗, the power σm ∈ (ΛnV ∗)⊗(m−1) is well-defined and the associated volume form can

be defined as

φ(σ) = (
1

m!
σm)

1
m−1 .

The normalisation is chosen such that φ(σ) = φ(ω) for the unique two-form ω with σ = ω̂.

Thus, the evaluation of (3.2) yields

σ̂ =
1

m− 1
ω.

The stabiliser of σ in GL(V ) is again the real symplectic group and there is a unique open

orbit in Λn−2V ∗.

k = (n− 2),n = 2m,m odd. Let V be oriented. Similar to the previous case, we

define the volume form associated to a stable (n− 2)-form σ by

φ(σ) = | 1

m!
σm|

1
m−1 ,

choosing the positively oriented root. In fact, there are two open orbits in Λn−2V ∗ =

Λ2V ⊗ΛnV ∗: The first one consists of the forms ωm−1, where ω is a stable two-form, the

second one of the forms −ωm−1. According to (3.2), it holds

σ̂ =
1

m− 1
ω(3.3)

for the unique two-form ω with ω̂ = σ and φ(σ) = φ(ω) if σ belongs to the first orbit

and for the unique two-form ω with ω̂ = −σ and φ(σ) = −φ(ω) if σ belongs to the

second orbit. The stabiliser of σ in GL(V ) is the group of symplectic and anti-symplectic

transformations.

k = 3,n = 6. As we have already seen in section 1.2, the real part of an ε-complex

volume form in dimension six is stable. It is shown in [Hi2] that the converse is also true.

For the convenience of the reader, we summarise the properties of stable three-forms in

dimension six repeating some notation introduced in section 1.2.
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Let V be a six-dimensional oriented vector space. Recall that κ denoted the canonical

isomorphism

κ : Λ5V ∗ → V ⊗ Λ6V ∗, ξ 7→ X ⊗ ν with Xy ν = ξ,

and that we defined for a three-form ρ ∈ Λ3V ∗

Kρ(v) = κ((vy ρ) ∧ ρ) ∈ V ⊗ Λ6V ∗,(3.4)

λ(ρ) = 1
6
trK2

ρ ∈ (Λ6V ∗)⊗2,(3.5)

φ(ρ) =
√
λ(ρ) ∈ Λ6V ∗,(3.6)

where the positively oriented square root is chosen. If ρ satisfies moreover λ(ρ) 6= 0, we

defined

Jρ = 1
φ(ρ)

Kρ ∈ End(V ).(3.7)

Proposition 3.5. A three-form ρ on an oriented six-dimensional vector space V is

stable if and only λ(ρ) 6= 0. There are two open orbits.

One orbit consists of all three-forms ρ satisfying one of the following equivalent prop-

erties:

(a) The quartic invariant satisfies λ(ρ) > 0.

(b) There are uniquely defined real decomposable three-forms α and β such that ρ = α+β

and α ∧ β > 0.

(c) The stabiliser of ρ in GL+(V ) is SL(3,R)× SL(3,R).

(d) It holds λ(ρ) 6= 0 and the endomorphism Jρ is a para-complex structure on V .

(e) There is a basis {e1, . . . , e6} of V such that ν = e123456 > 0 and

(3.8) ρ = e123 + e456.

In this basis, it holds λ(ρ) = ν⊗2, Jρei = ei for i ∈ {1, 2, 3} and Jρei = −ei for

i ∈ {4, 5, 6}.
(f) There is a unique para-complex decomposable three-form α such that ρ = Reα and

i1(ᾱ ∧ α) > 0.

(g) There is a basis {e1, . . . , e6} of V such that ν = e123456 > 0 and

ρ = e135 + e146 + e236 + e245.

In this basis, it holds λ(ρ) = 4ν⊗2, Jρei = ei+1 and Jρei+1 = ei for i ∈ {1, 3, 5}.

The other orbit consists of all three-forms ρ satisfying one of the following equivalent

properties:

(a) The quartic invariant satisfies λ(ρ) < 0.

(b) There is a uniquely defined complex decomposable three-form α such that ρ = Reα

and i(ᾱ ∧ α) > 0.

(c) The stabiliser of ρ in GL+(V ) is SL(3,C).

(d) It holds λ(ρ) 6= 0 and the endomorphism Jρ is a complex structure on V .

(e) There is a basis {e1, . . . , e6} of V such that ν = e123456 > 0 and

ρ = e135 − e146 − e236 − e245.

In this basis, it holds λ(ρ) = −4ν⊗2, Jρei = −ei+1 and Jρei+1 = ei for i ∈ {1, 3, 5}.
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Proof. All properties are proved in section 2 of [Hi2] except for the characterisation

(d), (f) and (g) of the first orbit. However, these are obvious considering the discussion

of ε-complex structures and volume forms in section 1.2. �

Using the unified language introduced in section 1.2, we can also describe both orbits

simultaneously. Indeed, given a generic stable three-form ρε and an orientation, there is

an oriented basis {e1, . . . , e6} of V such that

(3.9) ρε = e135 + ε(e146 + e236 + e245)

with λ(ρ) = 4ε(e123456)⊗2. The induced ε-complex structure Jρ is given by Jρei = εei+1,

Jρei+1 = ei for i ∈ {1, 3, 5} and it holds

(3.10) J∗ρερε = e246 + ε(e235 + e145 + e136).

Moreover, we like to emphasise the following properties of a stable three-form.

Lemma 3.6. Let ρ be a stable three-form on a six-dimensional oriented vector space.

(i) The dual stable form is given by

(3.11) ρ̂ = J∗ρρ.

(ii) For both orbits, the ε-complex three-form Ψρ = ρ+iερ̂ is a non-degenerate (3, 0)-form

with respect to the induced ε-complex structure Jρ.

Proof. (i) We already observed that the connected components of the stabilisers of

ρ and ρ̂ have to be identical. Therefore, since the space of real three-forms invariant

under SL(3,C) respectively SL(3,R)×SL(3,R) is two-dimensional, we can make the

ansatz

ρ̂ = c1ρ+ c2J
∗
ρρ

with real constants c1 and c2. Computing

6

3
φ(ρ)

(3.2)
= ρ̂ ∧ ρ = c2 J

∗
ρρ ∧ ρ

(3.9),(3.10)
= 2c2 φ(ρ),

we find c2 = 1.

In order to determine c1, we compute λ(ρ + tJ∗ρρ) = 4ε(−ε + t2)2 (e123456)⊗2 for

the normal form (3.9). Thus, the derivative of λ in ρ in direction of J∗ρρ vanishes.

However, by definition of φ and since

dρφ(J∗ρρ) = ρ̂ ∧ J∗ρρ = c1ρ ∧ J∗ρρ = −2c1φ(ρ),

the constant c1 has to be zero.

(ii) The second part is now a special case of Proposition 1.5.

�

It is a remarkable consequence of the lemma just proven that we can apply all identities

for ε-complex volume forms to ρ + iερ̂, see section 1.2. For instance, the lemma yields a

convenient way to compute the dual of ρ without determining Jρ.

Corollary 3.7. (i) If λ(ρ) > 0 and ρ = α + β in terms of decomposables ordered

such that α ∧ β > 0, the dual three-form is ρ̂ = α− β.

(ii) If ρ is given as the real part of an ε-complex decomposable three-form α such that

iε(ᾱ ∧ α) > 0, the dual three-form ρ̂ is the imaginary part of α.
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Proof. The first assertion is obvious when evaluating (3.11) in a basis such that

ρ = e123 + e456 since Jρei = ei for i ∈ {1, 2, 3} and Jρei = −ei for i ∈ {4, 5, 6} in this basis.

The second part follows from Lemma 3.6 and (1.12). �

In fact, the corollary explicitly shows the equivalence of the two different definitions

of ρ 7→ ρ̂ given in [Hi1] and [Hi2].

Finally, we note that for a fixed orientation, it holds

(3.12) ˆ̂ρ = −ρ and Jρ̂ = −εJρ.

k = 3,n = 7. Given any three-form ϕ, we define a symmetric bilinear form with values

in Λ7V ∗ by

(3.13) bϕ(v, w) =
1

6
(vyϕ) ∧ (wyϕ) ∧ ϕ.

Since the determinant of a scalar-valued bilinear form is an element of (Λ7V ∗)⊗2, we have

det b ∈ (Λ7V ∗)⊗9. If and only if ϕ is stable, the seven-form

φ(ϕ) = (det bϕ)
1
9

defines a volume form, independent of an orientation on V , and the scalar-valued sym-

metric bilinear form

gϕ =
1

φ(ϕ)
bϕ

is non-degenerate. Notice that φ(ϕ) =
√

det gϕ is the metric volume form.

It is known ([Br1], [Har]) that a stable three-form defines a multiplication “·” and a

vector cross product “×” on V by the formula

(3.14) ϕ(x, y, z) = gϕ(x, y · z) = gϕ(x, y × z),

such that (V,×) is isomorphic either to the imaginary octonions ImO or to the imaginary

split-octonions Im Õ. Thus, there are exactly two open orbits of stable three-forms having

isotropy groups

StabGL(V )(ϕ) ∼=

{
G2 ⊂ SO(7), if gϕ is positive definite,

G∗2 ⊂ SO(3, 4), if gϕ is of signature (3,4).
(3.15)

There is always a basis {e1, . . . , e7} of V such that

(3.16) ϕ = τe124 +
7∑
i=2

ei (i+1) (i+3)

with τ ∈ {±1} and indices modulo 7. For τ = 1, the induced metric gϕ is positive definite

and the basis is orthonormal such that this basis corresponds to the Cayley basis of ImO.

For τ = −1, the metric is of signature (3,4) and the basis is pseudo-orthonormal with e1,

e2 and e4 being the three spacelike basis vectors.

The only four-forms having the same stabiliser as ϕ are the multiples of the Hodge

dual ∗gϕϕ, [Br1, Propositions 2.1, 2.2]. Since the normal form satisfies gϕ(ϕ, ϕ) = 7, we

have by definition of the Hodge dual ϕ ∧ ∗gϕϕ = 7φ(ϕ) and therefore

ϕ̂ =
1

3
∗gϕ ϕ,(3.17)
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by comparing with (3.2).

Lemma 3.8. Let ϕ be a stable three-form in a seven-dimensional vector space V . Let

β be a one-form or a two-form. Then β ∧ ϕ = 0 if and only if β = 0.

Proof. For the compact case, see also [Bo]. If β is a one-form, the proof is very

easy. If β is a two-form, we choose a basis such that ϕ is in the normal form (3.16) and

β =
∑

i<j bi,j e
ij and compute

β ∧ ϕ = (b2,3 − b1,6) e12356 + (b2,3 − b4,7) e23457 + (b1,6 + b4,7) e14567

+ (b5,7τ + b1,2) e12457 + (b3,6 − b5,7) e34567 + (b1,2 − b3,6τ) e12346

− (b3,7τ + b2,4) e12347 + (b5,6τ + b2,4) e12456 + (b3,7 + b5,6) e13567

+ (b2,5 − b4,6) e23456 + (b4,6 − b1,7) e13467 − (b2,5 + b1,7) e12357

+ (b4,5 + b2,6) e24567 − (b1,3 + b2,6) e12367 + (b4,5 + b1,3) e13457

+ (b3,5 + b6,7) e23567 + (b1,4 − b3,5τ) e12345 + (b6,7τ − b1,4) e12467

+ (b3,4 + b1,5) e13456 + (b2,7 − b1,5) e12567 + (b3,4 − b2,7) e23467.

The five-form is written as a linear combination of linearly independent forms and each

line contains exactly three different coefficients of β. Inspecting the coefficient equations

line by line, it is easy to see that all coefficients of β vanish if and only if β ∧ ϕ = 0. �

k = 3,n = 8. The stabiliser of a stable three-form in dimension eight is a real form

of PSL(3,C). However, as these groups are not considered in this thesis, we omit the

discussion and refer to [KiSa], [Hi1] and [Wi] for more information.

4. Relation between stable forms in dimensions six and seven

There is a natural relation between stable forms in dimension six, stable forms in

dimension seven and certain non-stable four-forms in dimensions eight which is explained

in this section. This relation is in fact the algebraic construction underlying the Hitchin

flow which is discussed in chapter 6.

4.1. Real forms of SL(3,C). Any real form of SL(3,C) can be written as a simul-

taneous stabiliser of a stable two-form and a stable three-form as follows.

Let V be a six-dimensional real vector space.

Definition 4.1. A pair (ω, ρ) ∈ Λ2V ∗ × Λ3V ∗ of a stable two-form and a stable

three-form is called compatible if

ω ∧ ρ = 0

and normalised if

φ(ρ) = 2φ(ω) ⇐⇒ J∗ρρ ∧ ρ =
2

3
ω3.

By Proposition 1.13, a compatible pair (ω, ρ) of stable forms induces a unique special

ε-Hermitian structure (g(ω,ρ), Jρ, ω, ρ + iεJ
∗
ρρ) where the induced ε-complex structure Jρ

is given by (3.7), and the induced metric by

(4.1) g(ω,ρ) = εω(. , Jρ .).
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Thus, the stabiliser in GL(V ) of a compatible pair is

StabGL(V )(ρ, ω) ∼=

{
SU(p, q) ⊂ SO(2p, 2q) , p+ q = 3 , if λ(ρ) < 0,

SL(3,R) ⊂ SO(3, 3) , if λ(ρ) > 0,

where SL(3,R) is embedded in SO(3, 3) such that it acts by the standard representation

and its dual, respectively, on the maximally isotropic ±1-eigenspaces of the para-complex

structure Jρ induced by ρ.

A special ε-Hermitian structure induced by a compatible and normalised pair is indeed

normalised due to Lemma 1.15. In the case ε = −1, the metric g(ω,ρ) induced by a

normalised, compatible pair is either positive definite or of signature (2, 4) due to the sign

(−1)q appearing in (1.37). This is no restriction of generality since any SU(p, q)-structure,

p + q = 3, can be turned into a SU(3)- or SU(1, 2)-structure by replacing g by −g or,

equivalently, ω by −ω.

Following the conventions introduced in section 1.4, an adapted ε-unitary basis for a

compatible and normalised pair (ω, ρ) is a pseudo-orthonormal basis {e1, . . . , e6} of V

with dual basis {e1, . . . , e6} such that ρ = ρε is in the normal form (3.9) and

ω = τ(e12 + e34) + e56(4.2)

for (ε, τ) ∈ {(−1, 1), (−1,−1), (1, 1)}. The signature of the induced metric with respect

to this basis is

(τ,−ετ, τ,−ετ, 1,−ε) =


(+,+,+,+,+,+) for ε = −1 and τ = 1,

(−,−,−,−,+,+) for ε = −1 and τ = −1,

(+,−,+,−,+,−) for ε = 1 and τ = 1,

(4.3)

and we have

StabGL(6,R)(ω, ρ) ∼=


SU(3) ⊂ SO(6) for ε = −1 and τ = 1,

SU(1, 2) ⊂ SO(2, 4) for ε = −1 and τ = −1,

SL(3,R) ⊂ SO(3, 3) for ε = 1.

For instance, the following observation is easily verified using the unified basis.

Lemma 4.2. Let (ω, ρ) be a compatible and normalised pair of stable forms on a six-

dimensional vector space. Then, the volume form φ(ω) is in fact a metric volume form

with respect to the induced metric g = g(ω,ρ) and the corresponding Hodge dual of ω and ρ

is

(4.4) ∗gω = −εω̂ , ∗gρ = −ρ̂

4.2. Relation between real forms of SL(3,C) and GC
2 . The relation between

stable forms in dimension six and seven corresponding to the embedding SU(3) ⊂ G2 is

well-known. We extend this relation by including also the embeddings SU(1, 2) ⊂ G∗2 and

SL(3,R) ⊂ G∗2 as follows.

Proposition 4.3. Let V = W ⊕ L be a seven-dimensional vector space decomposed

as a direct sum of a six-dimensional subspace W and a line L. Let α be a non-trivial one-

form in the annihilator W 0 of W and (ω, ρ) ∈ Λ2L0 × Λ3L0 a compatible and normalised

pair of stable forms inducing the scalar product h = h(ω,ρ) given in (4.1). Then, the
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three-form ϕ ∈ Λ3V ∗ defined by

(4.5) ϕ = ω ∧ α + ρ

is stable and induces the scalar product

(4.6) gϕ = h− εα · α

where ε denotes the sign of λ(ρ) such that J2
ρ = εid. The stabiliser of ϕ in GL(V ) is

StabGL(V )(ϕ) ∼=

{
G2 for ε = −1 and positive definite h,

G∗2 otherwise.

Proof. We choose a basis {e1, . . . , e6} of L0 such that ω and ρ are in the generic

normal forms (3.9) and (4.2). With e7 = α, we have

ϕ = τ(e127 + e347) + e567 + e135 + ε(e146 + e236 + e245).(4.7)

The induced bilinear form (3.13) turns out to be

bϕ(v, w) = (−ετv1w1 + τv2w2 − ετv3w3 + τv4w4 − εv5w5 + v6w6 + v7w7)e1234567

for v =
∑
viei and w =

∑
wiei. Hence, the three-form ϕ is stable for all signs of ε and τ

and its associated volume form is

φ(ϕ) = (det bϕ)
1
9 = −ε e1234567.

The formula (4.6) for the metric gϕ induced by ϕ follows, since the basis {e1, . . . , e7} of

V is pseudo-orthonormal with respect to this metric of signature

(τ,−ετ, τ,−ετ, 1,−ε,−ε) =


(+,+,+,+,+,+,+) for ε = −1 and τ = 1,

(−,−,−,−,+,+,+) for ε = −1 and τ = −1,

(+,−,+,−,+,−,−) for ε = 1 and τ = 1.

(4.8)

The assertion on the stabilisers now follows from (3.15). �

Lemma 4.4. Under the assumptions of the previous proposition, the dual four-form of

the stable three-form ϕ is

(4.9) 3ϕ̂ = ∗ϕϕ = − ε (α ∧ ρ̂+ ω̂) = εα ∧ ∗hρ+ ∗hω,

where ∗ϕ denotes the Hodge dual with respect to the metric gϕ and the orientation induced

by φ(ϕ).

Proof. In the basis of the previous proof, the Hodge dual of ϕ is

∗ϕϕ = −ετ(e3456 + e1256)− εe1234 + ε e2467 + e2357 + e1457 + e1367.

The second equality follows when comparing this expression with ε(e7 ∧ ρ̂+ 1
2
ω2) in this

basis using (3.10) and (4.2). The first and the third equality are just the formulas (3.17)

and (4.4), respectively. �

The inverse process is given by the following construction.

Proposition 4.5. Let V be a seven-dimensional real vector space and ϕ ∈ Λ3V ∗ a

stable three-form which induces the metric gϕ on V . Moreover, let n ∈ V be a unit vector

with gϕ(n, n) = −ε ∈ {±1} and let W = n⊥ denote the orthogonal complement of R·n.
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Then, the pair (ω, ρ) ∈ Λ2W ∗ × Λ3W ∗ defined by

ω = (n ϕ)|W , ρ = ϕ|W ,(4.10)

is a pair of compatible normalised stable forms. The metric h = h(ω,ρ) induced by this pair

on W satisfies h = (gϕ)|W and the stabiliser is

StabGL(W )(ω, ρ) ∼=


SU(3), if gϕ is positive definite,

SU(1, 2), if gϕ is indefinite and ε = −1,

SL(3,R), if ε = 1.

When (V, ϕ) is identified with the imaginary octonions, respectively, the imaginary split-

octonions, by (3.14), the ε-complex structure induced by ρ is given by

(4.11) Jρv = −n · v = −n× v for v ∈ V .

Proof. Due to the stability of ϕ, we can always choose a basis {e1, . . . , e7} of V with

n = e7 such that ϕ is given by (4.7) where ε = −gϕ(n, n) and τ ∈ {±1} depends on the

signature of gϕ. As this basis is pseudo-orthonormal with signature given by (4.8), the

vector n has indeed the right scalar square and {e1, . . . , e6} is a pseudo-orthonormal basis

of the complement W = n⊥. Since the pair (ω, ρ) defined by (4.10) is now exactly in

the generic normal form given by (3.9) and (4.2), it is stable, compatible and normalised

and the induced endomorphism Jρ is an ε-complex structure. The identity h = (gϕ)|W
for the induced metric h(ω,ρ) follows from comparing the signatures (4.8) and (4.3) and

the assertion for the stabilisers is an immediate consequence. Finally, the formula for the

induced ε-complex structure Jρ is another consequence of g = (gϕ)|W since we have

gϕ(x, n× y)
(3.14)
= ϕ(x, n, y) = −ω(x, y) = −h(x, Jρy)

for all x, y ∈ W . �

Notice that, for a fixed metric h of signature (2, 4) or (3, 3), the compatible and nor-

malised pairs (ω, ρ) of stable forms inducing this metric are parametrised by the homoge-

neous spaces SO(2, 4)/ SU(1, 2) and SO(3, 3)/ SL(3,R), respectively. Thus, the mapping

(ω, ρ) 7→ ϕ defined by formula (4.5) yields isomorphisms

SO(2, 4)

SU(1, 2)
∼=

SO(3, 4)

G∗2
,

SO(3, 3)

SL(3,R)
∼=

SO(3, 4)

G∗2
,

since the metric h completely determines the metric gϕ by the formula (4.6).

4.3. Relation between real forms of GC
2 and Spin(7,C). It is possible to extend

this construction to dimension eight as follows. Starting with a stable three-form ϕ on a

seven-dimensional space V , we can consider the four-form

(4.12) Φ = e8 ∧ ϕ+ ∗ϕϕ.

on the eight-dimensional space V ⊕ Re8. Although the four-form Φ is not stable, it is

shown in [Br1] that it induces the metric

(4.13) gΦ = gϕ + (e8)2
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on V ⊕ Re8 and that its stabiliser is

StabGL(V⊕Re8)(Φ) ∼=

{
Spin(7) ⊂ SO(8), if gϕ is positive definite,

Spin0(3, 4) ⊂ SO(4, 4), if gϕ is indefinite.

The index “0” denotes, as usual, the connected component. Starting conversely with a

four-form Φ on V ⊕ Re8 such that its stabiliser in GL(V ⊕ Re8) is isomorphic to Spin(7)

or Spin0(3, 4), the process can be reversed by setting ϕ = e8 Φ. As before, the metric

induced by Φ on V ⊕ Re8 is determined by the metric gϕ induced by ϕ on V . Thus, the

indefinite analogue of the well-known isomorphisms

RP7 ∼=
SO(6)

SU(3)
∼=

SO(7)

G2

∼=
SO(8)

Spin(7)

is given by

(4.14)
SO(2, 4)

SU(1, 2)
∼=

SO(3, 3)

SL(3,R)
∼=

SO(3, 4)

G∗2
∼=

SO(4, 4)

Spin0(3, 4)
.



CHAPTER 2

Geometric structures defined by linear Lie groups

In this chapter, we review a number of general results on G-structures and holonomy

groups and explain how to classify G-structures for a given group G in terms of the

intrinsic torsion. Standard references for this material are for instance [Sa1] and [Joy2]

or [Joy3].

1. G-structures and holonomy

If not otherwise stated, the manifolds, bundles and mappings in consideration will

always assumed to be smooth.

Let M be a real n-dimensional manifold and V a real n-dimensional “model” vector

space. The fibre of the frame bundle GL(M) over a point p ∈ M consists of the isomor-

phisms u : TpM → V and GL(M) is a principal bundle with fibre GL(V ) where the free

right action of GL(V ) is given by Rg(u) = g−1 ◦ u for all g ∈ GL(V ). A section from

an open set U ⊂ M into GL(M) is a frame which is equivalently given by an n-tuple

(Xi)1≤i≤n consisting of local vector fields Xi ∈ Γ(U, TM) such that {(Xi)p} is a basis

of TpM for all p ∈ U . In particular, a coordinate frame is a local frame { ∂
∂xi
} defined

by a coordinate chart x = (x1, . . . , xn) on an open set. Given a frame (Xi), there are

coordinates (xi) such that Xi = ∂
∂xi

for all i if and only the frame (Xi) is integrable, i.e.

[Xi, Xj] = 0 for all i, j.

In general, the reduction of a principal bundle P → M with fibre G to a subgroup

H ⊂ G is a submanifold Q ⊂ P which is invariant under the right action of H such that

Q→M is a principal bundle with fibre H. The reductions of a principal bundle P →M

with fibre G to a closed subgroup H ⊂ G are parametrised by the global sections of the

quotient bundle P/H → M with typical fibre G/H, [KN, Prop. I.5.6]. We note that

P → P/H is a principal bundle with fibre H and that P/H → M can be identified with

the bundle associated to P and the left action of G on G/H.

Definition 1.1. A G-structure on a manifold M is a reduction of the frame bundle

GL(M) to a linear Lie group G ⊂ GL(V ).

The existence of a G-structure on a manifold M for a given G ⊂ GL(V ) is a purely

topological question. For instance, reductions always exist if G/H is diffeomorphic with

some RN , [KN, Prop. I.5.7]. Thus, a reduction to a maximal compact subgroup is always

possible due to the existence of an Iwasawa decomposition for GL(V ).

Many interesting G-structures arise from closed groups G ⊂ GL(V ) which can be writ-

ten as the stabiliser in GL(V ) of one or several tensors on V . We will use the abbreviation

V r,s for the GL(V )-module V ⊗r⊗(V ∗)⊗s and similarly, we set TM r,s = TM⊗r⊗(TM∗)⊗s.

Proposition 1.2. Let P be a G-structure on a manifold M and let H be a subgroup

of G which can be written as the stabiliser in G of a tensor ξ0 ∈ V r,s.
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Then, the tensor ξ0 defines a one-to-one-correspondence between the reductions Q of

the G-structure P to the group H and global tensor fields ξ ∈ Γ(TM r,s) with the property

that there exists for all p ∈ M a neighbourhood U of p and a local section s ∈ Γ(U, P )

such that sq(ξq) = ξ0 for all q ∈ U .

We will say that the tensor fields ξ with this property are modelled by the tensor ξ0

and that ξ0 is a model tensor for ξ.

Proof. We explain the main idea of the proof. Let the projection P →M be denoted

by π. Given a global tensor field ξ with the property described in the lemma, we can

define a non-empty subset Q of P fibrewise by setting Qp := {u ∈ π−1(p) | u(ξp) = ξ0}.
Since H = StabG(ξ0), each fibre Qp is invariant under the action of H and Q is a reduction

of P to the group H.

Conversely, given a reduction Q of the G-structure P to the group H, we choose a

covering {Uα}α∈I of M and sections sα ∈ Γ(Uα, Q) for all α ∈ I. Now, we can define local

tensor fields ξα by setting (ξα)p = (sα)−1
p (ξ0). Using the assumption H = StabG(ξ0), we

can glue the local tensor fields to a well-defined global tensor field which has the desired

property by construction. �

If there is a model tensor ξ0 fixed such that H = StabGL(V )(ξ0), we will identify an H-

structure with the corresponding defining tensor field ξ. We shall say that a G-structure P

is defined by tensor fields ξi, i = 1, . . . , r, if P is obtained by repeatedly reducing GL(M)

with the help of the ξi.

Example 1.3. For instance, the proposition can be used to identify O(p, q)-structures

and pseudo-Riemannian metrics g on a manifold M . For the standard inner product of

Rp,q as model tensor, the O(p, q)-structure corresponding to a metric g is the bundle of

g-orthonormal frames which shall be denoted by O(M).

An example of a G-structure which cannot be defined by a tensor is a GL+(V )-

structure which is equivalent to defining an orientation.

A linear connection ∇ on M is called compatible with a given G-structure P → M ,

or a G-connection, if the associated connection on GL(M) reduces to a connection on P .

This is by definition the case if the horizontal distribution defined by ∇ is contained in

TP or equivalently, if the connection one-form has values in g. Using a partition of unity

of M , a G-connection can always be constructed.

If the group G can be written as a stabiliser in GL(V ) of some tensors on V , a G-

connection can also be characterised as follows.

Lemma 1.4. A connection ∇ is compatible with a G-structure defined by tensor fields

ξi with i = 1, . . . , r if and only if all defining tensor fields ξi are constant for ∇, i.e. satisfy

∇ξi = 0.

Proof. See [Sa1], Lemma 1.3 of chapter 1. �

For instance, an O(p, q)-connection of the O(p, q)-structure O(M) defined by a pseudo-

Riemannian metric is nothing else than a metric connection.

The holonomy group Holp(∇) of a linear connection ∇ in a point p ∈ M is defined

as the group of parallel translations along all piecewise smooth loops based at p. It is

well-known that Holp(∇) is a Lie subgroup of GL(TpM) and that its connected component
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is generated by all contractible loops at p. When identifying TpM with a model vector

space V , we can regard Holp(∇) as a subgroup of GL(V ). As the holonomy groups in two

different points are always conjugated, the holonomy group Hol(∇) without reference to

a base point is well-defined as a subgroup of GL(V ) up to conjugation.

By the following proposition, often called “holonomy principle”, the holonomy rep-

resentation can be used to determine the tensor fields which are parallel for a given

connection.

Proposition 1.5. Given a linear connection ∇ on a manifold M and a point p ∈M ,

there is a one-to-one correspondence between

(i) tensor fields ξ ∈ Γ(TM r,s) which are parallel for ∇, i.e. which are invariant under

parallel transport,

(ii) tensor fields ξ ∈ Γ(TM r,s) which are constant for ∇ and

(iii) Holp(∇)-invariant tensors ξ0 ∈ (TpM)r,s.

Proof. See for instance [Joy3, Proposition 2.5.2]. �

Corollary 1.6. Let ∇ be a linear connection on a manifold M and p ∈ M . Then,

the holonomy group Holp(∇) is a subgroup of the group

G = {h ∈ GL(TpM) |h(ξp) = ξp for all tensors fields ξ with ∇ξ = 0}.

We add the remark that the holonomy group Holp(∇) equals the group G defined in

the corollary whenever Hol(∇) can be written as the stabiliser in GL(V ) of some tensors

on V .

Let us also recall the definition of the holonomy group of a connection ∇ on a principal

bundle P →M with fibre G. For f ∈ P , this group is defined as

Holf (P,∇) = {h ∈ G | There is a piecewise smooth horizontal curve in P

joining f and h · f .}

Again, the holonomy group Hol(P,∇) without reference to a base point can be regarded

as a subgroup of G which is well-defined up to conjugation. Given a linear connection ∇
on a manifold M , it is well-known that the holonomy group Hol(GL(M),∇) ⊂ GL(V ) of

the associated connection on the frame bundle GL(M) equals the holonomy group Hol(∇)

regarded as subgroup of GL(V ) up to conjugation.

The following proposition can be viewed as a special case of the well-known reduction

theorem of holonomy theory.

Proposition 1.7. Let ∇ be a linear connection on a manifold M and let f ∈ GL(M).

There exists a G-structure P → M for a given G ⊂ GL(V ) which is compatible with ∇
and contains f if and only if Holf (GL(M),∇) ⊂ G ⊂ GL(V ). If such a G-structure

exists, then it is unique.

Proof. See for instance [Joy3, Proposition 2.6.3]. �

2. Intrinsic torsion

Let the torsion tensor T∇ of a linear connection ∇ be the tensor in Γ(Λ2(TM)∗⊗TM)

defined by

(2.1) T∇(X ∧ Y ) = ∇XY −∇YX − [X, Y ]



40 2. GEOMETRIC STRUCTURES DEFINED BY LINEAR LIE GROUPS

and let the curvature tensor R∇ be the tensor in Γ(Λ2(TM)∗ ⊗ T ∗M ⊗ TM) defined by

(2.2) R∇(X ∧ Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

Given a G-structure P , the adjoint bundle g(P ) is the vector bundle P ×G g associated

to P and the adjoint representation of G ⊂ GL(V ) on g ⊂ gl(V ) = V ∗ ⊗ V . With this

notation, the curvature tensor of a G-connection is in fact a section of Λ2(TM)∗ ⊗ g(P ).

Given two G-connections∇,∇′, the difference tensor∇−∇′ is a section of T ∗M⊗g(P ).

The difference of the torsion tensors satisfies

(2.3) T∇ − T∇′ = (∇−∇′)XY − (∇−∇′)YX,

and is thus also a section of T ∗M⊗g(P ) ⊂ T ∗M⊗2⊗TM . Let the bundle homomorphism

(2.4) σ : T ∗M ⊗ g(P )→ Λ2(TM)∗ ⊗ TM

be defined by skew-symmetrisation of the first two components.

Definition 2.1. The intrinsic torsion or structure function τ(P ) of a G-structure P

is defined by choosing an arbitrary G-connection ∇ and setting

τ(P ) = [T∇] ∈ Γ(
Λ2(TM)∗ ⊗ TM

im(σ)
),

where the brackets denote the canonical fibrewise projection.

As T∇−T∇′ ∈ im(σ), this definition does not depend on the choice of the G-connection

∇. Obviously, the intrinsic torsion of a G-structure vanishes if and only if there ex-

ists a torsionfree G-connection. If this is the case, the torsionfree G-connections are

parametrised by the kernel of the mapping σ.

Definition 2.2.

(i) A G-structure P is called flat or integrable if there is around every point a local

coordinate frame with values in P .

(ii) A G-structure P is called torsionfree if its intrinsic torsion τ(P ) vanishes.

(iii) A local section s ∈ Γ(U, P ) in a G-structure P is called k-flat in a point p ∈ U if

and only if its k-jet in p coincides with the k-jet in p of a coordinate frame.

(iv) A G-structure P is called k-flat if it admits for every point p a local section defined

on a neighbourhood of p which is k-flat in p.

In fact, it is well-known, see for instance [Br1], that a G-structure is 1-flat if and only

if it is torsionfree and that a flat G-structure is k-flat for all k.

Example 2.3 (O(p, q)-structures). We return to the example of pseudo-Riemannian

metrics, i.e. O(p, q)-structures. The existence of the unique torsionfree metric Levi-Civita

connection ∇g for a metric g implies that every O(p, q)-structure is torsionfree and thus

1-flat. Moreover, it is well-known that an O(p, q)-structure is flat if and only if the

Riemannian curvature R∇
g

vanishes, i.e. if and only if it is 2-flat.

Example 2.4 (Sp(m,R)-structures). A Sp(m,R)-structure on a real manifold M of

dimension 2m is defined by a global non-degenerate two-form ω and is also called an

almost symplectic structure. A torsionfree Sp(m,R)-structure is a symplectic structure,

i.e. the defining two-form ω is closed. By the theorem of Darboux, a torsionfree Sp(m,R)-

structure is therefore always integrable.



2. INTRINSIC TORSION 41

In table 1, we list all G-structures appearing in this thesis. In particular, we give an

equivalent characterisation for the vanishing of the intrinsic torsion, if possible in form of

an exterior system. For a discussion of these characterisations, we refer to the chapter 3

except for the groups G2 and Spin(7) which are discussed in section 3.1 of this chapter

and section 3 of chapter 6.

Group G dimM equivalent structure defining tensors condition for τ = 0

GL+(R) n orientation - always torsionfree

SL(n,R) n volume form ν ∈ ΩnM , ν 6= 0 always torsionfree

O(p, q) p+q
pseudo-Riemannian

metric

non-degenerate,
symmetric

g ∈ Γ(TM0,2)
always torsionfree

Sp(m,R) 2m
almost symplectic

structure
ω ∈ Ω2M ,
ωm 6= 0

dω = 0 ⇔ M is a
symplectic manifold

GL(m,C) 2m
almost complex

structure
J ∈ Γ(EndTM),

J2 = −Id
NJ = 0 ⇔ M is a
complex manifold

SL(m,C) 2m
complex volume

form

non-degenerate,
decomposable

ψ++iψ− ∈ Ωm
CM

dψ+ = 0, dψ− = 0

GL(m,R)×
GL(m,R)

2m
almost para-complex

structure

J ∈ Γ(EndTM),
J2 = Id,

dim EigJ(1) = m

NJ = 0 ⇔ M is a
para-complex

manifold

SL(m,R)×
SL(m,R)

2m
para-complex
volume form

non-degenerate,
decomposable

ψ++i1ψ− ∈ Ωm
CM

dψ+ = 0, dψ− = 0

U(p, q) 2p+2q
almost pseudo-

Hermitian structure
(g, J, ω)

dω = 0, NJ = 0 ⇔
pseudo-Kähler

GL(m,R)1 2m
almost para-

Hermitian structure
(g, J, ω)

dω = 0, NJ = 0 ⇔
para-Kähler

SU(p, q) 2p+2q
special almost

pseudo- Hermitian
structure

(g, J, ω, ψ+, ψ−)
dω = 0, dψ+ = 0,

dψ− = 0 ⇔ Ricci-flat
pseudo-Kähler

SL(m,R)1 2m
special almost para-
Hermitian structure

(g, J, ω, ψ+, ψ−)
dω = 0, dψ+ = 0,

dψ− = 0 ⇒ Ricci-flat
para-Kähler

G2 or G∗2 7 - stable 3-form ϕ dϕ = 0, d ∗ϕ ϕ = 0

Spin(7) or
Spin0(3, 4)

8 - 4-form Φ dΦ = 0

Table 1. G-structures appearing in this thesis and conditions for 1-flatness

1acting on R2m = Rm ⊕ (Rm)∗
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3. G-structures on pseudo-Riemannian manifolds

In the following, let (M, g) always be a pseudo-Riemannian manifold of signature (p, q)

and let O(M) be the principal bundle with fibre O(p, q) consisting of the g-orthonormal

frames. Reductions of O(M) enjoy a number of special properties which shall be discussed

in this section.

The following lemma is a direct consequence of Proposition 1.7, Lemma 1.4 and the

fact that the Levi-Civita connection of g, denoted by ∇g, is the unique torsionfree and

metric connection on (M, g).

Lemma 3.1.

(i) The holonomy group Hol(g) = Hol(∇g) of the metric is a subgroup of O(p, q) defined

up to conjugation.

(ii) The holonomy group Hol(g) is contained in a subgroup G of O(p, q) if and only if

there exists a torsionfree reduction of O(M) to the group G.

(iii) Let G be the stabiliser in O(p, q) of a model tensor ξ0. Then, a reduction of O(M)

to the group G is torsionfree if and only if the corresponding defining tensor field ξ

modelled by ξ0 is constant for the Levi-Civita connection ∇g.

Remark 3.2. Since the defining tensor field of a torsionfree G-structure P with G ⊂
O(p, q) is thus parallel for ∇g, such a G-structure is also called a parallel G-structure.

Sometimes, also the notion of an integrable G-structure seems to be used synonymous

with a torsionfree G-structure. However, our convention that an integrable G-structure is

the same as a flat G-structure is well-established in the classical literature, see for instance

[Sa1] and references therein.

Given a subgroup G of O(p, q), the Lie algebra of O(p, q) can be decomposed with

respect to the Killing form into so(p, q) = g⊕ g⊥. When P is a reduction of O(M) to G,

there is a corresponding splitting of the adjoint bundle so(O(M)) = g(P )⊕ g⊥(P ).

Lemma 3.3. For a reduction P of O(M) to a subgroup G of O(p, q), there are bundle

isomorphisms

Λ2(TM)∗ ⊗ TM
σ(T ∗M ⊗ g(P ))

∼=
T ∗M ⊗ so(O(M))

T ∗M ⊗ g(P )
∼= T ∗M ⊗ g⊥(P ).

In particular, the intrinsic torsion τ(P ) of the G-structure P can be viewed as a section

of T ∗M ⊗ g⊥(P ).

Proof. The isomorphism TM ∼= T ∗M defined by the metric g induces an isomor-

phism

so(O(M)) ∼= Λ2(TM)∗

such that also the mapping

σ : T ∗M ⊗ so(O(M))→ Λ2(TM)∗ ⊗ TM,

defined in (2.4) is an isomorphism of vector bundles. Now, the first isomorphism of the

lemma is given by the map induced by σ−1 on the quotients. The second isomorphism is

obvious in each fibre. �
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Corollary 3.4. Under the assumptions of the previous lemma, there is a unique

G-connection ∇̄ on the G-structure P such that the difference tensor

∇̄ − ∇g ∈ Γ(T ∗M ⊗ so(O(M)))

equals the intrinsic torsion τ(P ) ∈ Γ(T ∗M ⊗ g⊥(P )).

Definition 3.5. The unique G-connection ∇̄ defined in the previous proposition is

called the minimal G-connection of the G-structure P .

If the G-structure P is furthermore defined by a tensor, we have another identification.

Proposition 3.6. Let P be a reduction of O(M) to a subgroup G = StabO(p,q)ξ0

where ξ0 ∈ V r,s is a model tensor and let ξ ∈ Γ(TM r,s) be the corresponding tensor

field defined by P according to Proposition 1.2. Then, there is an injective vector bundle

homomorphism

η : T ∗M ⊗ g⊥(P )→ T ∗M ⊗ TM r,s

mapping the intrinsic torsion τ(P ) to ∇gξ.

Proof. Let ξ0 ∈ V r,s be a model tensor for ξ such that G = StabSO(p,q)ξ0. We define

the mapping

η̃ : so(p, q)→ V r,s, η̃(A) = A.ξ0

where the dot denotes the induced action of so(p, q) on V r,s. The kernel of η̃ is exactly g.

Moreover, let ∇̄ be the minimal G-connection of P . Then, the intrinsic torsion satisfies

τXξ = (∇̄ − ∇g)Xξ = −∇g
Xξ

by Corollary 3.4. The existence of the homomorphism η follows now immediately by

extending the injective homomorphism η̃|g⊥ to the corresponding bundles. �

A standard way to classify G-structures on pseudo-Riemannian manifolds is to decom-

pose the G-module V ∗ ⊗ g⊥ into irreducible components and define subclasses according

to the vanishing of the components of the intrinsic torsion. If it is possible to define the

G-structure by a tensor field ξ ∈ Γ(TM r,s), it is equivalent, in view of the previous propo-

sition, to decompose the subspace of V r,s with the same symmetries as ∇ξ and define

the classes according to the vanishing of the components of ∇ξ. In order to complete the

classification, an example has to be constructed or the non-existence of examples has to

be proven for each class.

3.1. Classification of G2-structures. We illustrate this method of classification

by reviewing the story of G2-structures. By the considerations in chapter 1, section 3, a

G2-structure is defined by a global three-form ϕ which is everywhere stable and induces

a Riemannian metric.

The decomposition of the subspace X of V ∗⊗Λ3V ∗ with the same symmetries as ∇gϕ

into irreducible components

(3.1) X = X1 ⊕X2 ⊕X3 ⊕X4

was first established in [FG]. Equivalent characterisations of the 16 resulting classes of

G2-manifolds, only in terms of dϕ and d ∗ϕ ϕ, are given in [MC1]. The construction of

examples was established by different authors, the final step, containing references to the

previous work, is [MMS].
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After all, the most important class remains the class of parallel G2-structures or,

equivalently, Riemannian manifolds with holonomy contained in G2. As it is well-known,

the existence of Riemannian manifolds with holonomy equal to G2 was an open question

for more than 30 years after G2 appeared in Berger’s list of possible Riemannian holonomy

groups in 1955. The affirmative answer to this question was given first in [Br1], the first

complete example is constructed in [BrSa] and the first compact example in [Joy1].

The non-compact form G∗2 is characterised by a stable three-form ϕ lying in the second

open orbit of GL(7,R), see section 3 in chapter 1. Since the decomposition (3.1) is defined

in terms of the invariant metric gϕ and the cross product ×ϕ, which also exist for G∗2,

it can be defined literally for the corresponding G∗2-module. Note that G2 and G∗2 have

the same complexification. Thus, by the representation theory argument given in section

2, it is easy to deduce the irreducibility of the G∗2-module from that of the G2-module.

The same arguments applies to the characterisation in terms of dϕ and d ∗ϕ ϕ given in

[MC1]. Of course, it remains to construct examples for all classes, if a classification is

desired. We remark that the characterisation of torsionfree G
(∗)
2 -structure by the property

dϕ = d ∗ ϕ = 0 is already proved in [G1, Theorem 4.1] for both the compact and the

non-compact form.

Since G2- and G∗2-structures constitute only a minor aspect of this thesis, we do not go

into detail. The only classes we are interested in are the following which we define without

reviewing the definition of all classes Xi. We will use the notation G
(∗)
2 as a shorthand for

“G2 or G∗2”.

Definition 3.7. Let M be a real seven-manifold with a G
(∗)
2 -structure ϕ.

(i) The G
(∗)
2 -structure ϕ is called nearly parallel if

dϕ = µ ∗ϕ ϕ

for a constant µ ∈ R∗.
(ii) The G

(∗)
2 -structure ϕ is called cocalibrated if

d ∗ϕ ϕ = 0.

Notice that a nearly parallel G2-structure belongs to the class X1 and a cocalibrated

one to the class X1 ⊕X3.

In the following chapter, we discuss the decomposition of the intrinsic torsion for

G-structures with G = U(p, q) and G = SU(p, q).



CHAPTER 3

Special ε-Hermitian geometry

1. Almost complex and almost para-complex geometry

We recall that an almost para-complex structure on a 2m-dimensional manifold M is

an endomorphism field squaring to the identity such that both eigendistributions (for the

eigenvalues ±1) are m-dimensional. For an introduction to para-complex geometry we

refer to [AMT], [CMMS] or [CFG].

Already in the algebraic part, we introduced a unified language describing almost

complex and para-complex geometry simultaneously. Of course, we will also use this

language for the corresponding structures on manifolds.

Definition 1.1. An almost ε-complex manifold is a manifold M of dimension n =

2m endowed with an almost ε-complex structure which is defined as an almost complex

structure if ε = −1 and an almost para-complex structure if ε = 1.

The vector space model for an almost ε-complex structure has been discussed in section

1.1 of chapter 1. In particular, an almost ε-complex structure is essentially the same

as a GL(m,Cε)-structure. All notions and identities for the model structures extend

pointwise to the corresponding bundles. In analogy to the standard convention ΩkM =

Γ(Λk(TM)∗), we define

Ωr,sM = Γ(Λr(TM1,0)∗ ⊗ Λs(TM0,1)∗)

as the space of ε-complex (r, s)-forms on a manifold. Correspondingly, the symbols JΩr,sK
and [Ωr,r] denote the real forms of type (r, s) + (s, r) respectively real forms of type (r, r)

on a manifold. The projection of a (r + s)-form α onto Ωr,sM is denoted by αr,s. In

particular, we can decompose the exterior differential d such that

d = d1,−2 + d1,0 + d0,1 + d−2,1

where dx,yα := (dα)r+x,s+y for α ∈ Ωr,sM .

Definition 1.2. The Nijenhuis tensor N = NJ of an almost ε-complex structure J

is defined as the skew-symmetric covariant tensor field satisfying

N(X, Y ) = −ε[X, Y ]− [JX, JY ] + J [JX, Y ] + J [X, JY ](1.1)

for all X, Y ∈ X(M).

For both values of ε, the Nijenhuis tensor can also be written as

N(X, Y ) = −(∇JXJ)Y + (∇JY J)X + J(∇XJ)Y − J(∇Y J)X(1.2)

for any torsionfree connection ∇. Thus, a GL(m,Cε)-structure is torsionfree if and only

if the Nijenhuis tensor vanishes. It is easy to see that the Nijenhuis tensor vanishes if and

only if d1,−2 = 0 for both values of ε.
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By the well-known theorem of Newlander-Nirenberg, a torsionfree GL(m,C)-structure

is integrable, i.e. defines a holomorphic atlas on M . In the para-complex world, a tor-

sionfree GL(m,C)-structure is also integrable by the Frobenius theorem and defines a

para-holomorphic atlas. The notions of para-holomorphic atlas and para-complex man-

ifold are for instance explained in [CMMS]. In particular, we can identify ε-complex

manifolds and (smooth, real) manifolds endowed with an integrable almost ε-complex

structure.

As also explained in [CMMS], a para-complex k-form α on a para-complex manifold

(M,J) is para-holomorphic if and only ∂̄α := d0,1α = 0, completely analogous to the well-

known case of a holomorphic form on a complex manifold. Thus, we call an ε-complex

k-form α on an ε-complex manifold ε-holomorphic if and only d0,1α = 0.

Moreover, considering the discussion of the algebraic models in section 1.2 of chapter

1, it is obvious that an SL(m,Cε)-structure is defined by a global ε-complex m-form Ψ

which is everywhere non-degenerate and decomposable. We call such an m-form Ψ an

ε-complex volume form on the manifold M . By Proposition 1.4, an ε-complex volume

form Ψ induces an ε-complex structure JΨ.

Proposition 1.3. Let P be an SL(m,Cε)-structure on a manifold M2m defined by an

ε-complex volume form Ψ = ψ+ + iεψ−.

(i) The induced ε-complex structure JΨ is integrable if and only if (dΨ)m−1,2 = 0.

(ii) Moreover, the following assertions are equivalent:

(a) P is integrable (i.e. flat).

(b) P is torsionfree.

(c) dΨ = 0.

(d) dψ+ = 0 and dψ− = 0.

(e) JΨ is integrable and Ψ is ε-holomorphic.

Proof. (i) As we already explained, the almost ε-complex structure J is integrable

if and only if d−1,2 = 0 or, equivalently, (dξ)0,2 = 0 for all (1, 0)-forms ξ. However,

an ε-complex one-form ξ is of type (1, 0) if and only if ξ ∧ Ψ = 0. Thus, for all

(1, 0)-forms ξ, the vanishing of d−1,2(ξ ∧Ψ) yields

(dξ)0,2 ∧Ψ = ξ ∧ (dΨ)m−1,2

and the first assertion follows since wedging by Ψ is injective.

(ii) The implications (a) ⇒ (b) ⇒ (c) ⇔ (d) are obvious. The equivalence of (c)

and (e) is a direct consequence of part (i) since ∂̄Ψ = d0,1Ψ = (dΨ)m,1. Now,

the implication (e)⇒ (a) follows since, given an ε-holomorphic (m, 0)-form on an ε-

complex manifold, there are ε-complex coordinates ( ∂
∂zi

) such that Ψ = dz1∧. . .∧dzm.

�

Remark 1.4. This proposition becomes particularly interesting in dimension 2m, m

odd, when all the data is already encoded in the real part ψ+ due to Proposition 1.5. We

will apply this proposition on the six-manifold S3 × S3 in chapter 5.
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2. Almost pseudo-Hermitian and almost para-Hermitian geometry

Recall that an almost para-Hermitian structure consists of a neutral metric and an

antiorthogonal almost para-complex structure.

Definition 2.1. An almost ε-Hermitian manifold is a manifold M of dimension n =

2m endowed with an almost ε-Hermitian structure (g, J) which consists of a pseudo-

Riemannian metric and an endomorphism field J satisfying J2 = εId and J∗g = −ε g.

The non-degenerate two-form ω := g(., J.) is called the fundamental two-form.

Again, we refer to the corresponding model structure in section 1.3 and remark that

all considerations and identities extend pointwise to the structure on the manifold. In

particular, an almost ε-Hermitian structure can be identified with a Uε(p, q)-structure.

In the following, let ∇ always denote the Levi-Civita connection of the metric g of an

almost ε-Hermitian manifold (M, g, J, ω). Differentiating the almost ε-complex structure,

its square and the fundamental two-form yields for both values of ε the formulas

(∇XJ)Y = ∇X(JY )− J(∇XY ),

(∇XJ) JY = −J(∇XJ)Y,

g(∇XJ)Y Z = −(∇Xω)(Y, Z),(2.1)

for all vector fields X, Y, Z. Using these formulas, it is easy to show that for any almost

ε-Hermitian manifold, the tensor A defined by

A(X, Y, Z) = g(∇XJ)Y Z = −(∇Xω)(Y, Z)

has the symmetries

A(X, Y, Z) = −A(X,Z, Y ),(2.2)

A(X, Y, Z) = εA(X, JY, JZ)(2.3)

for all vector fields X, Y, Z.

When (V, g, J, ω) is a model space for an almost ε-Hermitian structure, let W denote

the Uε(p, q)-module of tensors with the same symmetries as A, i.e.

W = {ξ ∈ V ∗ ⊗ Λ2V ∗ | ξ(X, Y, Z) = εξ(X, JY, JZ)}

As explained in the previous chapter, the decomposition of this Uε(p, q)-module into

irreducible components leads to a classification of almost ε-Hermitian manifolds.

For the compact form U(m), it is a classical result of Gray and Hervella [GH] that

W splits into four irreducible components denoted by

W =W1 ⊕W2 ⊕W3 ⊕W4.

A short proof for the irreducibility of the summands is also given in [FFS] where in fact

the isomorphic space V ∗ ⊗ u(m)⊥ is decomposed. The special case m = 3 is discussed

explicitly in [AFS]. Since the definitions of the Wi can be extended to the non-compact

forms U(p, q), the application of the arguments given in section 2 yields that the analogous

classes are irreducible as well. Instead of recalling the original definition of the classes

Wi, we restrict ourselves to listing in each case an equivalent characterisation in table 1.

Although the classes Wi are well-defined also in the para-complex case, i.e. for the

group GL(m,R), the spaces are not irreducible since already V = V + ⊕ V − decomposes
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as GL(m,R)-module. In fact, it is shown in [GaMa] that each of the spaces Wi splits

into exactly two irreducible summands.

Remark 2.2. A discussion of the Gray-Hervella classes in the general case of almost

ε-Hermitian structures is also given in [Ki]. The decomposition is given very explicitly,

however, the irreducibility is not proven.

By the following useful formula, the classes Wi are completely determined by the

Nijenhuis tensor and the exterior derivative of ω.

Lemma 2.3. On an almost ε-Hermitian manifold, the identity

(2.4) 2(∇Xω)(Y, Z) = dω(X, Y, Z) + εdω(X, JY, JZ) + εg(N(Y, Z), JX)

holds for all vector fields X, Y, Z.

Proof. For ε = −1, g Riemannian, the formula is classical, see [KN] or [Na3] for

different direct proofs. Both computations hold literally for pseudo-Riemannian metrics

and with sign modifications for ε = 1. For ε = 1, an explicit proof of this identity is also

given [CMMS]. �

In particular, an almost ε-Hermitian manifold is torsionfree if and only if it is ε-Kähler,

i.e. if J is integrable and ω is a symplectic form.

Class Characterisation Name

0 dω = 0, NJ = 0 pseudo-Kähler

W1 ∇J skew nearly pseudo-Kähler

W2 dω = 0 almost pseudo-Kähler

W3 NJ = 0, dω ∈ JΩ2,1
0 K

W4 NJ = 0, dω = 2θ ∧ ω locally conformally pseudo-Kähler

W1 ⊕W2 dω2,1 = 0 quasi pseudo-Kähler

W1 ⊕W3 NJ skew, dω ∧ ωm−2 = 0

W1 ⊕W4 NJ skew, dω = 2θ ∧ ω loc. conf. nearly pseudo-Kähler

W2 ⊕W3 dω ∈ JΩ2,1
0 K

W2 ⊕W4 dω = 2θ ∧ ω loc. conf. almost pseudo-Kähler

W3 ⊕W4 NJ = 0 pseudo-Hermitian

W1 ⊕W2 ⊕W3 dω ∧ ωm−2 = 0 semi pseudo-Kähler

W1 ⊕W2 ⊕W4 dω2,1
0 = 0 loc. conf. quasi pseudo-Kähler

W1 ⊕W3 ⊕W4 NJ skew G1

W2 ⊕W3 ⊕W4 dω3,0 = 0 G2

W1 ⊕W2 ⊕W3 ⊕W4 – generic

Table 1. Gray-Hervella classes extended to almost pseudo-Hermitian
structures, dim(M) = 2m, m ≥ 3
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We discuss some properties of the following two interesting classes. Recall that a tensor

field B ∈ Γ((TM∗)⊗2⊗ TM) is called totally skew-symmetric if the tensor g(B(X, Y ), Z)

is a three-form. Moreover, we use the term ε-Hermitian connection on an almost ε-

Hermitian manifold synonymous with Uε(p, q)-connection, i.e. a connection ∇̄ with ∇̄J =

∇̄g = 0.

Definition 2.4. Let (M2m, g, J, ω) be an almost ε-Hermitian manifold.

(i) The manifold M is called a nearly ε-Kähler manifold if its Levi-Civita connection

∇ satisfies the nearly ε-Kähler condition

(∇XJ)X = 0, ∀X ∈ Γ(TM).

A nearly ε-Kähler manifold is called strict if ∇XJ 6= 0 for all non-trivial vector fields

X.

(ii) The manifold M is defined to be of type G1 if it admits an ε-Hermitian connection

with skew-symmetric torsion.

As these structures are mainly studied for ε = −1 and g Riemannian, we explicitly

prove for both cases a basic characterisation, which is well-known in the Riemannian

context, in the more general setting of almost ε-Hermitian structures.

Proposition 2.5. An almost ε-Hermitian manifold (M2m, g, J, ω) satisfies the nearly

ε-Kähler condition if and only if dω is of real type (3, 0) + (0, 3) and the Nijenhuis tensor

is totally skew-symmetric.

Proof. First of all, the nearly ε-Kähler condition is satisfied if and only if the tensor

A = −∇ω is a three-form because of the antisymmetry (2.2).

Assume now that (g, J, ω) is a nearly ε-Kähler structure. A particular case of the

identity (1.2), ch. 1, is the characterisation

(2.5) JΩ3,0K = {α ∈ Ω3M |α(X, Y, Z) = εα(X, JY, JZ)}

of real forms of type (3, 0) + (0, 3). Thus, the real three-form A is of type (3, 0) + (0, 3)

because of (2.3). Furthermore, since dω is the alternation of ∇ω, we have

(2.6) dω = 3∇ω = −3A ∈ JΩ3,0K.

If we apply the nearly ε-Kähler condition to the expression (1.2), the Nijenhuis tensor of

a nearly ε-Kähler structure simplifies to

(2.7) N(X, Y ) = 4 J(∇XJ)Y.

We conclude that the Nijenhuis tensor is skew-symmetric since

(2.8) g(N(X, Y ), Z) = −4A(X, Y, JZ)
(2.3)
= −4εJ∗A(X, Y, Z).

The converse follows immediately from the identity (2.4) when considering (2.5). In

order to be self-contained, we give a direct proof. Assume that dω ∈ JΩ3,0K and the

Nijenhuis tensor is skew-symmetric. To begin with, we observe that

(∇Y ω) (X,X) = 0 = (∇JY ω) (X, JX)

by (2.2) and (2.3). With this identity, we have on the one hand

0 = εg(N(JX, JY ), JX) = g(N(X, Y ), JX)
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(1.2)
= −g((∇JXJ)Y, JX) + g((∇JY J)X, JX) + g(J(∇XJ)Y, JX)− g(J(∇Y J)X, JX)

(2.1)
= (∇JXω) (Y, JX) + ε(∇Xω) (Y,X)

(2.2)
= (∇JXω) (Y, JX)− ε(∇Xω) (X, Y ),

and on the other hand

0 = εdω(X,X, Y )
(2.5)
= dω(X, JX, JY )

= (∇Xω)(JX, JY ) + (∇JXω)(JY,X) + (∇JY ω)(X, JX)

(2.3)
= ε(∇Xω)(X, Y ) + (∇JXω)(Y, JX).

It follows that (∇Xω) (X, Y ) = 0 which is equivalent to the nearly ε-Kähler condition. �

Proposition 2.6. An almost ε-Hermitian manifold (M2m, g, J, ω) admits an ε-Her-

mitian connection with totally skew-symmetric torsion if and only if the Nijenhuis tensor

is totally skew-symmetric. If this is the case, the connection ∇̄ and its torsion T are

uniquely defined by

g(∇̄XY, Z) = g(∇XY, Z) +
1

2
g(T (X, Y ), Z),

g(T (X, Y ), Z) = εg(N(X, Y ), Z)− dω(JX, JY, JZ).

Proof. The Riemannian case is proved in [FI], the para-complex case in [IZ]. In

fact, the sketched proof in [FI] holds literally for the almost pseudo-Hermitian case with

indefinite signature as well. For completeness, we give a direct proof for all cases simul-

taneously.

Note that a connection ∇̄ is ε-Hermitian if and only if ∇̄J = 0 and ∇̄g = 0. Let

T (X, Y ) = ∇̄XY − ∇̄YX − [X, Y ] = SXY − SYX be the totally skew-symmetric torsion

of an ε-Hermitian connection ∇̄ where SXY = ∇̄XY − ∇XY is the difference tensor

with respect to the Levi-Civita connection ∇ of g. Then, the Nijenhuis tensor is totally

skew-symmetric as well, since we have

g(N(X, Y ), Z) = εg(T (X, Y ), Z) + g(T (JX, JY ), Z)(2.9)

+ g(T (JX, Y ), JZ) + g(T (X, JY ), JZ),

using only ∇̄J = 0. Moreover, the difference tensor SX is skew-symmetric with respect

to g, for ∇̄g = 0. Combining this fact with the total skew-symmetry of the torsion, we

find that SXY = −SYX and consequently

g(∇̄XY, Z) = g(∇XY, Z) +
1

2
g(T (X, Y ), Z).

With this identity and ∇̄ω = 0, the equation

(2.10) 2∇JXω(Y, Z) = g(T (JX, Y ), JZ) + g(T (JX, JY ), Z)

follows. Finally, we verify the claimed formula for the torsion:

dω(JX, JY, JZ)
(2.3)
= ε(∇JXω(Y, Z) +∇JY ω(Z,X) +∇JZω(X, Y ))

(2.10)
= ε(g(T (JX, JY ), Z) + g(T (JX, Y ), JZ) + g(T (X, JY ), JZ))

(2.9)
= εg(N(X, Y ), Z)− g(T (X, Y ), Z).
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Conversely, if the Nijenhuis tensor is skew-symmetric, it is straightforward to verify that

the defined connection is ε-Hermitian with skew-symmetric torsion. �

3. Almost special pseudo- and para-Hermitian geometry

In this section, we discuss the G-structures for the groups SUε(p, q), p+ q = m, which

have been introduced in section 1.4. Again, all properties of the model structures extend

pointwise to the corresponding structures on a manifold.

Definition 3.1. An almost special ε-Hermitian manifold is a 2m-dimensional mani-

fold M endowed with an almost special ε-Hermitian structure which consists of an almost

ε-Hermitian structure (g, J, ω) and an ε-complex volume form Ψ of constant length. An

almost special ε-Hermitian structure is called normalised if it is normalised pointwise in

the sense of Definition 1.14 of chapter 1.

Remark 3.2. By rescaling Ψ by a constant, every almost special ε-Hermitian manifold

can be normalised. Obviously, the properties of the structure do not change under this

transformation. In contrast, the property of constant length is important. Although every

ε-complex volume form could be normalised by multiplication by a function, the exterior

derivative of Ψ would be changed under this transformation. However, as we will shortly

see, the intrinsic torsion of the corresponding SUε(p, q)-structure is encoded in the exterior

derivative of Ψ and ω.

An important consequence of the considerations in section 1.4 of the algebraic prelim-

inaries is the fact, that an almost special ε-Hermitian structure is completely determined

by the two-form ω and the three-form Ψ. More precisely, given a non-degenerate two-

form ω and a decomposable ε-complex m-form Ψ = ψ+ + iεψ− satisfying ω ∧ Ψ = 0 and

φ(Ψ) = cφ(ω) for a constant c ∈ R∗, the pair (ω,Ψ) extends to a unique almost special

ε-Hermitian structure (g, J, ω,Ψ). If m = 2l− 1 is odd, even the two-form ω and the real

part ψ+ of Ψ suffice. For dimension six, this can be formulated very elegantly using the

stable form formalism introduced in section 3 of chapter 1.

We call a differential form ϕ on a manifold stable if and only ϕp is stable for all p ∈M .

In particular, we call a pair (ω, ρ) ∈ Ω2M × Ω3M of stable forms on a six-manifold M

compatible if

ω ∧ ρ = 0 ⇐⇒ ω(Jρ., .) = −ω(., .Jρ)

and normalised if

φ(ρ) = 2φ(ω) ⇐⇒ J∗ρρ ∧ ρ =
2

3
ω3.(3.1)

As a special case of Proposition 1.13 of chapter 1, applied to every tangent space of a

six-manifold M , a compatible and normalised pair (ω, ρ) ∈ Ω2M×Ω3M induces an almost

ε-complex structure J = Jρ and a compatible pseudo-Riemannian metric g = g(ω,ρ). As

this construction is very important for the following parts of this thesis, we summarise

the correspondences in dimension six in the following proposition.
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Proposition 3.3. Let M be a six-manifold.

(i) There is a one-to-one correspondence between normalised SU(3)-structures and com-

patible and normalised pairs (ω, ψ+) ∈ Ω2M ×Ω3M of stable forms inducing a Rie-

mannian metric.

(ii) There is a one-to-one correspondence between normalised SU(1, 2)-structures and

compatible and normalised pairs (ω, ψ+) ∈ Ω2M × Ω3M of stable forms inducing a

metric of signature (2, 4).

(iii) There is a one-to-one correspondence between normalised SL(3,R)-structures with

spacelike para-complex volume form Ψ and compatible and normalised pairs (ω, ψ+) ∈
Ω2M × Ω3M of stable forms with λ(ψ+) > 0.

Notice that the ε-complex volume form Ψ is spacelike in all three cases which can

always be achieved in dimension six (and more generally in dimension 2m, m odd) by

multiplying the metric by −1.

3.1. The intrinsic torsion of SU(p, q)ε-structures. For large dimension 2m ≥ 8,

the Gray-Hervella classification of U(m)-structures has been refined in [MC2] to SU(m)-

structures as follows. The SU(m)-module modelling the intrinsic torsion of an SU(m)-

structure decomposes into five irreducible components:

V ∗ ⊗ su(m)⊥ = V ∗ ⊗ (u(m)⊥ ⊕ R) ∼=W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5.

Here, the spaces Wi, i = 1, . . . , 4, are isomorphic to the spaces in the Gray-Hervella

classification corresponding to ∇gω and the space W5
∼= V ∗ is coming from the covariant

derivative∇gΨ. In fact, it is also shown in [MC2] that the five components are completely

determined by dω and dψ+ as long as m ≥ 4.

The case of dimension six is different and has been studied first in [ChSa] for Rie-

mannian signature. Here, the irreducible decomposition is

V ∗ ⊗ su(p, q)⊥ ∼=W+
1 ⊕W−1 ⊕W+

2 ⊕W−2 ⊕W3 ⊕W4 ⊕W5.

It is also shown that the intrinsic torsion is in fact completely determined by the exterior

derivatives dω, dψ+ and dψ−. The relation between the components Wi and the com-

ponents of the three exterior derivatives dω, dψ+ and dψ− can be found for Riemannian

signature in [MC2], and, including very explicit expressions, in [Han]. By the arguments

given in section 2, the decomposition into irreducible components both for large dimension

and dimension six extends literally to the non-compact forms SU(p, q), p+ q = m.

In the following, we focus on dimension six. Instead of considering the classical defi-

nition of the classes Wi, we focus directly on the characterisation in terms of the exterior

derivative and will in fact define the classes in terms of the irreducible components of the

resulting three-form and the two-four forms.

We recall that the irreducible decomposition of the SU(p, q)-modules Λ3V ∗ and Λ4V ∗

induce the decompositions

Ω3M = Rψ+ ⊕ Rψ−︸ ︷︷ ︸
(3,0)+(0,3)

⊕ JΩ2,1
0 MK⊕ Ω1M ∧ ω︸ ︷︷ ︸

(2,1)+(1,2)

,

Ω4M = Ω0M ∧ ω2 ⊕ JΩ1,1
0 MK ∧ ω︸ ︷︷ ︸

(2,2)

⊕ Ω1M ∧ ψ+︸ ︷︷ ︸
(3,1)+(1,3)

.



3. ALMOST SPECIAL PSEUDO- AND PARA-HERMITIAN GEOMETRY 53

Corresponding to this decomposition, we denote the components of the exterior derivatives

of the defining forms as

dω = W̃−
1 ψ+ + W̃+

1 ψ− +W3 +W4 ∧ ω,
dψ+ = W+

1 ω
2 +W+

2 ∧ ω +W5 ∧ ψ+,(3.2)

dψ− = W−
1 ω

2 +W−
2 ∧ ω + W̃5 ∧ ψ+.

where W+
1 ,W

−
1 ∈ Ω0M , W4,W5 ∈ Ω1M , W+

2 ,W
−
2 ∈ Ω1,1

0 M and W3 ∈ Ω2,1
0 M . In fact,

the same decomposition, although not irreducible, can be considered in the para-complex

context, ε = 1.

Proposition 3.4. For a normalised SU(p, q)ε-structure, p + q = 3, defined by a

normalised and compatible pair (ω, ψ+), the components of dω, dψ+ and dψ− are related

as follows:

(i) W̃+
1 = −3

2
W+

1

(ii) W̃−
1 = 3

2
W−

1

(iii) W̃5 = −εJ∗W5

Proof. We generalise the arguments given in the article [ChSa] which contain these

formulas for Riemannian signature. Since ω ∧ ψ+ = 0 and ω ∧ ψ− = 0, the first two

identities follow immediately from the normalisation (3.1):

W+
1 ω

3 = dψ+ ∧ ω = ψ+ ∧ dω = W̃+
1 ψ+ ∧ ψ− = −2

3
W̃+

1 ω
3,

W−
1 ω

3 = dψ− ∧ ω = ψ− ∧ dω = W̃−
1 ψ− ∧ ψ+ =

2

3
W̃−

1 ω
3.

In order to see the third identity, we observe that the exterior derivative of the (0, 3)-

form Ψ̄ has no (3, 1)-component and we obtain dψ3,1
+ = iεdψ

3,1
− . We claim that dψ3,1

+ =

(W5)0,1 ∧Ψ. Indeed, using the identity α ∧ ψ− = −εJ∗α ∧ ψ+, see (1.10) in chapter 1, it

follows W5 ∧ ψ+ = Re(W 0,1
5 ∧ Ψ) which implies the claim by definition of W5. Using the

analogous identity for dψ3,1
− , the assertion follows from

W̃ 0,1
5 ∧Ψ = dψ3,1

− = εiεdψ
3,1
+ = εiε(W5)0,1 ∧Ψ = (−εJ∗W5)0,1 ∧Ψ,

since wedging by Ψ is injective. �

In table 2, we have summarised the irreducible components of the intrinsic torsion

including the dimensions.

3.2. The Nijenhuis tensor of an SUε(p, q)-structure. This section contains a

lemma and ideas from [SSH].

As we have already discussed in Proposition 1.3, the Nijenhuis tensor of an SUε(p, q)-

structure (g, J, ω,Ψ), p+q = 3, vanishes if and only if the (2, 2)-component of Ψ vanishes,

i.e. if and only if W−
1 = W+

1 = W−
2 = W+

2 = 0. In the following, we show explicitly

that W±
2 corresponds to the skew-symmetric part of the Nijenhuis tensor for all possible

signatures.

The following choice of local frames, although differing from the standard basis defined

in chapter 1, has been used in [SSH] and seems to be convenient for the calculations in

an ε-complex basis in this section and section 5.
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Class irreducible SU(p, q)-module Dimension

W+
1 Λ0V ∗ 1

W−1 Λ0V ∗ 1

W+
2 Λ1,1

0 V ∗ 8

W−2 Λ1,1
0 V ∗ 8

W3 Λ2,1
0 V ∗ 12

W4 Λ1V ∗ 6

W5 Λ1V ∗ 6

Table 2. Irreducible classes of SU(p, q)-structures, p+ q = 3

Given an almost ε-Hermitian structure (g, J, ω) on a six-manifold M , we choose a local

orthonormal frame {e1, . . . , e2m} such that Jei = ei+m for i = 1, . . . ,m and

ω = ε
m∑
i=1

σie
i(i+m),

where σi := g(ei, ei) for i = 1, . . . ,m. The corresponding local ε-complex frame of TM1,0

is

Ei = e1,0
i =

1

2
(ei + iεεJei) =

1

2
(ei + iεεei+m)

such that the ε-Hermitian metric gCε satisfies

gCε(Ei, Ej) =
1

2
σiδij and gCε(Ei, Ej) = 0

in such a frame. The dual frame {E1, E2, E3} of (TM1,0)∗ is given by

Ei := (ei + iεεJe
i) = (ei + iεe

i+m)

for i = 1, 2, 3 and we call it an ε-unitary frame of (1, 0)-forms in the following.

The following lemma explicitly relates the Nijenhuis tensor to the exterior differential.

For ε = −1, it gives a characterisation of Bryant’s notion of a quasi-integrable U(p, q)-

structure, p+ q = 3, in dimension six [Br2].

Lemma 3.5. The Nijenhuis tensor of an almost ε-Hermitian six-manifold (M6, g, J, ω)

is totally skew-symmetric if and only if there exists a local Cε-valued function λ for every

local ε-unitary frame {E1, E2, E3} of (1, 0)-forms such that

(dEτ(1))0,2 = λστ(1)E
τ(2) τ(3)(3.3)

for all even permutations τ of {1, 2, 3}.

Proof. First of all, for vector fields V = V 1,0, W = W 1,0 of type (1, 0), the identities

N(V̄ , W̄ ) = −4ε[V̄ , W̄ ]1,0 and N(V, W̄ ) = 0
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follow immediately from the definition of N . Using the first identity, we compute in an

arbitrary local ε-unitary frame

dEi(Ēj, Ēk) = −Ei([Ēj, Ēk]) = −2σi gCε([Ēj, Ēk], Ei)

= −2σi gCε([Ēj, Ēk]
1,0, Ei) =

1

2
ε σi gCε(N(Ēj, Ēk), Ei)

for all possible indices 1 ≤ i, j, k ≤ 3. If the Nijenhuis tensor is totally skew-symmetric,

equation (3.3) follows by setting

(3.4) λ =
1

2
ε gCε(N(Ē1, Ē2), E3).

Conversely, the assumption (3.3) for every local ε-unitary frame implies that the Nijenhuis

tensor is everywhere a three-form when considering the same computation and N(V, W̄ ) =

0. �

If there is an SUε(p, q)-reduction defined by an ε-complex volume form Ψ of constant

length, this characterisation can be reformulated globally in the following sense. Obvi-

ously, the (3, 0)-form Ψ satisfies Ψ = zE123, z ∈ Cε, zz̄ 6= 0, in an ε-unitary frame of

(1, 0)-forms.

Proposition 3.6. The Nijenhuis tensor of an SUε(p, q)-structure, p+q = 3, is totally

skew-symmetric if and only if W+
2 = 0 and W−

2 = 0.

Proof. By definition of the components Wi in (3.2), we have

(dΨ)2,2 = (dψ+)2,2 + iε(dψ−)2,2 = (W+
1 + iεW

−
1 )ω2 + (W+

2 + iεW
−
2 ) ∧ ω.

As it suffices to proof the assertion locally, we choose an ε-unitary frame of (1, 0)-forms

{Ei} such that Ψ = ψ+ + iεψ− = zE123 for z ∈ Cε. The fundamental two-form is

ω = −1

2
iε

m∑
k=1

σk E
kk̄

in this frame such that we have on the one hand,

ω ∧ ω =
1

2
ε(σ2σ3E

22̄33̄ + σ1σ3E
11̄33̄ + σ1σ2E

11̄22̄)

= −1

2
εσ1σ2σ3(σ1E

2̄3̄23 + σ2E
3̄1̄31 + σ3E

1̄2̄12),

and on the other hand

(dΨ)2,2 = a
(
(dE1)0,2 ∧ E23 + (dE2)0,2 ∧ E31 + (dE3)0,2 ∧ E12

)
.

Comparing these expressions and considering Lemma 3.5, the assertion is immediate. �

Corollary 3.7. Let (ω, ψ+) be an SUε(p, q)-structure, p+q = 3, with W+
2 = W−

2 = 0.

In an ε-unitary frame {E1, E2, E3} of (1, 0)-forms such that Ψ = zE123, z ∈ Cε, and

σi = 2gCε(Ei, Ei), the identity

(3.5) W+
1 + iεW

−
1 = −σ1σ2σ3 z gCε(N(Ē1, Ē2), E3).

holds.

Proof. The assertion follows immediately by comparing the formulas in the proofs

of Proposition 3.6 and Lemma 3.5. �
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4. Half-flat structures

Finally, we come to the structures we are actually interested in.

Definition 4.1. An almost special ε-Hermitian six-manifold (M,ω, ψ+) is called

(i) half-flat if W+
1 = W+

2 = W4 = W5 = 0, i.e.

dψ+ = 0, dω2 = 0,

(ii) and nearly half-flat if W+
2 = W4 = W5 = 0, i.e.

dψ+ = W+
1 ω ∧ ω, W+

1 ∈ R.

In order to shorten the notation, we shall use the term half-flat structure as a synonym

for half-flat almost special ε-Hermitian structure.

Notice that ω2 is proportional to the Hodge dual of ω, see Lemma 4.2 of chapter 1,

such that the second equation is satisfied if and only if ω is coclosed.

Example 4.2. A torsionfree SUε(p, q)-structure, in particular a Calabi-Yau three-fold,

is half-flat. Another important class of examples for half-flat structures is given by strict

nearly ε-Kähler six-manifolds with ‖∇J‖ 6= 0, which are to be discussed in the following

section.

Half-flat SU(3)-structures were first considered in [Hi1] as the natural class which

can be evolved to a parallel G2-structure via the Hitchin flow. This is discussed and

generalised in chapter 6.

The name “half-flat” has been introduced in [ChSa]. It is chosen since the definition

requires the vanishing of exactly half the intrinsic torsion in terms of dimension. However,

considering that a torsionfree G-structure is not necessarily flat but only 1-flat, the name

half 1-flat structure or half-torsionfree structure would describe the properties of this class

more precisely.

The class of nearly half-flat structures is introduced in [FIMU]. The name has been

chosen since these structures can be evolved similarly as half-flat structures and the re-

sulting G2-structures are in fact nearly parallel.

A very interesting subclass is the class characterised by the following lemma which

can be viewed as an intersection of the classes of half-flat and nearly half-flat structures.

Lemma 4.3. A half-flat SUε(p, q)-structure (ω, ψ+) has totally skew-symmetric Nijen-

huis tensor if and only if (ω, ψ−) is nearly half-flat.

Proof. Since dψ+ = 0 for a half-flat SUε(p, q)-structure, the exterior derivative of

ψ− is

dψ− = W−
1 ω

2 +W−
2 ∧ ω,

W−
1 ∈ Ω0M , W−

2 ∈ Ω1,1
0 M . By Proposition 3.6, the Nijenhuis tensor is skew-symmetric

if and only W−
2 vanishes, i.e. if and only if

(4.1) dψ− = W−
1 ω

2.

Differentiating this equation yields dW−
1 ∧ ω2 = 0 since dω2 = 0 and thus, W−

1 has to be

constant since wedging by ω2 is an isomorphism on one-forms. �
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Being at the same time half-flat, nearly half-flat and G1 should be sufficient motivation

to introduce a name for this class.

Definition 4.4. An SUε(p, q)-structure (ω, ψ+) is called double half-flat if W+
1 =

W+
2 = W−

2 = W4 = W5 = 0, i.e.

dψ+ = 0, dψ− = W−
1 ω ∧ ω, W−

1 ∈ R.

In summary, double half-flat structures can be evolved to both parallel and nearly

parallel G2-structures and admit an ε-unitary connection with totally skew-symmetric

torsion. Additionally, as shown in [ChSw], these structures also induce an invariant

G2-structures with torsion on N × S1.

In the same article, [ChSw], a classification of the six-dimensional nilmanifolds N

admitting a left-invariant double half-flat SU(3)-structure is achieved. Since the result is

that six nilmanifolds admit such a structure, we conclude that these structures are not as

scarce as nearly Kähler manifolds.

Example 4.5. We give an example, see [SSH], of a normalised left-invariant double

half-flat SU(3)-structure on S3 × S3. In fact, this example is not contained in a sub-

class, i.e. both W3 and W−
1 are non-zero. In a global frame of left-invariant vector fields

{e1, e2, e3, f1, f2, f3} on S3 × S3 such that

de1 = e23 , de2 = e31 , de3 = e12 , df 1 = f 23 , df 2 = f 31 , df 3 = f 12,

we define the structure with x = 2 +
√

3 by

ω = e1f 1 + e2f 2 + e3f 3,

ψ+ = −1

2
x2e123 + 2xe12f 3 − 2xe13f 2 − 2xe1f 23 + 2xe23f 1

+ 2xe2f 13 − 2xe3f 12 + (4x− 8)f 123,

ψ− =
1

2
xe123 − 2e1f 23 + 2e2f 13 − 2e3f 12 + 4f 123,

g = x (e1)2 + x (e2)2 + x (e3)2 + 4 (f 1)2 + 4 (f 2)2 + 4 (f 3)2

− 2x e1 ·f 1 − 2x e2 ·f 2 − 2xe3 ·f 3.

We close the section by a remark on the curvature of half-flat SU(3)-structures. In

fact, the Ricci curvature of an arbitrary SU(3)-structure is computed in terms of the

components Wi in [BV]. For half-flat structures, the Ricci curvature is also derived

independently in [AC1]. However, as the computations are very involved and as we will

need the curvature only in very special cases, we do not attempt here to generalise the

results involving ε’s and indefinite signature.
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5. Nearly pseudo-Kähler and nearly para-Kähler six-manifolds

The main objective of this section, which is based on [SSH], is to generalise the

characterisation of six-dimensional nearly Kähler manifolds by an exterior differential

system, see [RC], to nearly pseudo-Kähler and nearly para-Kähler manifolds.

First of all, there is a unique ε-Hermitian connection with skew-symmetric torsion

T on a nearly ε-Kähler manifold (M2m, J, g, ω) by Proposition 2.6. In this case, the

skew-symmetric torsion T simplifies to

T (X, Y ) = εJ(∇XJ)Y =
1

4
εN(X, Y )

due to the identities (2.6), (2.7) and (2.8). We call this connection the canonical ε-

Hermitian connection of a nearly ε-Kähler manifold.

Proposition 5.1. The canonical ε-Hermitian connection ∇̄ of a nearly ε-Kähler man-

ifold (M2m, J, g, ω) satisfies

∇̄(∇J) = 0 and ∇̄(T ) = 0.

Proof. The two assertions are equivalent since ∇̄J = 0. A short proof of the first

assertion for the Hermitian case is given in [BM]. This proof generalises without changes

to the pseudo-Hermitian case since it essentially uses the identity

2g((∇2
W,XJ)Y, Z) = −σX,Y,Z g((∇WJ)X, (∇Y J)JZ),

which was proved in [G1] for Riemannian metrics and also holds true in the pseudo-

Riemannian setting ([Ka1, Proposition 7.1]). The para-Hermitian version is proved in

[IZ, Theorem 5.3]. �

Corollary 5.2. On a nearly ε-Kähler manifold (M2m, J, g, ω), the tensors ∇J and

N = 4εT have constant length.

Proof. This is an obvious consequence of Proposition 5.1 since both tensors are

parallel with respect to the connection ∇̄ which preserves in particular the metric. �

Remark 5.3. In dimension six, the fact that ∇J has constant length is usually ex-

pressed by the equivalent assertion that a nearly ε-Kähler six-manifold is of constant type,

i. e. there is a constant κ ∈ R such that

g((∇XJ)Y, (∇XJ)Y ) = κ { g(X,X)g(Y, Y )− g(X, Y )2 + εg(JX, Y )2 }.

In fact, the constant is κ = 1
4
‖∇J‖2. Furthermore, it is well-known in the Riemannian

case that strict nearly Kähler six-manifolds are Einstein manifolds with Einstein constant

5κ [G1]. The same is true in the para-Hermitian case [IZ] and in the pseudo-Hermitian

case [Sch4].

The case ‖∇J‖2 = 0 for a strict nearly ε-Kähler six-manifold can only occur in the

para-complex world. We give different characterisations of such structures which estab-

lish an obvious break in the analogy of nearly para-Kähler and nearly pseudo-Kähler

manifolds. We recall from chapter 1 that, for ε = 1, there is a decomposition

JΛ3,0(TM)∗K ∼= Λ3(TM+)∗ ⊕ Λ3(TM−)∗, .(5.1)
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In particular, the class W1 characterising nearly para-Kähler manifolds splits into two

subclasses already as a GL(m,R)-structure.

Proposition 5.4. The following assertions are equivalent on a six-dimensional strict

nearly para-Kähler manifold (M6, g, J, ω):

(i) ‖∇J‖2 = ‖A‖2 = 0

(ii) The three-form A = −∇ω ∈ JΩ3,0K is either in Γ(Λ3(TM+)∗) or in Γ(Λ3(TM−)∗).

(iii) The three-form A = −∇ω ∈ JΩ3,0K is not stable.

(iv) The metric g is Ricci-flat.

Proof. Let (M6, g, J, ω) be a strict nearly para-Kähler manifold. First of all, notice

that ‖∇J‖2 = ‖A‖2 by (2.1) and that the three-form A = −∇ω = −1
3
dω is of type

(3, 0) + (0, 3) by Proposition 2.5. Moreover, A vanishes nowhere by the definition of

strictness.

A local proof suffices and we choose a local frame {e1, . . . , e6} of eigenvectors of the

para-complex structure J , e1, e2, e3 for the eigenvalue +1, e4, e5, e6 for the eigenvalue

−1, such that the only non-vanishing components of the metric are given by g(e1, e4) =

g(e2, e5) = g(e3, e6) = 1. According to the decomposition (5.1) of JΛ3,0(TM)∗K, there are

local functions a and b such that A = ae123 +be456. Due to the simple form of the metric in

the chosen frame, it is easily verified, that ‖A‖2 = g(A,A) = 2ab. The first two assertions

are thus both equivalent to a = 0 or b = 0. The third assertion is also equivalent to a = 0

or b = 0 by Proposition 3.5 of chapter 1. Finally, assertions (i) and (iv) are equivalent by

[IZ, Theorem 5.5]. �

Flat strict nearly para-Kähler manifolds (M, g, J, ω) are classified in [CS2]. It turns

out that they always satisfy ‖∇J‖2 = 0. In [GaMa], almost para-Hermitian structures

on tangent bundles TN of real three-dimensional manifolds N3 are discussed. It is shown

that the existence of nearly para-Kähler manifolds satisfying the second condition of

Proposition 5.4 is equivalent to the existence of a certain connection on N3. However, to

the author’s best knowledge, there does not exist a reference for an example of a Ricci-flat

nearly para-Kähler structure which is not flat.

Finally, we come to the characterisation of six-dimensional nearly ε-Kähler manifolds

by an exterior differential system generalising the classical result of [RC] which holds for

ε = −1 and Riemannian metrics.

Theorem 5.5. Let (M, g, J, ω) be an almost ε-Hermitian six-manifold. Then M is

a strict nearly ε-Kähler manifold with ‖∇J‖2 6= 0 if and only if there is a reduction

Ψ = ψ+ + iεψ− to SU(p, q)ε which satisfies

dω = 3ψ+,(5.2)

dψ− = 2κω ∧ ω,(5.3)

where κ := 1
4
‖∇J‖2 = 1

2
W−

1 is constant and non-zero. The corresponding pair (ω, ψ+) of

stable forms is normalised if and only if κ = 1.

Remark 5.6. Due to our sign convention ω = g(., J.), the constant κ is positive in

the Riemannian case and the second equation differs from that of other authors by a sign.
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Proof. By Proposition 2.5, the manifold M is nearly ε-Kähler if and only if dω is of

type (3, 0) + (0, 3) and the Nijenhuis tensor is totally skew-symmetric.

First, we assume that (g, J, ω) is strict nearly ε-Kähler such that ‖A‖2 = ‖∇J‖2 6= 0.

As A = −1
3
dω has constant length by Corollary 5.2, we can define a reduction Ψ =

ψ+ + iεψ− by ψ+ = −A and ψ− = J∗ψ+ such that the first equation is satisfied. In fact,

this reduction is half-flat, since ψ+ is closed by definition and d(ω ∧ ω) = 6ψ+ ∧ ω =

0. Moreover, it holds W−
2 = 0 as a consequence of Proposition 3.6. Considering also

Proposition 3.4, the only non-vanishing component of the intrinsic torsion is W−
1 and the

second equation is satisfied for κ = 1
2
W−

1 . Since dω2 = 0, we obtain dκ = 0 and κ has to

be constant.

It remains to prove W−
1 = 1

2
‖∇J‖2. We want to apply Corollary 3.7 and choose an

ε-unitary local frame such that

Ψ = −A− iεJ
∗A = zE123,

where z ∈ Cε is constant. Since gCε(E
i, Ei) = 2σi, we have 4κ = ‖∇J‖2 = ‖ψ+‖2 =

1
2
gCε(Ψ,Ψ) = 4σ1σ2σ3zz̄. Comparing this with

iεW
−
1

(3.5)
= −σ1σ2σ3zgCε(N(Ē1, Ē2), E3)

(2.8)
= 4εσ1σ2σ3zJ

∗A(Ē1, Ē2, Ē3) = 2σ1σ2σ3iεzz̄,

the assertion W−
1 = 1

2
‖∇J‖2 follows.

Conversely, if a given SU(p, q)ε-structure satisfies the exterior system, the real three-

form ψ+ is obviously closed and the Nijenhuis tensor is totally skew-symmetric by Propo-

sition 3.6. Considering that dω = 3∇ω is of type (3, 0) + (0, 3) by the first equation,

the structure is nearly ε-Kähler. Since A = −ψ+ is stable, the structure is even strict

nearly ε-Kähler and, by Proposition 5.4, ‖∇J‖ = ‖A‖ 6= 0. Now, the computation of the

constants just carried out shows that in fact ‖∇J‖ = 4κ.

The additional assertion that the pair (ω, ψ+) is normalised if and only if κ = 1 is

immediate from Proposition 3.4. �



6. AUTOMORPHISM GROUPS OF SUε(p, q)-STRUCTURES 61

6. Automorphism groups of SUε(p, q)-structures

This section is based on [SSH] as well.

An automorphism of an SUε(p, q)-structure on a six-manifold M is an automorphism

of principal fibre bundles or equivalently, a diffeomorphism of M preserving all tensors

defining the SUε(p, q)-structure. Since a normalised SUε(p, q)-structure is characterised

by a pair of compatible and normalised stable forms (ω, ρ) ∈ Ω2M × Ω3M and since

the construction of the remaining tensors J, ψ− and g is invariant, a diffeomorphism

preserving the two stable forms is already an automorphism of the SUε(p, q)-structure

and in particular an isometry.

This easy observation has the following consequences when combined with the exterior

systems of the previous section and the naturality of the exterior derivative.

Proposition 6.1. Let M be a six-manifold with an SUε(p, q)-structure (ω, ρ).

(i) If the exterior differential equation

dω = µ ρ

is satisfied for a constant µ 6= 0, then a diffeomorphism Φ of M preserving the two-

form ω is an automorphism of the SUε(p, q)-structure and in particular an isometry.

(ii) If the exterior differential equation

d(J∗ρρ) = ν ω ∧ ω

is satisfied for a constant ν 6= 0, then a diffeomorphism Φ of M preserving

(a) the orientation and the three-form ρ,

(b) or the orientation and the three-form J∗ρρ,

(c) or the ε-complex volume form Ψ = ρ+ iεJ
∗
ρρ,

is an automorphism of the SUε(p, q)-structure and in particular an isometry.

We like to emphasise that both parts of the Proposition apply to strict nearly ε-Kähler

structures with ‖∇J‖2 6= 0.

Conversely, it is known for complete Riemannian nearly Kähler manifolds, that orien-

tation-preserving isometries are automorphism of the almost Hermitian structure ex-

cept for the round sphere S6, see for instance [Bu2, Proposition 4.1]. However, this

is not true if the metric is incomplete. In [FIMU, Theorem 3.6], a nearly Kähler

structure is constructed on the incomplete sine-cone over a Sasaki-Einstein five-manifold

(N5, η, ω1, ω2, ω3). In fact, the Reeb vector field dual to the one-form η is a Killing vector

field which does not preserve ω2 and ω3. Thus, by the formulae given in [FIMU], the lift

of this vector field to the nearly Kähler six-manifold is a Killing field for the sine-cone

metric which does neither preserve Ψ nor ω nor J .



CHAPTER 4

Classification results for Lie groups admitting half-flat

structures

This chapter deals with the existence of left-invariant half-flat structures on Lie groups.

All results of this chapter are contained in [SH].

An SUε(p, q)-structure (g, J, ω,Ψ) on a Lie group G is left-invariant if all defining

tensors are invariant under the group multiplication from the left. When identifying the

Lie algebra g of G with the Lie algebra of left-invariant vector fields, a left-invariant

SUε(p, q)-structure is equivalently defined by a compatible and normalised pair (ω, ρ) ∈
Λ2g∗ × Λ3g∗ of stable forms on the Lie algebra.

Due to the formula

dα(X, Y ) = −α([X, Y ]), α ∈ g∗ , X, Y ∈ g,

the exterior derivative of G restricted to left-invariant one-forms contains the same infor-

mation as the Lie bracket of g. In particular, an exterior system for left-invariant tensors

on G reduces to a system of algebraic equations on g. Notice that the Jacobi identity is

equivalent to d2 = 0.

Let a half-flat structure on a Lie algebra g be defined as a pair (ω, ρ) ∈ Λ2g∗ × Λ3g∗

of compatible stable forms which satisfy

dρ = 0 , dω2 = 0.

Thus, the study of left-invariant half-flat structures on Lie groups reduces to studying

half-flat structures on Lie algebras. As these structures are defined by stable forms on

vector spaces, the normalisation can be ignored when considering the existence question.

Before we prove our main classification results concerning half-flat structures on direct

sums of three-dimensional Lie algebras, we review the classification of three-dimensional

Lie algebras.

1. Three-dimensional Lie algebras

Recall that a Lie algebra g is called unimodular if the trace of the adjoint representation

adX vanishes for all X ∈ g.

Lemma 1.1. The following conditions are equivalent for an n-dimensional Lie algebra.

(i) g is unimodular

(ii) All (n− 1)-forms on g are closed.

(iii) Let {ckij} denote the structure constants with respect to a basis {ei} of g∗ which are

defined by dek =
∑

i<j c
k
ije

ij. Then, it holds
∑n

k=1 c
k
k,m = 0 for 1 ≤ m ≤ n.

(iv) The associated connected Lie groups G are unimodular, i.e. their Haar measure is

bi-invariant.
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Proof. Writing down the conditions (i) and (ii) with respect to a basis, we immedi-

ately see the equivalence to condition (iii) in both cases. The equivalence of (i) and (iv)

is shown in [Mi]. �

Unimodularity is a necessary condition for the existence of a co-compact lattice, see

for instance [Mi]. In fact, it is also sufficient in dimension three. Indeed, the closed

three-manifolds of the form Γ\G where G is a Lie group with lattice Γ are classified in

[RV]. Since a direct sum g1 ⊕ g2 of Lie algebras is unimodular if and only if both g1 and

g2 are unimodular, a direct product G1 × G2 of three-dimensional Lie groups admits a

co-compact lattice if and only if it is unimodular.

Lemma 1.2. Let g1 ⊕ g2 be the direct sum of two Lie algebras of dimension three.

Moreover, let ω be a non-degenerate two-form in Λ2(g1⊕g2)∗ = Λ2g1
∗⊕(g1

∗⊗g2
∗)⊕Λ2g2

∗

such that the projections of ω on Λ2g1
∗ and Λ2g2

∗ vanish. Then ω2 is closed if and only

if both g1 and g2 are unimodular.

Proof. Since ω ∈ g1
∗⊗g2

∗ is non-degenerate, we can always choose bases {ei} of g1
∗

and {fi} of g2
∗ such that ω =

∑3
j=1 ejfj. Therefore, we have

ω2 = −2
∑
i<j

eijfij ⇒ −1

2
dω2 =

∑
i<j

d (eij) ∧ fij +
∑
i<j

eij ∧ d (fij).

By Lemma 1.1, both g1 and g2 are unimodular if and only if all two-forms eij and fij are

closed. Since the sum is a direct sum of Lie algebras, the assertion follows immediately. �

In the following chapter, we need to determine in which isomorphism class a given

three-dimensional Lie algebra lies. All information we need, including proofs, can be

found in [Mi]. We summarise the results in two propositions. Recall that a Euclidean

cross product in dimension three is determined by a scalar product and an orientation.

Proposition 1.3 (Unimodular case). Let g be a three-dimensional Lie algebra and

choose a scalar product and an orientation.

(a) There is a uniquely defined endomorphism L of g such that [u, v] = L(u× v).

(b) The Lie algebra g is unimodular if and only if L is self-adjoint.

(c) If g is unimodular, the isomorphism class of g is characterised by the signs of the

eigenvalues of L. It can be achieved that there is at most one negative eigenvalue of

L by possibly changing the orientation.

Recall that the unimodular kernel of a Lie algebra g is the kernel of the Lie algebra

homomorphism

g→ R , X 7→ tr(adX).

Proposition 1.4 (Non-unimodular case). Let g be a three-dimensional Lie algebra

which is not unimodular.

(a) The unimodular kernel u of g is two-dimensional and abelian.

(b) Let X ∈ g such that tr(adX) = 2 and let L̃ : u → u be the restriction of adX to

the unimodular kernel u. If L̃ is not the identity map, the isomorphism class of g is

characterised by the determinant D of L̃.
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Name Bianchi
type

Eigenvalues of L Standard Lie bracket

su(2) ∼= so(3) IX (+,+,+) de1 =e23, de2 =e31, de3 =e12

sl(2,R) ∼= so(1, 2) VIII (+,+,-) de1 = e23, de2 = e31, de3 = e21

e(2) VII0 (+,+,0) de2 = e31, de3 = e12

e(1, 1) VI0 (+,-,0) de2 = e31, de3 = e21

h3 II (+,0,0) de3 = e12

R3 I (0,0,0) abelian

Table 1. Three-dimensional unimodular Lie algebras

Name Bianchi
type

Determinant D of
L̃

Standard Lie bracket

r2 ⊕ R III 0 de2 = e21

r3 IV 1 (and L̃ 6= id) de2 = e21+ e31, de3 = e31

r3,1 V 1 (and L̃ = id) de2 = e21, de3 = e31

r3,µ (−1 < µ < 0) VI D = 4µ
(µ+1)2

< 0 de2 = e21, de3 = µe31

r3,µ (0 < µ < 1) VI 0 < D = 4µ
(µ+1)2

< 1 de2 = e21, de3 = µe31

r′3,µ (µ > 0) VII D = 1 + 1
µ2
> 1 de2 = µe21+ e13, de3 = e21+ µe31

Table 2. Three-dimensional non-unimodular Lie algebras

We remark that all three-dimensional Lie algebras are solvable except for su(2) and

sl(2,R), which are simple. The three-dimensional Heisenberg algebra h3 represents the

only non-abelian nilpotent isomorphism class. The two Lie algebras e(2) and e(1, 1) cor-

respond to the groups of rigid motions of the Euclidean plane R2 and of the Minkowskian

plane R1,1, respectively. The names for the non-unimodular Lie algebras are taken from

[GOV] and the Bianchi types are defined in the original classification by Bianchi from

1898, [Bi1], see [Bi2] for an English translation.
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2. Classification of direct sums admitting a half-flat SU(3)-structure such

that the summands are orthogonal

In this section, we consider half-flat SU(3)-structures such that the summands are

orthogonal. The additional, rather strong assumption of orthogonality allows us to choose

a basis which is very well adapted to the problem and find all solutions using an ansatz

with arbitrary structure constants.

Recall that a Hermitian structure on a 2m-dimensional Euclidean vector space (V, g)

is given by an orthogonal complex structure J and that the fundamental two-form is

ω = g(. , J. ) by our conventions.

Lemma 2.1. Let (V1, g1) and (V2, g2) be three-dimensional Euclidean vector spaces and

let (g, J, ω) be a Hermitian structure on the orthogonal product (V1 ⊕ V2, g = g1 + g2).

There are orthonormal bases {e1, e2, e3} of V1 and {f1, f2, f3} of V2 which can be joined

to an orthonormal basis of V1 ⊕ V2 such that

(2.1) ω = a e12 +
√

1− a2 e1f1 +
√

1− a2 e2f2 + e3f3 − a f12

for a real number a with −1 < a ≤ 1.

Proof. Let {e1, e2, e3} and {f1, f2, f3} be orthonormal bases of V1 and V2, respec-

tively. The group O(3)×O(3) acts transitively on the pairs of orthonormal bases. Let Ω

be the Gram matrix of the two-form ω with respect to our basis. Writing the upper right

block of Ω as a product of an orthogonal and positive semi-definite matrix and acting

with an appropriate pair of orthogonal matrices, we find an orthonormal basis and nine

real parameters such that

Ω =



0 y1 y2 x1 0 0

−y1 0 y3 0 x2 0

−y2 −y3 0 0 0 x3

−x1 0 0 0 z1 z2

0 −x2 0 −z1 0 z3

0 0 −x3 −z2 −z3 0


with xi ≥ 0 for all i and det(Ω) 6= 0.

Since ω = g( . , J. ), the matrix Ω with respect to an orthonormal basis has to be a
complex structure, i.e. Ω2 = −1, where 1 denotes the identity matrix. In our basis, the
square of Ω is

−y21 − y22 − x21 −y2y3 y1y3 0 y1x2 + x1z1 y2x3 + x1z2
−y2y3 −y21 − y23 − x22 −y1y2 −y1x1 − x2z1 0 y3x3 + x2z3
y1y3 −y1y2 −y22 − y23 − x23 −y2x1 − x3z2 −y3x2 − x3z3 0

0 −y1x1 − x2z1 −y2x1 − x3z2 −x21 − z21 − z22 −z2z3 z1z3
y1x2 + x1z1 0 −y3x2 − x3z3 −z2z3 −x22 − z21 − z23 −z1z2
y2x3 + x1z2 y3x3 + x2z3 0 z1z3 −z1z2 −x23 − z22 − z23


We end up with a set of 18 quadratic equations (and one inequality) and determine all

solutions modulo the action of O(3)×O(3) and an exchange of the summands.

On the one hand, assume yi = 0 for all i. Then, we deduce xi = 1 and zi = 0 for all

i and all equations are satisfied. In this case, the two-form ω is in the normal form (2.1)

with a = 0.
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On the other hand, assume that one of the yi is different from zero, say a := y1 6= 0

without loss of generality. Inspecting the first two terms of the third line of Ω2, we

observe y2 = y3 = 0. Since xi ≥ 0, the first three elements on the diagonal enforce x3 = 1,

x1 = x2 =
√
−a2 + 1 and |a| ≤ 1. But x3 = 1 and y2 = y3 = 0 imply that z2 = z3 = 0 due

to row 3, terms 4 and 5. If |a| < 1 and thus x1 = x2 > 0, the term in row 1 and column 5

enforces z1 = −a. Obviously, all equations are satisfied and ω is in the normal form (2.1).

Finally, if |a| = 1, we have immediately x1 = x2 = 0 and |z1| = 1 and all equations are

satisfied again. Since changing the signs of the base vectors e1 and f1 is an orthogonal

transformation which does not change x3, we can obtain the normal form (2.1) for a = 1.

Since we found all solutions to the 18 equations and the two-form ω is non-degenerate for

all values of a, the Lemma is proven. �

We call the Hermitian structure of type I if it admits a basis with a = 0 and of type

II if it admits a basis with a 6= 0.

Theorem 2.2. Let g = g1 ⊕ g2 be a direct sum of three-dimensional Lie algebras g1

and g2.

The Lie algebra g admits a half-flat SU(3)-structure such that g1 and g2 are mutually

orthogonal and such that the underlying Hermitian structure is of type I if and only if

(i) g1 = g2 and both are unimodular or

(ii) g1 is non-abelian unimodular and g2 abelian or vice versa.

Moreover, the Lie algebra g admits a half-flat SU(3)-structure such that g1 and g2 are

mutually orthogonal and such that the underlying Hermitian structure is of type II if and

only if the pair (g1, g2) or (g2, g1) is contained in the following list:

(e(1, 1), e(1, 1)),

(e(2),R⊕ r2),

(su(2), r3,µ) for 0 < µ ≤ 1,

(sl(2,R), r3,µ) for −1 < µ < 0.

Proof. Given a Hermitian structure (g, J, ω) such that g1 and g2 are orthogonal, we

can use Lemma 2.1 and choose an orthonormal basis {e1, e2, e3, f1, f2, f3} of g1 ⊕ g2 such

that {e1, e2, e3} spans g1, {f1, f2, f3} spans g2 and

(2.2) ω = a e12 +
√

1− a2 e1f1 +
√

1− a2 e2f2 + e3f3 − a f12

for a real number a with −1 < a ≤ 1. The reductions from U(3) to SU(3) are pa-

rameterised by the space of complex-valued (3, 0)-forms Ψ = ψ + iφ which is complex

one-dimensional. We remark that, working on a vector space, the length normalisation of

the (3, 0)-form is not important for the existence question. The Lie bracket of the direct

sum g1 ⊕ g2 is encoded in the 18 structure constants of g1 and g2:

dei = cij,ke
jk and dfi = ci+3

j+3,k+3fjk with i,j,k ∈ {1, 2, 3}.

Therefore, our ansatz includes 21 parameters consisting of 18 structure constants, two

real parameters defining an arbitrary SU(3) reduction and the parameter a. Our strategy
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is to find all solutions of the equations defining half-flatness

dω2 = 0 and dψ = 0

and the Jacobi identity d2 = 0 and to determine the isomorphism classes of the solutions

if necessary.

Type I: Assume first that a = 0. Due to Lemma (1.2), the first half-flat equation

dω2 = 0 is satisfied if and only if both g1 and g2 are unimodular. It remains to solve

the second half-flat equation for unimodular summands. Since we have J(fi) = ei in our

basis for a = 0, the dual vectors satisfy ei ◦ J = fi. Therefore, the complex-valued form

Ψ0 = ψ0 + iφ0 = (e1 − ie1 ◦ J) ∧ (e2 − ie2 ◦ J) ∧ (e3 − ie3 ◦ J)

= e123 − e1f23 − e2f31 − e3f12 + i(f123 − e12f3 − e31f2 − e23f1)

is a (3, 0)-form with respect to J . By multiplying Ψ0 with a non-zero complex number

ξ1 + iξ2, we obtain all (3, 0)-forms. Their real part is ψ = ξ1ψ0 − ξ2φ0. Considering that

all two-forms on both g1 and g2 are closed, we compute the exterior derivative of ψ:

dψ = −(ξ1c
1
1,2 − ξ2c

6
5,6) e12f23 − (ξ1c

1
2,3 − ξ2c

4
5,6) e23f23 − (ξ1c

1
3,1 − ξ2c

5
5,6) e31f23

−(ξ1c
2
1,2 − ξ2c

6
6,4) e12f31 − (ξ1c

2
2,3 − ξ2c

4
6,4) e23f31 − (ξ1c

2
3,1 − ξ2c

5
6,4) e31f31

−(ξ1c
3
1,2 − ξ2c

6
4,5) e12f12 − (ξ1c

3
2,3 − ξ2c

4
4,5) e23f12 − (ξ1c

3
3,1 − ξ2c

5
4,5) e31f12.

If ξ1 or ξ2 is zero we have obviously dψ = 0 if and only if one of the summands is abelian.

By Lemma (1.1), the unimodularity of g2 is equivalent to c6
6,4 = −c5

5,4, c6
6,5 = −c4

4,5 and

c5
5,4 = −c6

6,4. Therefore, if both ξ1 and ξ2 are different from zero, dψ vanishes if and only

if the structure constants of g1 and g2 coincide up to the scalar ξ1
ξ2

and therefore g1 = g2.

This comprises all solutions under the assumption a = 0.

Type II: Assume now that the U(3)-structure satisfies a 6= 0. To improve readability,

the abbreviation b :=
√

1− a2 is introduced.

With this notation, we compute

1

2
ω2 = a e123f3 − a e3f123 − e12f12 − b e13f13 − b e23f23,

1

2
d(ω2) = (c4

4,6 + c5
5,6 − ac3

1,2) e12f123 + (bc6
5,6 − bc4

4,5 − ac3
1,3) e13f123

− (ac3
2,3 + bc5

4,5 + bc6
4,6) e23f123 + (c1

1,3 + c2
2,3 − ac6

4,5) e123f12

− (bc1
1,2 − bc3

2,3 + ac6
4,6) e123f13 − (ac6

5,6 + bc2
1,2 + bc3

1,3) e123f23.

We reduce our ansatz to the space of solutions of dω2 = 0 by substituting

c2
2,3 = ac6

4,5 − c1
1,3 , c3

2,3 = b2c1
1,2 − abc5

4,5 , c3
1,3 = −b2c2

1,2 − abc4
4,5 ,

c5
5,6 = ac3

1,2 − c4
4,6 , c6

5,6 = b2c4
4,5 − abc2

1,2 and c6
4,6 = −b2c5

4,5 − abc1
1,2.

In our basis, we have e1 ◦ J = bf1 + ae2, e3 ◦ J = f3 and f2 ◦ J = −be2 + af1. Using these

identities, we find the (3,0)-form Ψ0 = ψ0 + iφ0 with

ψ0 = +b f123 − b e12f3 + e13f2 − e23f1 + a e1f13 + a e2f23,

φ0 = −b e123 + b e3f12 − e2f13 + e1f23 − a e13f1 − a e23f2.

In the following, we work with the real part ψ = ξ1ψ0 − ξ2φ0 of an arbitrary (3,0)-form.

By possibly changing the roles of the two summands, we can assume that ξ1 is non-zero
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and we normalise our (3,0)-form such that ξ1 = 1. The exterior derivative of ψ is, after

inserting the above substitutions:

dψ = ab c6
4,5 e123f3 −ξ2ab c

3
1,2 e3f123 −b ( c6

4,5 + ξ2 c
3
1,2) e12f12

+ ( −ξ2ab c
1
1,2 −a2b c2

1,2 −a3c4
4,5 +ξ2a

2c5
4,5) e1f123

+ ( a2b c1
1,2 −ξ2ab c

2
1,2 −ξ2a

2c4
4,5 −a3c5

4,5) e2f123

+ ( ξ2a
3c1

1,2 −a2c2
1,2 +ab c4

4,5 +ξ2a
2b c5

4,5) e123f1

+ ( a2c1
1,2 +ξ2a

3c2
1,2 −ξ2a

2b c4
4,5 +ab c5

4,5) e123f2

+ ( a(2− a2) c1
1,2 +ξ2 c

2
1,2 +b3 c5

4,5) e12f13

+ ( −ξ2 c
1
1,2 + a(2− a2) c2

1,2 −b3 c4
4,5 ) e12f23

+ ( +ξ2b
3 c2

1,2 ξ2a(2− a2) c4
4,5 +c5

4,5) e13f12

+ ( −ξ2b
3 c1

1,2 −c4
4,5 +ξ2a(2− a2) c5

4,5) e23f12

+ ( a c1
1,3 +ξ2 c

2
1,3 +ξ2a c

4
4,6 +c5

4,6 ) e13f13

+ (ξ2a
2c3

1,2 −a c1
1,3 −ξ2c

1
2,3 −ξ2a c

4
4,6 −c4

5,6 +a2c6
4,5) e23f23

+ ( a c3
1,2 −ξ2 c

1
1,3 +a c2

1,3 −c4
4,6 +ξ2a c

4
5,6 ) e13f23

+ ( −ξ2 c
1
1,3 +a c1

2,3 −c4
4,6 +ξ2a c

5
4,6 +ξ2a c

6
4,5) e23f13

We need to determine all solutions of the coefficient equations of dψ = 0. First of all, we

observe that the variables c1
1,2, c2

1,2, c4
4,5 and c5

4,5 are subject to eight linear equations and

claim that there is no non-trivial solution of this linear system. Indeed, the determinant

of the four by four coefficient matrix of the first four equations is a4(a2ξ2
2 +1)(a2 +ξ2

2)(a2 +

b2)2 = a4(a2ξ2
2 +1)(a2 +ξ2

2) and thus never vanishes for a 6= 0. To deal with the remaining

eight structure constants, subject to seven equations, we treat three cases separately.

(a) Assume first that b 6= 0 and ξ2 6= 0, i.e. 0 < |a| < 1. Obviously, we have c3
1,2 = 0 and

c6
4,5 = 0 by the vanishing of the first three coefficients. Moreover, applying easy row

transformations to the remaining four equations, we observe that it holds necessarily

c2
1,3 = c1

2,3 and c5
4,6 = c4

5,6. Considering this, dψ = 0 is finally satisfied if and only if

s := c4
4,6 =

a (ξ22−1) c45,6−(a2+ξ22) c11,3
ξ2(a2+1)

, t := c1
2,3 = − (ξ22a

2+1) c45,6+a(1−ξ22) c11,3
ξ2(a2+1)

.

Applying all substitutions, the set of solutions of the two half-flat equations is param-

eterised by the four parameters a, ξ2,

p := c1
1,3 and q := c4

5,6.

In order to determine the isomorphism class of g1 and g2 for all solutions, we apply

Propositions 1.3 and 1.4. We choose orientations on g1 and g2 such that e1×e2 = −e3

and e4 × e5 = −e6. Let Lg1 and Lg2 denote the matrices representing the endomor-

phisms defined in Proposition 1.3 with respect to our bases. On the set of solutions,

they simplify to

Lg1 =

 t −p 0

−p −t 0

0 0 0

 and Lg2 =

 q −s 0

−s −q 0

0 0 0

 .
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The Jacobi identity is already satisfied. Both Lg1 and Lg2 are symmetric and in

consequence, both summands are unimodular. The eigenvalues of Lg1 are 0 and

±
√
p2 + t2 and those of Lg2 are 0 and ±

√
s2 + q2. Hence, if p 6= 0 or q 6= 0, the Lie

algebra g1⊕g2 is isomorphic to e(1, 1)⊕ e(1, 1) with two remaining parameters ξ2 6= 0

and 0 < |a| < 1. If p = 0 and q = 0, the Lie algebra is abelian.

(b) Now assume b 6= 0 and ξ2 = 0. In this case, the equations simplify considerably and

the only solution of dψ = 0 is given by

c6
4,5 = 0 , c4

4,6 = ac1
2,3 , c5

4,6 = −ac1
1,3 , c4

5,6 = −ac1
1,3 , c3

1,2 = −c2
1,3 + c1

2,3.

As before, we rename the remaining parameters

p := c2
1,3 , q := c1

2,3 and r := c1
1,3,

and have a closer look at

Lg1 =

 q −r 0

−r −p 0

0 0 −p+ q

 and Lg2 =

−ar −aq 0

−ap ar 0

0 0 0

 .

Again, the Jacobi identity is already satisfied. The first summand is always unimod-

ular, the second summand is unimodular if and only if p = q. If p = q, both matrices

are of the same type as in case (a) and g1 ⊕ g2 is isomorphic to e(1, 1) ⊕ e(1, 1) or

abelian.

It remains to apply Proposition 1.4 to identify the isomorphism class of the so-

lutions with p 6= q. Without changing the isomorphism class, we can normalise

such that p = q + 1. We need to find a vector X ∈ g2 with tr(adX) = 2. Since

tr(adf3) = c4
4,6 +c5

5,6 = −a, we choose X = − 2
a
f3. The unimodular kernel u is spanned

by f1 and f2 and the restriction of adX on u is represented by the matrix

L̃g2 =

(
−2q 2r

2r 2(q + 1)

)
with D = det(L̃g2) = −4(q(q + 1) + r2) ≤ 1.

If L̃g2 is not the identity matrix, the value of D determines the isomorphism class of

g2. However, the corresponding class of the unimodular summand g1 varies with the

value of D. In fact, with r2 = −q(q + 1) − 1
4
D, the eigenvalues of Lg1 are −1 and

−1
2
± 1

2

√
1−D. Comparing with the lists in chapter 1, we find the remaining classes

listed in the theorem.

(c) The last case to be discussed is b = 0 which corresponds to a = 1. Now, the equation

dψ = 0 is equivalent to

c1
2,3 = −ξ2c

4
5,6 + ξ2c

1
1,3 + c4

4,6 , c3
1,2 = ξ2c

1
1,3 + c4

4,6 − ξ2c
4
5,6 − c2

1,3,

c5
4,6 = −ξ2c

2
1,3 − ξ2c

4
4,6 − c1

1,3 , c6
4,5 = ξ2c

4
4,6 + ξ2c

2
1,3 + c4

5,6 + c1
1,3.

Considering these substitutions, the Jacobi identity is satisfied if and only if

ξ2c
4
4,6 + ξ2c

2
1,3 + c4

5,6 + c1
1,3 = 0 or ξ2c

1
1,3 + c4

4,6 − ξ2c
4
5,6 − c2

1,3 = 0.

Writing down the matrices Lg1 and Lg2 for both cases, it is easy to see that they are

of the same form as in case (b). Therefore, the possible isomorphism classes of Lie

algebras are exactly the same as in case (b).

Since we have discussed all solutions of the half-flat equations, the theorem is proved. �
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3. Classification of direct sums admitting a half-flat SU(3)-structure

From now on, we will drop the additional assumption of orthogonality. In fact, we

have to develop a completely different method in order to solve the existence problem of

half-flat SU(3)-structures on direct sums of three-dimensional Lie algebras.

3.1. Obstructions to the existence of half-flat SU(3)-structures. To begin

with, we prove an obstruction to the existence of a half-flat SU(3)-structure on a Lie

algebra following the idea of [Con, Theorem 2].

We denote by Zp the space of closed p-forms on a Lie algebra and byW 0 the annihilator

of a subspace W .

Lemma 3.1. Let g be a six-dimensional Lie algebra and g∗ = V ⊕W a (vector space)

decomposition such that V is two-dimensional and such that

Z3 ⊂ Λ2V ∧W ⊕ V ∧ Λ2W.(3.1)

Then, the subspace V is Jρ-invariant for all closed stable three-forms ρ.

Proof. Let ρ ∈ Z3 be stable and α ∈ V . Since dimV = 2, the assumption (3.1)

implies for all v ∈ V 0

vy ρ ∈ Λ2V ⊕ V ∧W , α ∧ ρ ∈ Λ3V ∧W ⊕ Λ2V ∧ Λ2W.

Therefore, by the formula

J∗ρα(v)φ(ρ) = α ∧ (vy ρ) ∧ ρ, v ∈ V, α ∈ V ∗,(3.2)

which is proved in Proposition 1.5, it holds

0 = α ∧ (vy ρ) ∧ ρ = J∗ρα(v)φ(ρ)

for all v ∈ V 0 and, by definition of the annihilator, the subspace V is Jρ-invariant. �

Proposition 3.2. Let g be a six-dimensional Lie algebra and g∗ = V ⊕W a decom-

position such that V is two-dimensional and such that

Z3 ⊂ Λ2V ∧W ⊕ V ∧ Λ2W,(3.3)

Z4 ⊂ Λ2V ∧ Λ2W ⊕ V ∧ Λ3W.(3.4)

Then, the subspace V is isotropic and Jρ-invariant for every half-flat structure (ω, ρ). In

particular, the Lie algebra g does not admit a half-flat SU(3)-structure.

Proof. Suppose that (ω, ρ) is a half-flat structure on g, in particular ρ ∈ Z3 and

ω2 ∈ Z4 by definition. By Lemma 3.1, the subspace V is Jρ-invariant. Moreover, the

identity

(3.5) α ∧ J∗ρβ ∧ ω2 =
1

3
g(α, β)ω3

for all α, β ∈ V was shown in Lemma 1.8. Thus, the assumption (3.4) and dimV = 2

imply that V has to be an isotropic subspace of g∗. This is of course impossible for definite

metrics and there cannot exist a half-flat SU(3)-structure. �
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Definition 3.3. Let g be a Lie algebra. A decomposition g∗ = V ⊕W is called a

coherent splitting if

dV ⊂ Λ2V,(3.6)

dW ⊂ Λ2V ⊕ V ∧W.(3.7)

Remark 3.4. The definition can be reformulated into an equivalent dual condition:

(3.6) ⇐⇒ 0 = dσ(X, .) = −σ([X, .]) for all X ∈ V 0, σ ∈ V ⇐⇒ [V 0, g] ⊂ V 0,

(3.7) ⇐⇒ 0 = dσ(X, Y ) = −σ([X, Y ]) for all X, Y ∈ V 0, σ ∈ W ⇐⇒ [V 0, V 0] ⊂ W 0

In other words, a coherent splitting corresponds to a decomposition of g into an abelian

ideal and a vector space complement.

As elaborated in [Con], a coherent splitting with dimV = 2 allows the introduction

of a double complex such that the obstruction conditions (3.3), (3.4) can be formulated

in terms of the cohomology of this double complex. However, in the situation we are

interested in, it turns out to be more practical to avoid homological algebra. Indeed, the

verification of the obstruction conditions can be simplified as follows.

Lemma 3.5. Let g = g1 ⊕ g2 be a direct sum of three-dimensional Lie algebras.

(i) Let α1 ∈ g1
∗ and α2 ∈ g2

∗ be one-forms defining V = span(α1, α2). Then g∗ = V ⊕W
is a coherent splitting for any complement W of V if and only if the two one-forms

αi are closed and satisfy

im(d : g∗i → Λ2g∗i ) ⊂ αi ∧ g∗i for both i.(3.8)

(ii) If both summands are non-abelian, every coherent splitting with dimV = 2 is defined

by closed one-forms α1 ∈ g1
∗ and α2 ∈ g2

∗ satisfying (3.8).

(iii) There exists a coherent splitting with dimV = 2 on g if and only if g is solvable.

(iv) If g is unimodular, there is no decomposition g∗ = V ⊕W with two-dimensional V

satisfying both obstruction conditions (3.3) and (3.4).

Proof. (i) Since both the exterior algebras Λ∗g∗i are d-invariant, the condition (3.6)

is satisfied if and only if both generators are closed and (3.7) is equivalent to (3.8).

(ii) Assume that both summands gi are not abelian and let a coherent splitting be de-

fined by an abelian four-dimensional ideal V 0 and a complement. In consequence,

both the intersection V 0∩gi and the projection of V 0 on gi are abelian subalgebras of

gi for both i and thus at most two-dimensional. Since a one-dimensional intersection

V 0∩gi would require the projection on the other summand to be three-dimensional,

it follows that the intersections V 0 ∩ gi have to be exactly two-dimensional. Equiv-

alently, the two-dimensional space V is generated by two one-forms α1 ∈ g∗1 and

α2 ∈ g∗2. Now, the assertion follows from part (i).

(iii) On the one hand, if g is not solvable, one of the summands has to be simple, say

g1. However, the intersection of a four-dimensional abelian ideal with g1 would be

zero or g1, both of which is not possible since dim g = 6 and since g1 is not abelian.

On the other hand, inspecting the list of standard bases in tables 1 and 2 reveals

that any three-dimensional solvable Lie algebra h contains a closed one-form α such

that im d ⊂ α ∧ h∗. Therefore, if g is solvable, i.e. both summands are solvable, a

coherent splitting exists by part (i).
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(iv) Assume that g is unimodular and let W be an arbitrary four-dimensional subspace

of g∗. It suffices to show that there always exists a closed three-form with non-zero

projection on Λ3W or a closed four-form with non-zero projection on Λ4W . If the

projection of W on one of the summands gi is surjective, every non-zero element of

Λ3g∗i is closed and has non-zero projection on Λ3W . Otherwise, the image of the

projection ofW on either of the summands has to be two-dimensional for dimensional

reasons. In this case, there is always a closed four-form with non-zero projection on

Λ4W since all four-forms in Λ2g∗1 ∧ Λ2g∗2 are closed by unimodularity. This finishes

the proof of the lemma.

�

Lemma 3.6. Let g = g1 ⊕ g2 be a direct sum of three-dimensional Lie algebras and

let g∗ = V ⊕W be a coherent splitting such that V = span(α1, α2) is defined by closed

one-forms α1 ∈ g∗1 and α2 ∈ g∗2 satisfying (3.8). Then, the obstruction conditions (3.3)

and (3.4) are equivalent to the condition that d is injective when restricted to Λ3W and

Λ4W .

Proof. The injectivity of d on Λ3W and Λ4W is obviously necessary for (3.3) and

(3.4). With the assumptions, it is also sufficient since the coherent splitting satisfies

dW ⊂ V ∧W and dV = 0 such that the images of Λ3W and Λ4W are linearly independent

from the images of the complements Λ2V ∧W ⊕ V ∧ Λ2W and Λ2V ∧ Λ2W ⊕ V ∧ Λ3W ,

respectively. �

3.2. The classification. Using the obstruction established in the previous section,

we obtain the following classification result.

Theorem 3.7. A direct sum g = g1 ⊕ g2 of three-dimensional Lie algebras admits a

half-flat SU(3)-structure if and only if

(i) g is unimodular or

(ii) g is not solvable or

(iii) g is isomorphic to e(2)⊕ r2 ⊕ R or e(1, 1)⊕ r2 ⊕ R.

Proof. A standard basis of g = g1 ⊕ g2 will always denote the union of a standard

basis {e1, e2, e3} of g1 and a standard basis {f1, f2, f3} of g2 as defined in tables 1 and 2.

For all Lie algebras admitting a half-flat SU(3)-structure, such a structure is explicitly

given in a standard basis in the three tables at the end of this section. We remark that

most examples are constructed exploiting the stable form formalism and with extensive

computer support. The non-existence on the remaining Lie algebras is settled as follows.

In most of the cases, the obstructions of section 3.1 can be applied directly.

Lemma 3.8. The Lie algebra g = r2 ⊕ R ⊕ r2 ⊕ R and all Lie algebras g = g1 ⊕ g2

with g1 solvable and g2 one of the algebras r3, r3,µ , 0 < |µ| ≤ 1, r′3,µ , µ > 0, do not admit

a half-flat SU(3)-structure.

Proof. We want to apply the obstruction established in Proposition 3.2 and, given

any of the Lie algebras g in question, we define a decomposition

V = span{e1, f1} , W = span{e2, e3, f2, f3} ,
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in a standard basis of g∗. By Lemma 3.6, it suffices to show that this is a coherent splitting

such that the restrictions d|Λ3W and d|Λ4W are injective. In fact, the coherence can be

verified directly by comparing the conditions of Lemma 3.5, (i), with the standard bases

of the solvable three-dimensional Lie algebras.

If g2 is one of the algebras r3, r3,µ, 0 < |µ| ≤ 1 or r′3,µ, µ > 0, the standard bases satisfy

df2 6= 0, @ c ∈ R : df3 = c df2, df23 6= 0.

Thus, considering again that the exterior algebras Λ∗g∗i of the summands are d-invariant,

the image

d(Λ3W ) = span{d(e23f2), d(e23f3), d(e2f23), d(e3f23)}
is four-dimensional and the image

d(Λ4W ) = span{d(e23f23)}

is one-dimensional. The same restrictions are injective for g = r2 ⊕ R ⊕ r2 ⊕ R, since in

this case de23 6= 0 and df23 6= 0. This finishes the proof. �

The obstruction theory cannot be applied directly to the two remaining Lie algebras,

although they admit coherent splittings and we have to deal with them separately.

Lemma 3.9. The Lie algebra g = h3⊕r2⊕R does not admit a half-flat SU(3)-structure.

Furthermore, there is no decomposition g∗ = V ⊕W with two-dimensional V which sat-

isfies the obstruction condition (3.3).

Proof. We start by proving the second assertion. Let W ⊂ g∗ be an arbitrary four-

dimensional subspace. It suffices to show that there is always a closed three-form with non-

zero projection on Λ3W . If the projection of W on one of the summands g∗i is surjective, a

generator of Λ3g∗i is closed and has non-zero projection on Λ3W . For dimensional reasons,

the only remaining possibility is that both projections have two-dimensional image in W .

However, since all two-forms in Λ2h∗3 are closed and the kernel of d is two-dimensional on

r2⊕R, there is necessarily a closed three-form in Λ2h∗3∧(r2⊕R)∗ with non-zero projection

on Λ3W . Therefore, the obstruction condition (3.3) is never satisfied.

However, we can prove that there is no half-flat SU(3)-structure by refining the idea

of the obstruction condition as follows. Suppose that (ρ, ω) is a half-flat SU(3)-structure,

i.e. ρ ∈ Z3 and σ = 1
2
ω2 ∈ Z4 and let {e1, . . . , f3} denote a standard basis of h3 ⊕ r2 ⊕ R.

We claim that

f1 ∧ J∗ρ f1 ∧ σ = 0

which suffices to prove the non-existence since f1 would be isotropic by (3.5). First of all,

an easy calculation reveals that

f1 ∧ σ ∈ span{f1e12f23, f1e123f3}

for an arbitrary closed four-form σ. Thus, it remains to show that J∗ρ f1 has no component

along e3 and f2 or equivalently that

J∗ρ f1(v)φ(ρ)
(3.2)
= f1 ∧ (vy ρ) ∧ ρ

vanishes for v ∈ {e3, f2}. This assertion is straightforward to verify for an arbitrary closed

three-form ρ. �

For the last remaining Lie algebra, we apply a different argument.
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Lemma 3.10. The Lie algebra g = r2⊕R⊕R3 does not admit a closed stable form ρ with

λ(ρ) < 0, in particular it does not admit a half-flat SU(3)-structure. Furthermore, there

is no decomposition g∗ = V ⊕W with two-dimensional V which satisfies the obstruction

condition (3.3).

Proof. Suppose that ρ is a closed stable form inducing a complex or a para-complex

structure Jρ. Let {e1, e2} be a basis of r2 such that de2 = e21. Since ρ is closed, there are

a one-form β ∈ (R4)∗, a two-form γ ∈ Λ2(R4)∗ and a three-form δ ∈ Λ3(R4)∗, such that

ρ = e12 ∧ β + e1 ∧ γ + δ.

Therefore, we have

Kρ(e2) = κ((e2y ρ) ∧ ρ) = κ(−e1 ∧ β ∧ δ)
with β ∧ δ ∈ Λ4(R4)∗. However, this implies that J(e2) is proportional to e2 by (3.7)

which is only possible if λ(ρ) > 0 and the first assertion is proven.

To prove the second assertion, it suffices to show that for every four-dimensional

subspace W ⊂ g∗, there is a closed three-form with non-zero projection on Λ3W . This

follows immediately from the observation that dim(ker d) = 5 which implies that

dim(ker d ∩W ) ≥ 3

for every four-dimensional subspace W . �

The lemma finishes the proof of the theorem as all possible direct sums according to

the classification of three-dimensional Lie algebras have been considered. �

We remark that the lemmas 3.9 and 3.10 give two examples of solvable Lie algebras

which show that the condition of [Con, Theorem 5], which characterises six-dimensional

nilpotent Lie algebras admitting a half-flat SU(3)-structure, cannot be generalised without

further restrictions to solvable Lie algebras.

Table 3: Unimodular direct sums of three-dimensional Lie algebras

Lie algebra Half-flat SU(3)-structure with ω = e1f1 + e2f2 + e3f3

h⊕ h, ρ = 1
2

√
2 { e123 − e1f23 − e2f31 − e3f12 + e12f3 + e31f2 + e23f1 − f123 }

h unimodular g = (e1)2 + (e2)2 + (e3)2 + (f1)2 + (f2)2 + (f3)2

h⊕ R3, ρ = e12f3 + e31f2 + e23f1 − f123

h unimodular g = (e1)2 + (e2)2 + (e3)2 + (f1)2 + (f2)2 + (f3)2

su(2)⊕ sl(2,R), ρ = 2
1
4 { 1

2 e123 + e23f1 + e31f2 + e12f3 − e1f23 − e2f31 + e3f12 − 2 f123 }

g =
√

2 { 3
2 (e1)2 + 3

2 (e2)2 + 1
2 (e3)2 + (f1)2 + (f2)2 + 3 (f3)2

+ 2 e1 ·f1 + 2 e2 ·f2 − 2 e3 ·f3 }

su(2)⊕ e(2) ρ = −e23f1 − e31f2 − e12f3 + e2f31 + e3f12 + f123

g = (e1)2 + (e2)2 + (e3)2 + 2 (f1)2 + (f2)2 + (f3)2 − 2 e1 ·f1

Table 3 – continued on next page
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Table 3 – continued

Lie algebra Half-flat SU(3)-structure with ω = e1f1 + e2f2 + e3f3

sl(2,R)⊕ e(2) ρ = −2 e23f1 − e31f2 − e12f3 + e2f31 − e3f12 + f123

g = (e1)2 + 2 (e2)2 + 2 (e3)2 + (f1)2 + (f2)2 + (f3)2 + 2 e2 ·f2 − 2 e3 ·f3

su(2)⊕ e(1, 1), ρ = −2 e23f1 − e31f2 − e12f3 + e2f31 − e3f12 + f123

e(2)⊕ e(1, 1) g = (e1)2 + 2 (e2)2 + 2 (e3)2 + (f1)2 + (f2)2 + (f3)2 + 2 e2 ·f2 − 2 e3 ·f3

sl(2,R)⊕ e(1, 1) ρ = −e23f1 − e31f2 − e12f3 + e2f31 + e3f12 + f123

g = (e1)2 + (e2)2 + (e3)2 + 2 (f1)2 + (f2)2 + (f3)2 − 2 e1 ·f1

su(2)⊕ h3, ρ = −e23f1 − 5
4 e31f2 − e12f3 + e3f12 + f123

e(2)⊕ h3 g = 5
4 (e1)2 + (e2)2 + 5

4 (e3)2 + (f1)2 + 5
4 (f2)2 + (f3)2

−e1 ·f1 − e2 ·f2 + e3 ·f3

sl(2,R)⊕ h3, ρ = −e23f1 − 5
4 e31f2 − e12f3 − e3f12 + f123

e(1, 1)⊕ h3 g = 5
4 (e1)2 + (e2)2 + 5

4 (e3)2 + (f1)2 + 5
4 (f2)2 + (f3)2

+ e1 ·f1 + e2 ·f2 − e3 ·f3

Table 4: Solvable, non-unimodular direct sums admitting a half-flat SU(3)-structure

Lie algebra Half-flat SU(3)-structure

e(2)⊕ r2 ⊕ R ω = e12 + e3f1 − f23

ρ = e23f3 + e2f21 + e13f2 − e1f31

g = (e1)2 + (e2)2 + (e3)2 + (f1)2 + (f2)2 + (f3)2

e(1, 1)⊕ r2 ⊕ R ω = −e1f3 − e3f2 + e2f1 − f23

ρ = e23f3 − 2 e31f1 + e12f2 − 3 e1f31 − e3f12 + 2 f123

g = 2 (e1)2 + (e2)2 + 2 (e3)2 + (f1)2 + (f2)2 + 5 (f3)2 − 2 e1 ·f2 − 6 e3 ·f3

Table 5: Direct sums which are neither solvable nor unimodular

Lie algebra Half-flat SU(3)-structure

su(2)⊕ r2 ⊕ R, ω = e1f1 − f23 + e2f2 + e3f3

sl(2,R)⊕ r2 ⊕ R ρ = e23f1 + e31f2 + e12f3 + e2f12 − f123

g = (e1)2 + (e2)2 + (e3)2 + (f1)2 + 2(f2)2 + (f3)2 − 2e3 ·f2

su(2)⊕ r3 ω = f23 + e23 + 2e1f1

Table 5 – continued on next page
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Table 5 – continued

Lie algebra Half-flat SU(3)-structure

ρ = 2
33

3
4 {e31f2 − e12f3 − e2f31 + e3f31 + e2f12}

g = 2
3

√
3 {2(e1)2 + (e2)2 + (e3)2 + 2(f1)2 + (f2)2 + (f3)2

+2e1 ·f1 − e2 ·e3 + f2 ·f3}

sl(2)⊕ r3 ω = e1f1 − 2f23 + e3f3 + e2f2

ρ = 1
3e23f1 + 3e31f2 + e31f3 + e12f2 + 4

3e12f3 − 4e2f31 + 7
3e3f31

+3e2f12 − e3f12 − 26f123

g = 3(e1)2 + 4
9(e2)2 + (e3)2 + 17

3 (f1)2 + 94(f2)2 + 328
9 (f3)2

−8e1 ·f1 − 2
3e2 ·e3 + 34

3 e2 ·f2 + 16
9 e2 ·f3 − 16e3 ·f2 − 34

3 e3 ·f3 + 224
3 f2 ·f3

su(2)⊕ r3,µ ω = 1
µ+1e12 + e3f1 − f32

(0 < µ ≤ 1) ρ = µ−
1
4 (µ+ 1)−

1
2 {e13f2 − e23f3 − µe1f13 − e2f12}

g = µ−
1
2 { µ

µ+1(e1)2 + 1
µ+1(e2)2 + (e3)2 + µ(f1)2 + (f2)2 + µ(f3)2}

sl(2)⊕ r3,µ ω = 1
µ+1e23 + e1f1 + f32

(−1 < µ < 0) ρ = (−µ)−
1
4 (µ+ 1)−

1
2 {e12f3 − e13f2 + e2f12 − µe3f13}

g = (−µ)−
1
2 {(e1)2 + 1

µ+1(e2)2 − µ
µ+1(e3)2 − µ(f1)2 + (f2)2 − µ(f3)2}

su(2)⊕ r3,µ ω = f23 + e3f1 − µ(2µ+3)
2(µ+1)2

e23 − e1f1 + e1f3 + µ(2µ+3)
2(µ+1)2

e12

(−1 < µ < 0) −2µ2+µ−2
2(µ+1)2

e2f2 + e3f3

ρ = −2µ2+3µ+2
2(µ+1)2

e23f1 − 1
µe23f3 − 2e13f2 + 2µ2+3µ+2

2(µ+1)2
e12f1

− 1
µe12f3 − e1f13 − e3f13 + 2e2f12 + 2f123

g = −µ2+µ+1
µ(µ+1) (e1)2 − 4µ4+20µ3+29µ2+16µ+4

4µ(µ+1)3
(e2)2 − µ2+µ+1

µ(µ+1) (e3)2

− µ
µ+1(f1)2 + 4+3µ

µ+1 (f2)2 − µ+1
µ (f3)2

+2(µ2+1+3µ)
µ(µ+1) e1 ·e3 + 2(µ+2)

µ+1 e1 ·f2 − 2µ2+5µ+2
µ(µ+1) e2 ·f3 + 2(µ+2)

µ+1 e3 ·f2

sl(2)⊕ r3,µ ω = 2(2µ+1)
1
2

(µ+1)2
e1f3 + e2f1 + f23 + µ

µ+1e13 + e1f2 + e3f3

(0 < µ ≤ 1) ρ = 22(2µ+1)
1
2

(µ+1)2
e123 + e23f2 − e13f1 + 1

µe12f3 − e3f13 + e1f12 + µ+1
µ f123

g = µ3+11µ2+7µ+1
µ(µ+1)3

(e1)2 + µ+1
µ (e2)2 + (2µ+ 1)(e3)2 + µ+1

µ (f1)2

+µ+1
µ2

(f3)2 + 1+3µ+2µ2

µ (f2)2 + 6(2µ+1)
1
2

µ+1 e1 ·e3 + 2(2µ+1)
1
2 (3µ+1)

µ(µ+1) e1 ·f2

+ 4(2µ+1)
µ(µ+1)2

e1 ·f3 + 2(2µ+1)
1
2

µ e2 ·f1 + (4 + 4µ)e3 ·f2 + 2(2µ+1)
1
2

µ e3 ·f3

+2(2µ+1)
1
2

µ f2 ·f3

su(2)⊕ r′3,µ ω = e2f2 − 2µf23 + e3f3 + e1f1

(µ > 0) ρ = e23f1 + e31f2 + e12f3 + e2f31 − µe3f31 + µe2f12 + e3f12

Table 5 – continued on next page
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Table 5 – continued

Lie algebra Half-flat SU(3)-structure

+(µ2 − 1)f123

g = (e1)2 + (e2)2 + (e3)2 + 2(f1)2 + (µ2 + 1)(f2)2 + (µ2 + 1)(f3)2

+2e1 ·f1 + 2µe2 ·f3 − 2µe3 ·f2

sl(2,R)⊕ r′3,µ ω = e2f2 − 2µf23 + e3f3 + e1f1

(µ > 0) ρ = 1
2e23f1 + 2e31f2 + e12f3 + 2e2f31 + µe3f31

+2µe2f12 − e3f12 − (4µ2 + 29
4 )f123

g = 2(e1)2 + 1
2(e2)2 + (e3)2 + 13

8 (f1)2 + (16µ2 + 29
2 )(f2)2

+(2µ2 + 29
4 )(f3)2 + 3e1 ·f1 − 5e2 ·f2 − 2µe2 ·f3 − 8µe3 ·f2 + 5e3 ·f3

−10µf2 ·f3

4. Half-flat SU(1, 2)-structures on direct sums

An interesting question is whether the results proved in the previous sections for half-

flat structures inducing Riemannian metrics also hold for half-flat SU(p, q)-structures,

p+ q = 3, with indefinite metrics. It suffices to consider SU(1, 2)-structures after possibly

multiplying the metric by minus one.

First of all, the obstruction condition of Proposition 3.2 does not apply since isotropic

subspaces are of course possible for metrics of signature (2, 4). For instance, the Lie

algebra r2 ⊕ R ⊕ r2 ⊕ R does admit a half-flat SU(1, 2)-structure but no half-flat SU(3)-

structure. Indeed, the structure defined in the standard basis by

ρ = −e123 − e12f3 − e12f2 + 2 e13f3 + e2f12 − e3f13 + f123,

ω = e13 − e1f2 + e1f3 + e2f3 − f12,

g = − (e2)2 − 2 (f3)2 + 2 e1 ·e3 + 2 e1 ·f2 + 2 e1 ·f3 − 2 e2 ·f3 + 2 e3 ·f1 + 2 f1 ·f3,

is a half-flat SU(1, 2)-structure with V = span{e1, f1} Jρ-invariant and isotropic.

In fact, the obstruction established in Lemma 3.10 is stronger and also shows the

non-existence of a half-flat SU(1, 2)-structure on g = r2 ⊕ R ⊕ R3. It can be generalised

to the following Lie algebras.

Lemma 4.1. Let g = g1 ⊕ g2 be a Lie algebra such that g1 is one of the algebras R3,

h3 or r2 ⊕ R and g2 is one of the algebras r3, r3,µ , 0 < |µ| ≤ 1, r′3,µ , µ > 0.

Every closed three-form ρ on one of these Lie algebras g satisfies λ(ρ) ≥ 0. In partic-

ular, these Lie algebras do not admit a half-flat SU(p, q)-structure for any signature (p, q)

with p+ q = 3.

Proof. The proof is straightforward, but tedious without computer support. In a

fixed basis, the condition dρ = 0 is linear in the coefficients of an arbitrary three-form

ρ and can be solved directly. When identifying Λ6V ∗ with R with the help of a volume

form ν, one can calculate the quartic invariant λ(ρ) ∈ R, for instance in a standard basis.
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Carrying this out with Maple and factorising the resulting expression, we verified λ(ρ) ≥ 0

for an arbitrary closed three-form on any of the Lie algebras in question.

As a half-flat SU(p, q)-structure is defined by a pair (ρ, ω) of stable forms which satisfy

in particular λ(ρ) < 0 and dρ = 0, such a structure cannot exist and the lemma is

proven. �

We add the remark, that a result analogous to Lemma 2.1 for a pseudo-Hermitian

structure of indefinite signature would involve a considerably more complicated normal

form for ω. Therefore, a generalisation of the proof of Theorem 2.2 to indefinite metrics

seems to be difficult.

5. Half-flat SL(3,R)-structures on direct sums

Finally, we turn to the para-complex case of SL(3,R)-structures. Recall that a half-

flat SL(3,R)-structure is defined by a pair (ρ, ω) of stable forms such that Jρ is an almost

para-complex structure and

ω ∧ ρ = 0, dω2 = 0, dρ = 0.

As the induced metric is always neutral and λ(ρ) > 0, neither Proposition 3.2 nor Lemma

4.1 obstruct the existence of such a structure. For instance, the Lie algebra r2 ⊕ R ⊕ r3

does not admit a half-flat SU(p, q)-structure for any signature (p, q) with p+ q = 3 , but

ρ = −2 e12f3 − 2 e2f31 + e3f12 − e3f31 + f123,

ω = e13 − e23 + e1f3 + e2f2 − e3f1 + 2 f13,

g = −2 ( e1 ·e3 − e2 ·e3 + e1 ·f3 + e2 ·f2 + e3 ·f1 ),

is an example of a half-flat SL(3,R)-structure.

When trying to generalise Theorem 2.2 to the para-complex situation, we find an

astonishingly similar result if we additionally require the metric to be definite when re-

stricted to one of the summands. We omit the proofs which are very similar to the original

ones due to the analogies explained in section 1.4.

Lemma 5.1. Let (V1, g1) and (V2, g2) be Euclidean vector spaces and let (g, J, ω) be

a para-Hermitian structure on the orthogonal product (V1 ⊕ V2, g = −g1 + g2). There

are orthonormal bases {e1, e2, e3} of V1 and {f1, f2, f3} of V2 which can be joined to a

pseudo-orthonormal basis of V1 ⊕ V2 such that

(5.1) ω = a e12 +
√

1 + a2 e1f1 +
√

1 + a2 e2f2 + e3f3 + a f12

for a real number a.

In analogy to the Hermitian case, we call the para-Hermitian structure of type I if

a = 0 and of type II if a 6= 0.

Theorem 5.2. A direct sum g1⊕g2 of three-dimensional Lie algebras g1 and g2 admits

a half-flat SL(3,R)-structure (g, J, ω,Ψ) such that g1 and g2 are orthogonal with respect

to the metric g and the restriction of g to both summands is definite if and only if the

pair (g1, g2) is contained in the following list:

type I : a) g1 = g2 unimodular,
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b) g1 non-abelian unimodular and g2 abelian or vice versa,

type II : (e(1, 1), e(1, 1)),

(e(2),R⊕ r2),

(su(2), r3,µ) for 0 < µ ≤ 1,

(sl(2,R), r3,µ) for − 1 < µ < 0.

If we require, instead of orthogonality, that the SL(3,R)-structure is adapted to the

direct sum g1⊕ g2 in the sense that the summands g1 and g2 are the eigenspaces of J , we

find the following interesting relation to unimodularity.

Proposition 5.3. A direct sum g1 ⊕ g2 of three-dimensional Lie algebras g1 and g2

admits a half-flat SL(3,R)-structure (g, J, ω,Ψ) such that g1 and g2 are the ±1-eigenspaces

of J if and only if both g1 and g2 are unimodular.

Proof. Let (g, J, ω,Ψ) be an SL(3,R)-structure on g = g1 ⊕ g2 such that g1 is the

+1-eigenspace of J and g2 is the −1-eigenspaces of J . Since ψ+ = ReΨ is a stable form

inducing the para-complex structure J , we can choose bases {ei} of g1
∗ and {fi} of g2

∗

such that ψ+ = e123 + f123 is in the normal form (3.8). Thus, the real part ψ+ is closed as

we are dealing with a direct sum of Lie algebras. Due to the simple form of ψ+, it is easy

to verify that the relation ω ∧ψ+ = 0 holds for an arbitrary non-degenerate ω if and only

if ω has only terms in g1
∗ ⊗ g2

∗. Now we are in the situation of Lemma 1.2 and conclude

that the only remaining equation dω2 = 0 is satisfied if and only if both g1 and g2 are

unimodular. �



CHAPTER 5

Description of all half-flat structures on certain Lie groups

After solving the problem on which direct sums of three-dimensional Lie groups there

do exist left-invariant half-flat structures, the question arises how many there are on each

Lie group. A reasonable restriction in the left-invariant case is to describe all half-flat

structures modulo Lie group automorphisms. For a simply connected Lie group, it is

equivalent to describe all half-flat structures on the corresponding Lie algebra modulo Lie

algebra automorphisms. If the Lie group is not simply connected, it has to be distinguished

between inner Lie algebra automorphisms, which always lift to a Lie group automorphism,

and outer Lie algebra automorphisms, which do not necessarily lift to the group level.

In this chapter, the uniqueness problem for half-flat structures is studied in detail for

the compact Lie algebra su(2)⊕ su(2) and the nilpotent Lie algebra h3⊕h3 including also

the case of nearly half-flat structures. As this analysis turns out to be quite technical, we

do not attempt to complete the classification of all half-flat structures on direct sums of

three-dimensional Lie groups which had to be done for each of the 78 cases of direct sums

individually.

For the Lie algebra sl(2,R) ⊕ sl(2,R), we consider the following uniqueness problem

which can be solved by a similar method. As explained in the introduction, there is a

left-invariant nearly pseudo-Kähler structure on SL(2,R) × SL(2,R) and we prove the

uniqueness of this structure in analogy to the case of the nearly Kähler structure on

S3 × S3, see [Bu1].

1. Half-flat structures on S3 × S3

Let g be a Lie algebra. By definition, the exterior differential

d : g∗ → Λ2g∗, θ 7→ dθ , dθ(X, Y ) = −θ([X, Y ]),(1.1)

commutes with the action of the group of Lie algebra automorphisms Aut(g). For every

simple Lie algebra, d is injective on one-forms since the annihilator of the kernel of d, the

derived subalgebra [g, g], would be a proper ideal if the kernel would not vanish. Thus,

on the two three-dimensional simple Lie algebras su(2) ∼= so(3) and sl(2,R), the mapping

(1.1) is a natural equivariant isomorphism of Aut(g)-modules.

Recall that we defined a standard basis of su(2) as a basis {e1, e2, e3} such that the

Lie bracket is given on the dual basis by

d(ei) = e(i+1)(i+2)

with i ∈ {1, 2, 3} and indices taken modulo 3. Given a standard basis, we will always

identify Λ2g∗ = R3 using the induced basis {e23, e31, e12}. With this convention, the

isomorphism (1.1) is represented by the identity matrix with respect to standard basis.
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Moreover, the automorphism group Aut(su(2)) with respect to this basis equals the stan-

dard matrix group SO(3,R) and acts by usual matrix multiplication on both g∗ = R3 and

Λ2g∗ = R3.

From now on, we consider g = su(2) ⊕ su(2) with a standard basis which is defined

as the union of standard bases {ei} and {fi} of the summands. The group of Lie algebra

automorphisms with respect to this basis equals

(1.2) Aut(g) = SO(3)×SO(3) ∪ ξ(SO(3)×SO(3))

where SO(3) × SO(3) is embedded diagonally in GL(g) and ξ =

(
0 13

13 0

)
is an outer

automorphism exchanging the factors.

To begin with, we establish a normal form for a coclosed stable two-form ω on g =

su(2)⊕ su(2).

Lemma 1.1. On a Lie algebra g = g1 ⊕ g2 which is a direct sum of three-dimensional

simple Lie algebras, a non-degenerate two-form ω satisfies dω2 = 0 if and only if ω ∈
g∗1 ⊗ g∗2.

Proof. Since d is an isomorphism on one-forms on both summands, all two-forms

in Λ2g∗1 and Λ2g∗2 are exact and thus closed. In particular, all four-forms in Λ2g∗1 ⊗ Λ2g∗2
are closed proving that ω2 is closed if ω ∈ g∗1 ⊗ g∗2. Conversely, no non-trivial four-form

in (Λ3g∗1 ⊗ g∗2) ⊕ (g∗1 ⊗ Λ3g∗2) is closed. Thus, a two-form ω with dω2 = 0 satisfies either

ω ∈ g∗1 ⊗ g∗2 or ω ∈ Λ2g∗1 ⊕ Λ2g∗2. However, the second case can be excluded since ω is

non-degenerate and proof is finished. �

Lemma 1.2. On the Lie algebra g = su(2) ⊕ su(2), consider the action of Aut(g) on

the set of non-degenerate two-forms on g with dω2 = 0. In any standard basis, a minimal

system of representatives of the orbits under this action is given by

(1.3)
{
ω = α e1f1 + β e2f2 + γ e3f3 | 0 < α ≤ β ≤ γ

}
.

Proof. By Lemma 1.1, every non-degenerate two-form ω with dω2 = 0 can be writ-

ten in a standard basis as ω = sije
ifj for an invertible 3× 3 matrix S = (sij). An element

(X, Y ) ∈ SO(3)× SO(3) acts on ω by the transformation S 7→ X tSY and the outer auto-

morphism ξ acts by S 7→ −S. Now, the polar decomposition of S and the diagonalisation

of the symmetric part yield S = O1O
t
2DO2 for two orthogonal matrices O1, O2 ∈ O(3) and

a unique diagonal matrix D = diag(α, β, γ) with 0 < α ≤ β ≤ γ. Thus, every ω is mapped

to a unique representative of the form (1.3) by applying the Lie algebra automorphism

defined by X t = ±O2O
t
1 ∈ SO(3) and Y = ±Ot

2 ∈ SO(3) followed by ξ if necessary. �

A similar result can be obtained for three-forms as follows. An arbitrary three-form

can be written in a standard basis as

ρ = a1e123 +
3∑

i,k=1

bike
(i+1)(i+2)fk +

3∑
i,k=1

cike
if(k+1)(k+2) + a2f123(1.4)

and we arrange the 20 parameters in a column vector A = (a1, a2)t and two 3×3 matrices

B = (bik) and C = (cik). The action of an inner Lie algebra automorphism (X, Y ) ∈
SO(3)× SO(3) on a three-form ρ defined by the triple (A,B,C) is given by

(1.5) (A,B,C) 7→ (A, X tBY, X tCY ).
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Indeed, the invariance of A is due to the fact that both X and Y have determinant 1.

Moreover, as the equivariant isomorphism (1.1) is given by the identity matrix, both B

and C transform like a two-form in g∗1 ⊗ g∗2 and the transformation rule for B and C

follows.

Due to the simplicity of this transformation rule, we are able to derive normal forms for

closed three-forms and compatible pairs of stable forms satisfying the half-flat equations.

Lemma 1.3. Let the space of three-forms on g = su(2) ⊕ su(2) be identified with

the space of triples (A,B,C) according to (1.4) in a standard basis. Then, a three-form

(A,B,C) is closed if and only C = −B. A minimal system of representatives of closed

three-forms under the action of Aut(g) is given by the closed subset

{ (A,B,−B) |B = diag(b1, b2, b3), bi ≥ 0, i = 1, 2, 3 }

of R5.

Proof. The assertion that a three-form (A,B,C) is closed if and only if C = −B is

obvious by definition of the standard basis. Since Aut(g) acts on (A,B,C) by the formula

(1.5), the matrix B transforms exactly as the invertible matrix S in the proof of Lemma

1.2. Considering the normal form of S and the fact that B is not required to be invertible,

the assertion on the normal form of (A,B,−B) is immediate. �

The following theorem is the main result of this section and can be viewed as the

explicit description of the “moduli space” of left-invariant half-flat structures on S3×S3.

Theorem 1.4. On the Lie algebra g = su(2)⊕su(2), consider the action of Aut(g) on

the compatible pairs (ω, ρ) ∈ Λ2g∗ ×Λ3g∗ of stable forms satisfying the half-flat equations

dρ = 0 , dω2 = 0.

In any standard basis, a minimal system of representatives under this action is given by

{ (ω, ρ) | ω = α e1f1 + β e2f2 + γ e3f3,(1.6)

ρ = a1e123 +
3∑
i

bi (e
(i+1)(i+2)fi − eif(i+1)(i+2)) + a2f123,

(a1, a2, b1, b2, b3, α, β, γ)t ∈ R8 such that λ(ρ) 6= 0 and either

0 < α < β < γ or

0 < α = β, 0 < γ, b1 ≤ b2 or

0 < α = β = γ, b1 ≤ b2 ≤ b3 }.

When identifying Λ6g∗ with R via the volume form ν = e123456, the quartic invariant λ(ρ)

associated to a stable three-form ρ in this minimal system is the homogeneous polynomial

(1.7) λ = b4
1 + b4

2 + b4
3 +4b1b2b3(a2−a1)−2b2

1b
2
2−2b2

2b
2
3−2b2

3b
2
1 +2a1a2(b2

1 + b2
2 + b2

3)+a2
1a

2
2

of order four in the five variables a1, a2, b1, b2, b3. A pair (ω, ρ) in the set (1.6) is nor-

malised such that φ(ρ) = 2φ(ω) if and only if

(1.8) 2αβγ =
√
ελ.

Proof. We choose a standard basis and assume that ω is in the normal form (1.3) with

0 < α ≤ β ≤ γ which represents exactly the orbits of the coclosed two-forms under Aut(g).
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It remains to determine, for each triple (α, β, γ)t, a minimal system of representatives of

closed compatible stable three-forms under the action of H := StabAut(g)(ω).

When parametrising a closed three-forms by a triple (A,B,−B) according to (1.4),

the six coefficients of the five-form ω ∧ ρ are

αb12 − βb21 , αb21 − βb12 , αb13 − γb31 , αb31 − γb13 , βb23 − γb32 , βb32 − γb23.

Thus, the compatibility ω ∧ ρ = 0 is satisfied if and only if

(1.9) b12 =
β

α
b21 =

α

β
b21 , b31 =

α

γ
b13 =

γ

α
b13 , b23 =

γ

β
b32 =

β

γ
b32 .

By separating three cases, we determine all solutions modulo the action of H.

First of all, if 0 < α < β < γ, the equations are satisfied if and only if all bij with i 6= j

vanish. Since the stabiliser H of ω in Aut(g) is trivial in this case, there is no further

restriction on the parameters a1, a2, b11 = b1, b22 = b2, b33 = b3 except for λ 6= 0.

Secondly, if two of the three parameters are equal and the third is different, we can

achieve α = β by reordering with the help of the Aut(g)-action. After this reordering, it

still holds α > 0, γ > 0, but not necessarily α < γ. In this case, the equations are satisfied

if and only if b12 = b21 and b13 = b31 = b23 = b32 = 0. In this case, the stabiliser H of ω

in Aut(g) is SO(2) embedded in the upper left corner of SO(3) and then diagonally into

SO(3)× SO(3). Hence, we can diagonalise the symmetric upper left corner of B with the

action of H. The resulting eigenvalues b1 ≤ b2 uniquely characterise these types of orbits.

Thirdly, if α = β = γ, the equations are satisfied if and only if B is symmetric.

However, in this case, the stabiliser H equals SO(3) embedded diagonally into SO(3) ×
SO(3). Recalling the transformation rule of B, (1.5), it is again possible to diagonalise

B as it is symmetric. The eigenvalues b1, b2, b3 of B are possibly negative, but can be

ordered such that b1 ≤ b2 ≤ b3 uniquely determine the remaining orbits.

This shows that the set (1.6) is a minimal system of the orbits under the Aut(g)-action

as we have discussed all solutions of ω ∧ ρ = 0. The computation of the corresponding

invariant λ(ρ) is straightforward. The normalisation condition is immediate since φ(ρ) =√
|λ(ρ)| by definition and φ(ω) = 1

6
ω3 = αβγe123f123. �

For applications, it will be useful to have explicit formulas for the tensors induced by

such a pair (ω, ρ).

Corollary 1.5. The tensors J = Jρ, ρ̂ = J∗ρ and g = g(ω,ρ) induced by a pair (ω, ρ)

defined by (1.6) are given with respect to the eight parameters (a1, a2, b1, b2, b3, α, β, γ)

by the following formulas. We use the abbreviation κ = 1√
ελ

and the formula J∗ρρ =

−ερ(Jρ·, ·, ·).

J(e1) = κ(a1a2 − b2
1 + b2

2 + b2
3) e1 + κ(2a1b1 + 2b2b3) f1

J(e2) = κ(a1a2 + b2
1 − b2

2 + b2
3) e2 + κ(2a1b2 + 2b1b3) f2

J(e3) = κ(a1a2 + b2
1 + b2

2 − b2
3) e3 + κ(2a1b3 + 2b1b2) f3

J(f1) = κ(2b1a2 − 2b2b3) e1 + κ(−a1a2 + b2
1 − b2

2 − b2
3) f1

J(f2) = κ(2b2a2 − 2b1b3) e2 + κ(−a1a2 − b2
1 + b2

2 − b2
3) f2

J(f3) = κ(2b3a2 − 2b1b2) e3 + κ(−a1a2 − b2
1 − b2

2 + b2
3) f3
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J∗ρ = −εκ { (−a1(a1a2 + b2
1 + b2

2 + b2
3)− 2b1b2b3) e123

+ (a2(a1a2 + b2
1 + b2

2 + b2
3)− 2b1b2b3) f123

− (a1a2b1 + b3
1 − b1b

2
2 − b1b

2
3 + 2a2b2b3) e1f23

+ (a1a2b2 − b2b
2
1 + b3

2 − b2b
2
3 + 2a2b1b3) e2f13

− (a1a2b3 − b3b
2
1 − b3b

2
2 + b3

3 + 2a2b1b2) e3f12

− (a1a2b1 + b3
1 − b1b

2
2 − b1b

2
3 − 2a1b3b2) e23f1

+ (a1a2b2 − b2b
2
1 + b3

2 − b2b
2
3 − 2a1b3b1) e13f2

− (a1a2b3 − b3b
2
1 − b3b

2
2 + b3

3 − 2a1b2b1) e12f3 }

g = −2εκ { α(b2b3 + a1b1) (e1)2 + β(b1b3 + a1b2) (e2)2 + γ(b1b2 + a1b3) (e3)2

+ α(b2b3 − a2b1) (f1)2 + β(b1b3 − a2b2) (f2)2 + γ(b1b2 − a2b3) (f3)2

− α(a1a2 − b2
1 + b2

2 + b2
3) e1 · f1 − β(a1a2 + b2

1 − b2
2 + b2

3) e2 · f2

− γ(a1a2 + b2
1 + b2

2 − b2
3) e3 · f3 }.

Similarly, we are also able to parametrise all left-invariant nearly half-flat structures

on S3×S3. Recall that an SUε(p, q)-structure (ω, ρ) is nearly half-flat if and only if there

is a non-zero constant ν such that dρ = νω2.

Proposition 1.6. There is a one-to-one correspondence between left-invariant half-

flat structures and left-invariant nearly half-flat structures on S3 × S3. More explicitly,

given a standard basis of g = su(2)⊕ su(2) such that the half-flat structures (ω, ρ) modulo

Aut(g) are parametrised by the minimal system (1.6), the image of the mapping

ω 7→ ω , (A,B,−B) 7→ (A,B,−B − λ diag(βγ, αγ, αβ))

is a minimal system of representatives for the action of Aut(g) on the nearly half-flat

structures for the constant λ.

Proof. We start by describing the orbits of nearly half-flat structure under Aut(g).

Since dω2 = 0 for a nearly half-flat structure (ω, ρ), we can choose, as before, a standard

basis such that ω belongs to the minimal system of representatives given by (1.3) and

such that

(1.10) ω2 = −2αβ e12f12 − 2αγ e13f13 − 2βγ e23f23.

Is is easy to see, that a three-form ρ, given by a triple (A,B,C) with respect to this stan-

dard basis by formula (1.4), satisfies dρ = λ
2
ω2 if and only if C = −B−λ diag(βγ, αγ, αβ).

However, the diagonal entries of B do not appear in the coefficients of the five-form ω∧ρ.

Thus, the compatibility condition ω ∧ ρ = 0 is satisfied if and only the six equations (1.9)

are satisfied. In particular, the solutions modulo Aut(g) are exactly described by the

image of the mapping given in the proposition and the assertion follows. �

Recall that a double half-flat structure (ω, ρ) has been defined as a half-flat structure

satisfying additionally

(1.11) d(J∗ρρ) = µω2
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for a constant µ ∈ R∗.

Proposition 1.7. A half-flat structure of the form (1.6) is double half-flat if and only

if there is a constant µ ∈ R∗ such that

µαβ = εκ (b3b
2
1 + b3b

2
2 − b3

3 + b1b2(a1 − a2)− a1a2b3),

µαγ = εκ (b2b
2
1 − b3

2 + b2b
2
3 + b1b3(a1 − a2)− a1a2b2),

µβγ = εκ (−b3
1 + b1b

2
2 + b1b

2
3 + b2b3(a1 − a2)− a1a2b1).

Notice that, since α, β and γ are different from zero and neither of them appears on

the right hand side, the three equations always eliminate three parameters.

Proof. An explicit formula for the induced three-form J∗ρ is given in Corollary 1.5

such that it is straightforward to compute the exterior derivative

d(J∗ρρ) = −2εκ (b3b
2
1 + b3b

2
2 − b3

3 + b1b2(a1 − a2)− a1a2b3) e12f12(1.12)

−2εκ (b2b
2
1 − b3

2 + b2b
2
3 + b1b3(a1 − a2)− a1a2b2) e13f13

−2εκ (−b3
1 + b1b

2
2 + b1b

2
3 + b2b3(a1 − a2)− a1a2b1) e23f23.

Comparing this four-form with ω2, given by formula (1.10), the assertion follows. �

As another application of the stable form formalism and the formula for the action of

Aut(g) on three-forms, we solve the following problem concerning left-invariant complex

structures on S3 × S3.

Proposition 1.8. There is no left-invariant integrable SL(3,C)-structure on S3×S3.

Equivalently, a left-invariant complex structure J on S3×S3 does not admit a left-invariant

holomorphic (3, 0)-form.

Remark 1.9. However, there do exist left-invariant complex structures J on S3 × S3

constructed in [CE] using the Hopf fibration S1 → S3 → S2, see also [KN], Ex. 2.5

in ch. IX. It is shown in [Dau] that these structures exhaust all left-invariant complex

structures on S3 × S3.

Proof. By Proposition 1.3, both assertions are equivalent and it suffices to prove

that there is no closed left-invariant complex volume form. Due to the properties of

stable three-forms in dimension six explained in chapter 1, section 3, we can equivalently

show that there is no left-invariant real three-form ρ which satisfies λ(ρ) < 0 and

dρ = 0 , d(J∗ρρ) = 0.

Let ρ be an arbitrary closed stable three-form on the Lie algebra su(2) ⊕ su(2). We

choose a standard basis and express ρ as a triple (A,B,−B) according to formula (1.4).

As Aut(g) preserves the exterior system, we can assume that B = diag(b1, b2, b3) for three

non-negative real numbers by applying Lemma 1.3. Due to the necessary stability of ρ,

we can moreover assume that λ(ρ) 6= 0, i.e. κ = 1√
ελ
6= 0. The induced almost complex

structure Jρ and the three-form J∗ρρ are exactly those computed in Corollary 1.5. The

exterior derivative d(J∗ρρ), see (1.12), vanishes if and only if

b3( b2
1 + b2

2 − b2
3 − a1a2) + b1b2(a1 − a2) = 0,(1.13)

b2( b2
1 − b2

2 + b2
3 − a1a2) + b1b3(a1 − a2) = 0,(1.14)
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b1(−b2
1 + b2

2 + b2
3 − a1a2) + b2b3(a1 − a2) = 0.(1.15)

We claim that λ(ρ) ≥ 0 for all solutions of this system of algebraic equations which is

obviously symmetric in b1, b2 and b3. First of all, if at least two of the three bi vanish, say

b1 and b2, then λ(ρ) = (b2
3 +a1a2)2 ≥ 0 by factorising the expression (1.7) for λ. Secondly,

if exactly one of them vanishes, say b1, we can add the first equation divided by b3 and

the second equation divided by b2. The resulting equation is a1a2 = 0, which implies that

λ(ρ) = (b2 − b3)2(b2 + b3)2 ≥ 0.

Finally, we assume that all three bi are different from zero. Multiplying (1.13) by b2

and subtracting (1.14) multiplied by b3, we obtain

(b2
2 − b2

3)(2b1b2b3 + b2
1(a1 − a2)) = 0.

Similar manipulations yield

(b2
3 − b2

1)(2b1b2b3 + b2
2(a1 − a2)) = 0,

(b2
1 − b2

2)(2b1b2b3 + b2
3(a1 − a2)) = 0.

We claim that it always holds b2
1 = b2

2 after possibly permuting the bi. Indeed, if b2
1 6= b2

2

and b2
1 6= b2

3, subtracting the last two equations implies that b2
2 = b2

3 since a1 = a2 would

contradict the assumption that the bi are different from zero. Thus, we can assume that

b1 = ±b2. When we insert this into (1.15), we find

b1(b2
3 − a1a2 ± b3(a1 − a2)) = b1(b3 ± a1)(b3 ∓ a2) = 0.

Therefore, all solutions of the system are given by b3 = ∓a1 or b3 = ±a2. The first

solution simplifies the expression (1.7) for λ such that

λ = a4
1 − 4b2

2a1(a2 − a1)− 4b2
2a

2
1 + 2a1a2(2b2

2 + a2
1) + a2

1a
2
2 = a2

1(a1 + a2)2 ≥ 0.

Similarly, the second solution, i.e. b1 = ±b2 and b3 = ±a2, yields λ = a2
2(a1 + a2)2 ≥ 0.

As we have shown λ(ρ) > 0 for all stable forms inducing an integrable Jρ, the propo-

sition is proved. �

Example 1.10. In contrast to SL(3,C)-structures, there is a trivial example of a left-

invariant integrable SL(3,R)×SL(3,R)-structure on S3×S3. In a standard basis, we can

choose for instance ρ = e123 + f123 such that the induced almost para-complex structure

Jρ is obviously integrable since the two S3-factors are real eigenspaces for Jρ.

In fact, a similar method has been used in [Bu1] to prove the uniqueness of the nearly

Kähler structure on S3 × S3. This result is extended in [SSH] as follows.

Proposition 1.11. On the Lie groups G ×H with Lie(G) = Lie(H) = su(2), there

is a unique left-invariant strict nearly Kähler structure up to homothety and equivalence

of left-invariant U(3)-structures. Moreover, there is neither a left-invariant strict nearly

para-Kähler structure with ‖∇J‖2 6= 0 nor a left-invariant strict nearly pseudo-Kähler

structure with an indefinite metric.

Proof. By Theorem 5.5, chapter 3, and the usual Lie theory arguments, left-invariant

nearly ε-Kähler structures on G × H with ‖∇J‖2 = 4 are in one-to-one correspondence

with half-flat structures (ω, ρ) on the Lie algebra su(2) ⊕ su(2) satisfying the algebraic



1. HALF-FLAT STRUCTURES ON S3 × S3 87

exterior system

dω = 3 ρ,(1.16)

d(J∗ρρ) = 2ω2.(1.17)

Applying a homothety, i.e. rescaling the metric by a possibly negative number, ‖∇J‖2 = 4

can always be achieved for a strict nearly ε-Kähler structure (with ‖∇J‖2 6= 0). Further-

more, since an inner Lie algebra automorphism always lifts to a Lie group automorphism

which is in particular an automorphism of left-invariant U(3)-structures, it suffices to

show that this exterior system has a unique solution on the Lie algebra.

Because of dω2 = 0, we can choose a standard basis such that

ω = αe1f1 + βe2f2 + γe3f3

as usually. Thus, the first equation (1.16) is satisfied if and only if

3ρ = dω = α(e23f1 − e1f23) + β(e31f2 − e2f31) + γ(e12f3 − e3f12).

As this pair (ω, ρ) happens to be in our normal form (1.6), we can simplify the expressions

for ω2, (1.10), and d(J∗ρ), (1.12), in order to explicitly write down the second equation

(1.17). It is explicitly shown in [Bu1], see also the English version [Bu2], that the resulting

algebraic system has only one solution given by α = β = γ = 1
18

√
3. By substituting this

into our formula (1.7) or into formula (18) in [Bu2], we obtain that the quartic invariant

λ is negative for this solution and the non-existence of nearly para-Kähler structures is

proved. A nearly pseudo-Kähler structure with an indefinite metric cannot exist either,

since the induced metric is positive definite, see the second part of Lemma 2.3 in [Bu2],

or substitute the solution into the formula given in Corollary 1.5. This finishes also the

proof of the uniqueness assertion. �

Remark 1.12. We like to point out that there are half-flat SU(3)-structures (ω, ρ) on

S3 × S3 inducing non-isometric metrics g(ω,ρ). On the one hand, the metric induced by

the half-flat structure (ω, ρ) defined in a standard basis by

ω = e1f1 + e2f2 + e3f3 ,

ρ =
1

2

√
2 ( e123 − e1f23 − e2f31 − e3f12 + e12f3 + e31f2 + e23f1 − f123 ) ,

in chapter 4 is such that the standard basis is orthonormal. In other words, the induced

metric is the Riemannian product of two copies of the bi-invariant Einstein metric on S3.

In particular, this Einstein metric is not isometric to the nearly Kähler Einstein metric

induced by the half-flat structure given in the proof of Proposition 1.11.
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2. Half-flat structures on H3 ×H3

In this section, we focus on the Lie group H3×H3 with Lie algebra g = h3⊕ h3 where

H3 denotes the three-dimensional Heisenberg group. Apart from describing all half-flat

structures on the Lie algebra, we give various explicit examples and prove a strong rigidity

result concerning the induced metric of a large subclass of half-flat structures. Finally,

we show that there are no nearly half-flat structures on this Lie algebra. Except for

the observation on nearly half-flat structures, the results of this section are contained in

[CLSS].

In analogy to the case of su(2)⊕su(2), the starting point is a normal form modulo Lie

algebra automorphisms for stable coclosed two-forms ω ∈ Λ2g∗. Recall that we call a basis

{e1, e2, e3, f1, f2, f3} for h3⊕h3 a standard basis if the only non-vanishing Lie brackets are

given by

de3 = e12, df3 = f12.

The connected component of the automorphism group of the Lie algebra h3 ⊕ h3 in the

standard basis is

(2.1) Aut0(h3⊕h3) =



A 0 0 0

at det(A) ct 0

0 0 B 0

dt 0 bt det(B)

 , A,B ∈ GL(2,R), a, b, c, d ∈ R2

 .

We denote by gi, i = 1, 2, the two summands, by zi their centres and by z the centre of g.

The annihilator of the centre is z0 = ker d and similarly for the summands by restricting

d. With this notation, we have the decompositions

g∗ ∼= z0
1 ⊕ z0

2 ⊕
g∗1
z0
1

⊕ g∗2
z0
2

,

Λ2g∗ ∼= Λ2(z0)⊕ (
g∗1
z0
1

∧ g∗2
z0
2

)︸ ︷︷ ︸
k1

⊕ (z0
1 ∧

g∗2
z0
2

)︸ ︷︷ ︸
k2

⊕ (z0
2 ∧

g∗1
z0
1

)︸ ︷︷ ︸
k3

⊕ (z0
1 ∧

g∗1
z0
1

)⊕ (z0
2 ∧

g∗2
z0
2

)︸ ︷︷ ︸
k4

.

By ωki we denote the projection of a two-form ω onto one of the spaces ki, i = 1, 2, 3, 4,

defined as indicated in the decomposition. We observe that k1 = Λ2(g
∗

z0
) and ωk1 = 0 if

and only if ω(z, z) = 0.

Lemma 2.1. Consider the action of Aut(h3 ⊕ h3) on the set of non-degenerate two-

forms ω on g with dω2 = 0. The orbits modulo rescaling are represented in a standard

basis by the following two-forms:

ω1 = e1f1 + e2f2 + e3f3, if ωk1 6= 0,

ω2 = e2f2 + e13 + f13, if dω = 0 ⇐⇒ ωk1 = 0, ωk2 = 0, ωk3 = 0,

ω3 = e1f3 + e2f2 + e3f1, if ωk1 = 0, ωk2 6= 0, ωk3 6= 0, ωk4 = 0,

ω4 = e1f3 + e2f2 + e3f1 + e13 + βf13, if ωk1 = 0, ωk2 6= 0, ωk3 6= 0, ωk4 6= 0,

ω5 = e1f3 + e2f2 + e13 + f13 otherwise,

where β ∈ R and β 6= −1.
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Proof. Let

ω =
∑

αie
(i+1)(i+2) +

∑
βif

(i+1)(i+2) +
∑

γi,je
ifj

be an arbitrary non-degenerate two-form expressed in a standard basis. We will give in

each case explicitly a change of standard basis by an automorphism of the form (2.1) with

the notation

A =

(
a1 a2

a3 a4

)
, at = (a5, a6), B =

(
b1 b2

b3 b4

)
, bt = (b5, b6), ct = (c1, c2), dt = (d1, d2).

First of all, if ωk1 6= 0, the term γ3,3e3f3 is different from zero and we rescale such that

γ3,3 = 1. Then, the application of the change of basis

a1 = 1, a2 = 0, a3 = 0, a4 = 1, a5 = −γ1,3, a6 = −γ2,3,

b1 = γ2,2 − γ2,3γ3,2 − α1β1, b2 = −γ1,2 − β1α2 + γ3,2γ1,3, b3 = −γ2,1 + γ3,1γ2,3 − β2α1,

b4 = γ1,1 − α2β2 − γ1,3γ3,1, b5 = −γ3,1γ2,2 + γ3,1α1β1 + γ3,2γ2,1 + γ3,2β2α1,

b6 = γ3,1γ1,2 + γ3,1β1α2 − γ3,2γ1,1 + γ3,2α2β2,

c1 = β2γ2,2 − β2γ2,3γ3,2 + β1γ2,1 − β1γ3,1γ2,3, d1 = −α2,

c2 = −β2γ1,2 + β2γ3,2γ1,3 − β1γ1,1 + β1γ1,3γ3,1, d2 = α1,

transforms ω into ω̃ = γ̃1,1(e1f1 + e2f2 + e3f3) + α̃3e12 + β̃3f12, γ̃1,1 6= 0. This two-form

satisfies dω̃2 = 0 if and only if α̃3 = 0, β̃3 = 0 and the normal form ω1 is achieved by

rescaling.

Secondly, the vanishing of dω corresponds to ωk1 = 0, ωk2 = 0, ωk3 = 0 or γ3,3 = γ1,3 =

γ2,3 = γ3,1 = γ3,2 = 0 in a standard basis. By non-degeneracy, at least one of α1 and

α2 is not zero and we can always achieve α1 = 0, α2 6= 0. Indeed, if α1 6= 0, we apply

the transformation (2.1) with a1 = 1, a2 = 1, a4 = α2

α1
, B = 1 and all remaining entries

zero. With an analogous argument, we can assume that β1 = 0, β2 6= 0. Since γ2,2 6= 0

by non-degeneracy, we can rescale ω such that γ2,2 = 1. Now, the transformation of the

form (2.1) given by

a1 = 1, a2 = 0, a3 = 0, a4 = −β2, b1 = 1, b2 = 0, b3 = 0, b4 = −α2, a5 = 0,

a6 = −α3β2

α2

, b5 = 0, b6 = −α2β3

β2

, c1 =
γ1,1

α2

, c2 = −γ1,2, d1 = 0, d2 = γ2,1,

maps ω to a multiple of the normal form ω2.

Thirdly, we assume that ω is non-degenerate with ωk1 = 0, i.e. γ3,3 = 0 and both

ωk2 6= 0, i.e. γ1,3 or γ2,3 6= 0, and ωk3 6= 0, i.e. γ3,1 or γ3,2 6= 0. Similar as before, we can

achieve γ2,3 = 0, γ1,3 6= 0 by applying, if γ2,3 6= 0, the transformation (2.1) with a1 = 1,

a2 = 1, a4 = −γ1,3
γ2,3

, B = 1 and all remaining entries zero. Analogously, we can assume

γ3,2 = 0, γ3,1 6= 0 and rescaling yields γ2,2 = 1, which is non-zero by non-degeneracy. After

this simplification, the condition dω2 = 0 implies that α1 = β1 = 0 and the transformation

a1 = 1, a2 = 0, a3 =
α2β3 − γ3,1γ1,2

γ3,1

, a4 = γ1,3, a5 = 0, a6 = 0, b1 = 1, b2 = 0,

b3 =
β2α3 − γ1,3γ2,1

γ1,3

, b4 = γ3,1, b5 =
γ1,2γ1,3γ2,1γ3,1 − γ1,1γ1,3γ3,1 − α2α3β2β3

γ2
1,3γ3,1

, b6 = 0,

c1 = 0, c2 = β3, d1 = 0, d2 = −α3,
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maps ω to ω̃ = e1f3 + e2f2 + e3f1 + α̃2e31 + β̃2f31. The condition ωk4 = 0 corresponds

to α̃2 = 0, β̃2 = 0, i.e. normal form ω3. If ωk4 6= 0, we can achieve α̃2 6= 0 by possibly

changing the summands. Now, the transformation

a1 = 1, a2 = 0, a3 = 0, a4 = − 1

α̃2

, a5 = 0, a6 = 0, c1 = 0, c2 = 0,

b1 = − 1

α̃2

, b2 = 0, b3 = 0, b4 = − 1

α̃2

, b5 = 0, b6 = 0, d1 = 0, d2 = 0,

maps ω̃ to the fourth normal form ω4.

The cases that remain are ωk1 = 0 and either ωk2 6= 0, ωk3 = 0 or ωk3 = 0, ωk2 6= 0.

After changing the summands if necessary, we can assume ωk3 = 0 and ωk2 6= 0, i.e.

γ3,1 = γ3,2 = γ3,3 = 0 and at least one of γ1,3 or γ2,3 non-zero. As before, we can

achieve γ2,3 = 0 by the transformation a1 = 1, a2 = 1, a4 = −γ1,3
γ2,3

. Evaluating dω2 = 0

yields α1 = 0. Now, non-degeneracy enforces that β1 6= 0 or β2 6= 0, and after another

similar transformation β1 = 0. Finally, the simplified ω is non-degenerate if and only if

γ2,2α2β2 6= 0 and, after rescaling such that γ2,2 = 1, the transformation

a1 = 1, a2 = 0, a3 = 0, a4 = −
γ2

1,3

β2

, a5 = 0, a6 =
γ2

1,3(γ1,3γ2,1 − α3β2)

α2β2
2

,

b1 = −γ1,3

β2

, b2 = 0, b3 = 0, b4 = −α2, b5 = 0, b6 = −β3α2

β2

,

c1 = 0, c2 = −γ1,2β2 + γ1,3β3

β2

, d1 = −γ1,1

β2

, d2 =
γ2

1,3γ2,1

β2
2

,

maps ω to a multiple of the fifth normal form ω5. �

Using this lemma, it is possible to describe all half-flat structures (ω, ρ) on h3 ⊕ h3

as follows. In a fixed standard basis such that ω is in one of the normal forms, the

equations dρ = 0 and ω ∧ ρ = 0 are linear in the coefficients of an arbitrary three-form

ρ. Thus, it is straightforward to write down all compatible closed three-forms for each

normal form which depend on nine parameters in each case. The stable forms in this nine-

dimensional space are parametrised by the complement of the zero-set of the polynomial

λ(ρ) of order four. One parameter is eliminated when we moreover require the pair (ω, ρ)

to be normalised. We remark that the computation of the induced tensors Jρ, ρ̂ and

g(ω,ρ) may require computer support, in particular, the signature of the metric is not

obvious. However, stability is an open condition: If a single half-flat structure (ω0, ρ0) is

explicitly given such that ω0 is one of the normal forms, then the eight-parameter family of

normalised compatible closed forms defines a deformation of the given half-flat structure

(ω0, ρ0) in some neighbourhood of (ω0, ρ0).

For instance, the closed three-forms which are compatible with the first normal form

(2.2) ω = e1f1 + e2f2 + e3f3

in a standard basis can be parametrised as follows:

ρ = ρ(a1, . . . , a9) = a1 e123 + a2 f123 + a3 e1f23 + a4 e2f13 + a5 e23f1 + a6 e13f2(2.3)

+ a7 (e2f23 − e1f13) + a8 (e12f3 − e3f12) + a9 (e23f2 − e13f1).
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The quartic invariant λ(ρ) depending on the nine parameters is

λ(ρ) = (2a6a4a
2
8 + 2a1a2a

2
8 + 2a2

8a3a5 − 4a5a
2
7a6 − 4a2

9a4a3 − 4a2
9a2a8 + 4a2

7a8a1

+ 4a7a
2
8a9 + a2

1a
2
2 + a2

6a
2
4 + a2

3a
2
5 + a4

8 − 2a6a4a3a5 + 4a5a7a9a3 + 4a9a4a6a7

− 4a5a2a6a8 + 4a4a8a1a3 − 4a9a2a1a7 − 2a1a2a6a4 − 2a1a2a3a5) (e123f123)⊗2.

Example 2.2. For each possible signature, we give an explicit normalised half-flat

structure with fundamental two-form (2.2). The first and the third example are taken

from chapter 4. To begin with, the closed three-form

ρ =
1√
2

(e123 − f123 − e1f23 + e23f1 − e2f31 + e31f2 − e3f12 + e12f3)(2.4)

induces a half-flat SU(3)-structure (ω, ρ) such that the standard basis is orthonormal.

Similarly, the closed three-form

ρ =
1√
2

(e123 − f123 − e1f23 + e23f1 + e2f31 − e31f2 + e3f12 − e12f3)(2.5)

induces a half-flat SU(1, 2)-structure (ω, ρ) such that the standard basis is pseudo-ortho-

normal with e1 and e4 being spacelike. Finally, the closed three-form

ρ =
√

2 (e123 + f123),(2.6)

induces a half-flat SL(3,R)-structure (ω, ρ) such that the two h3-summands are the

eigenspaces of the para-complex structure Jρ, which is integrable since also dρ̂ = 0. The

induced metric is

g = 2
(

e1 · e4 + e2 · e5 + e3 · e6
)
.

In fact, half-flat structures with Riemannian metrics are only possible if ω belongs to

the orbit of the first normal form.

Lemma 2.3. Let (ω, ρ) be a half-flat SU(3)-structure on h3⊕h3. Then it holds ωk1 6= 0.

In particular, there is a standard basis such that ω = ω1 = e1f1 + e2f2 + e3f3.

Proof. Suppose that (ω, ρ) is a half-flat SU(3)-structure on h3 ⊕ h3 with ωk1 = 0.

Thus, we can choose a standard basis such that ω is in one of the normal forms ω2, . . . , ω5

of Lemma 2.1 and ρ belongs to the corresponding nine-parameter family of compatible

closed three-forms. We claim that the basis one-form e1 is isotropic in all four cases which

yields a contradiction since the metric of an SU(3)-structure is positive definite. The

quickest way to verify the claim is the direct computation of the induced metric, which

depends on nine parameters, with the help of a computer. In order to verify the assertion

by hand, the following formulas shorten the calculation considerably. For all one-forms α,

β and all vectors v, the ε-complex structure Jρ and the metric g induced by a compatible

pair (ω, ρ) of stable forms satisfy

α ∧ J∗ρβ ∧ ω2 = g(α, β)
1

3
ω3,

J∗ρα(v)φ(ρ) = α ∧ ρ ∧ (v ρ),

by Lemma 1.8 and Proposition 1.4 of chapter 1. For instance, for the second normal

form ω2, it holds e1 ∧ ω2
2 = −2e12f123. Thus, by the first formula, it suffices to show that

J∗ρe1(e3) = e1(Jρe3) = 0 which is in turn satisfied if



92 5. DESCRIPTION OF ALL HALF-FLAT STRUCTURES ON CERTAIN LIE GROUPS

e1 ∧ ρ ∧ (e3 ρ) = 0 due to the second formula. A similar simplification applies to the

other normal forms and we omit the straightforward calculations. �

Moreover, the geometry turns out to be very rigid if ωk1 = 0. We recall that simply

connected para-hyper-Kähler symmetric spaces with abelian holonomy are classified in

[ABCV], [Cor]. In particular, there exists a unique simply connected four-dimensional

para-hyper-Kähler symmetric space with one-dimensional holonomy group, which is de-

fined in [ABCV], Section 4. We denote the underlying pseudo-Riemannian manifold as

(N4, gPHK).

Proposition 2.4. Let (ω, ρ) be a left-invariant half-flat structure with ωk1 = 0 on

H3×H3 and let g be the pseudo-Riemannian metric induced by (ω, ρ). Then, the pseudo-

Riemannian manifold (H3×H3, g) is either flat or isometric to the product of (N4, gPHK)

and a two-dimensional flat factor. In particular, the metric g is Ricci-flat.

Proof. Due to the assumption ωk1 = 0, we can choose a standard basis such that

ω is in one of the normal forms ω2, . . . , ω5. In each case separately, we do the following.

We write down all compatible closed three-forms ρ depending on nine parameters. With

computer support, we calculate the induced metric g. For the curvature considerations, it

suffices to work up to a constant such that we can ignore the rescaling by λ(ρ) which is dif-

ferent from zero by assumption. Now, we transform the left-invariant co-frame {e1, . . . , f3}
to a coordinate co-frame {dx1, . . . , dy3} by applying the transformation defined by

(2.7) e1 = dx1, e2 = dx2, e3 = dx3 + x1dx2, f1 = dy1, f2 = dy2, f3 = dy3 + y1dy2,

such that the metric is accessible for any of the numerous packages computing curvature.

The resulting curvature tensor R ∈ Γ(End Λ2TM), M = H3 ×H3, has in each case only

one non-trivial component

(2.8) R(∂x1 ∧ ∂y1) = c ∂x3 ∧ ∂y3
for a constant c ∈ R and R is always parallel. Thus, the metric is flat if c = 0 and

symmetric with one-dimensional holonomy group if c 6= 0, for H3×H3 is simply connected

and a naturally reductive homogeneous metric is complete.

Furthermore, it turns out that the metric restricted to TN := span{∂x1 , ∂x3 , ∂y1 , ∂y3} is

non-degenerate and of signature (2, 2) for all parameter values. Thus, the manifold splits

in a four-dimensional symmetric factor with neutral metric and curvature tensor (2.8) and

the two-dimensional orthogonal complement which is flat. Since a simply connected sym-

metric space is completely determined by its curvature tensor and the four-dimensional

para-hyper-Kähler symmetric space (N4, gPHK) has the same signature and curvature

tensor, the four-dimensional factor is isometric to (N4, gPHK). Finally, the metric g is

Ricci-flat since gPHK is Ricci-flat. �

Example 2.5. The following examples define half-flat normalised SU(1, 2)-structures

with ωk1 = 0 in a standard basis. None of the examples is flat. Thus, the four structures

are equivalent as SO(2, 4)-structures due to Proposition 2.4, but the examples show that

the geometry of the reduction to SU(1, 2) is not as rigid.

ω = ω2 , ρ = e12f3 +
√

2e13f2 + e1f23 + e23f1 − e3f12 +
√

2f123,

g = − (e2)2 − (f2)2 + 2 e1 ·e3 − 2
√

2 e1 ·f3 + 2
√

2 e3 ·f1 − 2 f1 ·f3,
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(Ricci-flat pseudo-Kähler since dω = 0, dρ̂ = 0);

ω = ω3 , ρ = e123 + e12f3 + e13f2 + e1f12 − 2e1f23 + e2f13 − e3f12,

g = − (e2)2 − 2 (f2)2 + 2 e1 ·f1 + 2 e1 ·f3 + 2 e2 ·f2 − 2 e3 ·f1 − 2 f1 ·f3,

(dω 6= 0, Jρ integrable since dρ̂ = 0);

ω = ω4 , ρ = β e12f3 − β e13f2 + β e1f23 +
β + 1

β3
e23f1 +

β4 − β − 1

β3
e2f13

− β e3f12 − (β2 + 2β) f123, (dω 6= 0, dρ̂ 6= 0),

g = − 1

β2
(e2)2 − β2 (f2)2 + 2β2 e1 ·f3 − 2

β2(β + 1)
e3 ·f1 − 2(β4 + β + 1)

β2
f1 ·f3;

ω = ω5 , ρ = e12f3 + e13f2 − e1f23 + e23f1 − e3f12 + f123, (dω 6= 0, dρ̂ 6= 0),

g = − (e2)2 − 2 (f2)2 + 2 e1 ·e3 + 2 e2 ·f2 + 2 f1 ·f3.

Example 2.6. Moreover, we give examples of half-flat normalised SL(3,R)-structures

with ωk1 = 0. Again, none of the structures is flat.

ω = ω2 , ρ =
√

2 ( e1f23 + e23f1 ), (dω = 0, dρ̂ = 0),

g = 2 e1 ·e3 − 2 e2 ·f2 − 2 f1 ·f3;

ω = ω3 , ρ =
√

2 ( e12f3 + e13f2 + e1f12 − e3f12 ), (dω 6= 0, dρ̂ 6= 0),

g = −2 (e1)2 + 2 e1 ·e3 − 2 e1 ·f3 + 2 e2 ·f2 − 2 f1 ·f3;

ω = ω4 , ρ = −
√

2β + 2 ( e12f3 − e1f23 + e2f13 − e3f12), (dω 6= 0, dρ̂ 6= 0),

g = −2 (f2)2 + 2 e1 ·e3 + 2 e1 ·f3 + 2 e2 ·f2 − 2 e3 ·f1 − (2β + 4) f1 ·f3;

ω = ω5 , ρ =
√

2 ( e123 + f123 ), (dω 6= 0, dρ̂ = 0),

g = 2 e1 ·f3 + 2 e2 ·f2 + 2 e3 ·f1.

Finally, we deal with the case of left-invariant nearly half-flat structures on H3 ×H3.

Lemma 2.7. There are no nearly half-flat structures on h3 ⊕ h3.

Proof. By definition, an SUε(p, q)-structure (ω, ρ) is nearly half-flat if and only dρ =

νω2 for a non-zero constant ν. However, none of the five normal forms of Lemma 2.1 is

exact which is easily proved in a standard basis. Alternatively, it is not hard to verify

in a standard basis (e1, . . . , e6) that every exact four-form is degenerate. For instance,

the six-vector (dρ e1...6)3 is quickly computed by a computer and turns out to vanish for

every three-form ρ. �
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3. Nearly ε-Kähler structures on SL(2,R)× SL(2,R)

The main result of [SSH] is the proof of the uniqueness of the nearly pseudo-Kähler

structure on SL(2,R) × SL(2,R). Although the main idea of the proof is essentially the

same as that of the proof of the uniqueness of the nearly Kähler structure on S3 × S3,

see also Proposition 1.11, the technical difficulties turn out to be much more delicate for

the non-compact form than for the compact form. For this reason, we do not attempt a

complete analysis of the left-invariant half-flat structures on SL(2,R)× SL(2,R). In fact,

it is not hard to show that there exist large families of half-flat structures analogous to

those existing on S3 × S3, however, the exact description of the orbit space modulo Lie

algebra automorphisms is expected to be very technical.

In the following we present the proof given in [SSH] with minimal modifications.

Theorem 3.1. Let G be a Lie group with Lie algebra sl(2,R). Up to homothety

and equivalence of left-invariant U(3)-structures, there is a unique left-invariant nearly

ε-Kähler structure with ‖∇J‖2 > 0 on G×G. The nearly ε-Kähler metric is of signature

(2, 4). In particular, there is no left-invariant nearly para-Kähler structure.

Remark 3.2. The proof also shows that there there is a left-invariant nearly ε-Kähler

structure with ‖∇J‖2 6= 0 on G×H with Lie(G) = Lie(H) = sl(2,R) if G 6= H which is

unique up to homothety and exchanging the orientation.

Proof. Completely analogous to the proof of Proposition 1.11, it suffices to show the

existence of a solution of the algebraic exterior system (1.16), (1.17) on the Lie algebra

g = sl(2,R) ⊕ sl(2,R) ∼= so(1, 2) ⊕ so(1, 2) which is unique up to inner Lie algebra

automorphisms and exchanging the summands. Notice that the outer automorphism

exchanging the summands of course lifts to the corresponding Lie group, if the two three-

dimensional factors are the same.

Again, we search for a normal form of coclosed stable two-form ω modulo Lie algebra

automorphisms in a fixed standard Lie bracket. In order to improve the readability of the

technical proof, we break the main part into three lemmas, step by step simplifying ω.

Recall that we denoted a basis {e1, e2, e3} as a standard basis of so(1, 2) if the Lie bracket

satisfies

de1 = −e23 , de2 = e31 , de3 = e12.

With respect to this basis, an inner automorphism in SO0(1, 2) acts by usual matrix

multiplication on so(1, 2).

Lemma 3.3. Denote by (R1,2, 〈·, ·〉) the vector space R3 endowed with its standard Min-

kowskian scalar-product and denote by SO0(1, 2) the connected component of the identity

of its group of isometries. Consider the action of SO0(1, 2) × SO0(1, 2) on the space of

real 3× 3 matrices Mat(3,R) given by

Φ : SO0(1, 2)×Mat(3,R)× SO0(1, 2) → Mat(3,R)

(A,C,B) 7→ AtCB.
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Then any invertible element C ∈ Mat(3,R) lies in the orbit of an element of the form α x y

0 β z

0 0 γ

 or

 0 β z

α x y

0 0 γ


with α, β, γ, x, y, z ∈ R and αβγ 6= 0.

Proof. Let an arbitrary invertible element C ∈ Mat(3,R) be given. Denote by

{e1, e2, e3} the standard basis of R1,2. There are three different cases:

1.) Suppose, that the first column c of C has negative length. We extend c to a Lorentzian

basis {l1 = c/α, l2, l3} with α :=
√
|〈c, c〉|. The linear map L defined by extension

of L(li) = ei is by definition a Lorentz transformation. The transformation L can be

chosen time-oriented (by replacing l1 by ± l1) and oriented (by replacing l3 by ± l3).

With this definition we obtain

Φ(Lt, C,1) =

(
α ∗
0 C ′

)
with an element C ′ ∈ Mat(2,R).

Using the polar decomposition we can express C ′ = O1 S as a product of O1 ∈ SO(2)

and a symmetric matrix S in Mat(2,R) and diagonalise S by O2 ∈ SO(2). If we put

L1 =

(
1 0

0 O−1
2 O−1

1

)
and L2 =

(
1 0

0 O2

)
we obtain

Φ(Lt1,Φ(Lt, C,1), L2) =

 α x y

0 β 0

0 0 γ

 .

2.) Next suppose, that the first column c of C has positive length. Again, we extend c to

a Lorentzian basis {l1, l2 = c/α, l3} with α :=
√
|〈c, c〉|. The linear map L defined by

extension of L(li) = ei is by definition a Lorentz transformation. The transformation

L can be chosen time-oriented (by replacing l1 by ± l1) and oriented (by replacing l3
by ± l3). We get

Φ(Lt, C,1) =

 0 ∗
α C ′

0

 with an element C ′ ∈ Mat(2,R).

The first column of this matrix is stable under the right-operation of

L1 =

(
1 0

0 O1

)
with O1 ∈ SO(2)

and there exists an element O1 ∈ SO(2) such that it holds

Φ(1,Φ(Lt, C,1), L1) =

 0 β z

α x y

0 0 γ

 .

3.) Finally suppose, that it holds 〈c, c〉 = 0. Then there exists an oriented and time-

oriented Lorentz transformation L such that L(c) = κ(e1 +e2) with κ 6= 0. Afterwards
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one finds as in point 2.) an element O ∈ SO(2), such that it holds

C ′ := Φ(Lt, C,O) =

 κ c1 ∗
κ c2 ∗
0 0 ∗

 .

Let

B(q) :=

 cosh(q) sinh(q) 0

sinh(q) cosh(q) 0

0 0 1

 .

Claim: There exist q1, q2 ∈ R such that

Φ
(
B(q1)t , C ′ , B(q2)

)
=

 α x y

0 β z

0 0 γ

 .

To prove this claim let us first consider the right-action of B(q) on

C ′′ := Φ (B(q1)t, C ′,1)

Φ (1, C ′′, B(q)) =

 c′′11 cosh(q) + c′′12 sinh(q) ∗ ∗
c′′21 cosh(q) + c′′22 sinh(q) ∗ ∗

0 0 ∗

 for q ∈ R.

We choose q2 such that c′′21 cosh(q2) + c′′22 sinh(q2) vanishes. This is only possible if

−c′′22/c
′′
21 is in the range of coth, i.e. |c′′22/c

′′
21| > 1.

In the sequel we show, that this can always be achieved by the left-action of an element

B(q1) on C ′ and that c′′21 6= 0. In fact, it is

c′′22 = c1 sinh(q1) + c2 cosh(q1)

c′′21 = κ(sinh(q1) + cosh(q1)) = κeq1

c′′22

c′′21

=
c1 + c2

2κ
+
c2 − c1

2κ
e−2q1 .

We observe, that c1 6= c2, since the matrix C is invertible. Therefore we can always

achieve |c′′22/c
′′
21| > 1. This proves the claim and finishes the proof of the lemma.

�

Lemma 3.4. Let g = h = so(1, 2) and let {e1, e2, e3} be a basis of g∗ and {e4, e5, e6} a

basis of h∗ such that the Lie brackets are given by

(3.1) de1 = −e23, de2 = e31, de3 = τe12 and de4 = −e56, de5 = e64, de6 = e45

for some τ ∈ {±1}. Then, every non-degenerate two-form ω on g⊕ h satisfying dω2 = 0

can be written

ω = α e14 + β e25 + γ e36 + x e15 + y e16 + z e26(3.2)

for α, β, γ ∈ R− {0} and x, y, z ∈ R modulo an automorphism in SO0(1, 2)× SO0(1, 2).

Proof. We choose standard bases {e1, e2, e3} for g and {e4, e5, e6} for h. Due to the

assumption dω2 = 0 and Lemma 1.1, we may write ω =
∑3

i,j=1 cije
i(j+3) for an invertible

matrix C = (cij) ∈ Mat(3,R). When a pair (A,B) ∈ SO0(1, 2) × SO0(1, 2) acts on the

two-form ω, the matrix C is transformed to AtCB. Applying Lemma 3.3, we can achieve
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by an inner automorphism that C is in one of the normal forms given in that lemma.

However, an exchange of the base vectors e1 and e2 corresponds exactly to exchanging the

first and the second row of C. Therefore, we can always write ω in the claimed normal

form by adding the sign τ in the Lie bracket of the first summand g. �

Lemma 3.5. Let {e1, . . . , e6} be a basis of so(1, 2)× so(1, 2) such that

(3.3) de1 = −e23 , de2 = e31 , de3 = e12 and de4 = −e56 , de5 = e64 , de6 = e45.

Then the only SUε(p, q)-structure (ω, ψ+) modulo inner automorphisms and modulo ex-

changing the summands, which solves the two nearly ε-Kähler equations (1.16) and (1.17),

is determined by

(3.4) ω =

√
3

18
(e14 + e25 + e36).

Proof. Since dω2 = 0 by the second equation (1.17), we can choose a basis satisfying

(3.1) such that ω is in the normal form (3.2). In order to satisfy the first equation (1.16),

we have to set

3ψ+ = dω = −α e234 + α e156 − x e235 + x e146 − y e236 − y e145

− β e135 + β e246 − z e136 − z e245 + τγ e126 − γ e345.

The compatibility ω ∧ ψ+ = 0 is equivalent to d(ω2) = 0. It remains to determine all

solutions of the second nearly ε-Kähler equation (1.17) modulo automorphisms.

For the sake of readability, we identify Λ6(g⊕h)∗ with R by means of e123456. Supported

by Maple, we compute

Kψ+(e1) = (x2 + y2 + z2 − α2 + β2 + τγ2)e1 − (2xβ + 2yz)e2

− 2τγye3 + 2τγβe4,

Kψ+(e2) = (2xβ + 2yz)e1 + (−x2 − y2 − z2 + α2 − β2 + τγ2)e2

− 2τγze3 + 2τγxe4 − 2ταγe5,

Kψ+(e3) = 2yγe1 − 2zγe2 + (−x2 − y2 + z2 + α2 + β2 − τγ2)e3

+ (2yβ − 2xz)e4 + 2αze5 − 2αβe6,

Kψ+(e4) = −2βγe1 + 2xγe2 + (2yβ − 2xz)e3

+ (x2 + y2 − z2 + α2 − β2 − τγ2)e4 − 2αxe5 − 2αye6,

Kψ+(e5) = 2αγe2 − 2αze3 + 2αxe4

+ (−x2 + y2 − z2 − α2 + β2 − τγ2)e5 + (2βz − 2xy)e6,

Kψ+(e6) = 2αβe3 + 2αye4

+ (2βz − 2xy)e5 + (x2 − y2 + z2 − α2 − β2 + τγ2)e6.

We assume that λ(ψ+) 6= 0 and check this a posteriori for the solutions we find. Hence,

we can set k := 1

±
√
|λ(ψ+)|

and Jψ+ = kKψ+ . Since ψ+ + iεJ
∗
ψ+ψ+ is a (3, 0)-form with

respect to Jψ+ , we have ψ− = J∗ψ+ψ+ = εψ+(Jψ+ ., ., .) which turns out to be

ε
27

k
ψ− = 2ταβγ e123 + 2τyαγ e124 + 2τγ(xy − βz) e125 − 2(xβ + yz)α e134

+ τγ(−x2 + y2 − z2 + α2 + β2 − τγ2) e126
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− {β(x2 − y2 − z2 + α2 − β2 + τγ2) + 2xyz} e135

+ {z(x2 − y2 + z2 − α2 + β2 + τγ2)− 2xyβ} e136

− {y(−x2 − y2 + z2 + α2 − β2 + τγ2) + 2xzβ} e145

− {x(x2 + y2 + z2 − α2 − β2 + τγ2)− 2yzβ} e146

− α(x2 + y2 + z2 − α2 + β2 + τγ2) e156

− α(x2 + y2 + z2 − α2 + β2 + τγ2) e234

− {x(x2 + y2 + z2 − α2 − β2 + τγ2)− 2yzβ} e235

+ {y(−x2 − y2 + z2 + α2 − β2 + τγ2) + 2xzβ} e236

− {z(x2 − y2 + z2 − α2 + β2 + τγ2)− 2xyβ} e245

− {β(x2 − y2 − z2 + α2 − β2 + τγ2) + 2xyz} e246

+ γ(−x2 + y2 − z2 + α2 + β2 − τγ2) e345

− 2(xβ + yz)α e256 − 2γ(xy − βz) e346 − 2yαγ e356 + 2αβγ e456.

Furthermore, we compute the exterior derivative

ε
27

k
dψ− = −4τγαy e1256 − 4τγ(xy − βz) e1246 + 4α(xβ + yz) e1356

+ 2τγ(−x2 + y2 − z2 + α2 + β2 − τγ2) e1245

+ 2{β(x2 − y2 − z2 + α2 − β2 + τγ2) + 2xyz} e1346

+ 2{z(x2 + y2 + z2 − α2 + β2 + τγ2)− 2xyβ} e1345

+ 2{y(−x2 − y2 + z2 + α2 − β2 + τγ2) + 2xzβ} e2345

+ 2{x(x2 + y2 + z2 − α2 − β2 + τγ2)− 2yzβ} e2346

+ 2α(x2 + y2 + z2 − α2 + β2 + τγ2) e2356

and

ω2 = 2((yβ − xz) e1256 − αz e1246 − xγ e1356 − αβ e1245 − αγ e1346 − βγ e2356).

The second nearly Kähler equation (1.17) is therefore equivalent to the following nine

coefficient equations:

(αβ − 27εk−1γ)x = −α yz, (e1356)

(τγα− 27εk−1β) y = −27εk−1xz, (e1256)

(τβγ − 27εk−1α) z = τγxy, (e1246)

x2 + y2 + z2 − α2 + β2 + τγ2 = 54εk−1 βγ
α
, (e2356)

z(x2 + y2 + z2 − α2 + β2 + τγ2) = −2βyx, (e1345)

x2 − y2 − z2 + α2 − β2 + τγ2 = 54εk−1 αγ
β
− 2xyz

β
, (e1346)

y(−x2 − y2 + z2 + α2 − β2 + τγ2) = −2βzx, (e2345)

−x2 + y2 − z2 + α2 + β2 − τγ2 = 54τεk−1 αβ
γ
, (e1245)

x(−x2 − y2 − z2 + α2 + β2 − τγ2) = −2βyz. (e2346)

Recall that α, β, γ 6= 0 because ω is non-degenerate. We claim that there is no solution if

any of x, y or z is different from zero.
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On the one hand, assume that one of them is zero. Using one of the first three

equations respectively, we find that at least one of the other two has to be zero as well.

However, in all three cases, we may easily deduce that the third one has to be zero as well

by comparing equations 4 and 5 respectively 6 and 7 respectively 8 and 9.

On the other hand, if we assume that all three of them are different from zero, the

bracket in the first equation is necessarily different from zero and we may express x by a

multiple of yz. Substituting this expression into equations 2 and 3, yields expressions for

y2 and z2 in terms of α,β, γ and k. But if we insert all this into equation 4 (or 6 or 8

alternatively), we end up with a contradiction after a slightly tedious calculation.

To conclude, we can set x = y = z = 0 without losing any solutions of the second

nearly Kähler equation which simplifies to the equations

α3 − αβ2 − ταγ2 − 54εk−1βγ = 0,

β3 − τβγ2 − βα2 − 54εk−1γα = 0,

γ3 − τγα2 − τγβ2 − 54εk−1αβ = 0.

Setting c1 = α2 + β2 + τγ2 and c2 = 54εk−1αβγ, these are equivalent to

2α4 − c1α
2 − c2 = 0,

2β4 − c1β
2 − c2 = 0,(3.5)

2γ4 − c1τγ
2 − c2 = 0.

To finish the proof, we have to show that all real solutions of the system (3.5) are

isomorphic under SO0(1, 2)× SO0(1, 2) to

α = β = γ =

√
3

18
, τ = 1.

Since α2, β2 and τγ2 satisfy the same quadratic equation, at least two of them have to

be identical, say α2 = β2. However, if τγ2 was the other root of the quadratic equation,

we would have α2 + τγ2 = 1
2
c1 and by definition of c1 at the same time 2α2 + τγ2 = c1.

This would only be possible, if γ was zero, a contradiction to the non-degeneracy of ω.

Therefore τ has to be +1 and α,β and γ have to be identical up to sign. By applying one

of the proper and orthochronous Lorentz transformations1 0 0

0 −1 0

0 0 −1

 ,

1 0 0

0 0 1

0 −1 0

 ,

1 0 0

0 0 −1

0 1 0


on, say, the second summand, it is always possible to achieve that the signs of α, β and

γ are identical.

So far, we found a basis satisfying (3.3) such that

ω = α(e14 + e25 + e36).

It is straightforward to check that the quartic invariant in this basis is

(3.6) λ(
1

3
dω) = − 1

27
α4.
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Therefore, there cannot exist a nearly para-Kähler structure and we can set ε = −1.

Inserting k = ± 1√
−λ = ±3

√
3α−2 into equations (3.5) yields

2α4 − 3α4 ± 54

3
√

3
α5 = 0 ⇐⇒ α = ± 1

18

√
3.

Finally, we can achieve that α is positive by applying the Lie algebra automorphism

exchanging the two summands, i.e. ei 7→ ei+3 mod 6 and the lemma is proven. �

In fact, the uniqueness, existence and non-existence statements claimed in the theorem

follow directly from this lemma and formula (3.6). �

We summarise the data of the unique nearly pseudo-Kähler structure in the basis

(3.3), in particular the signature of the induced metric is easily seen to be (2, 4):

ω =
1

18

√
3 (e14 + e25 + e36)

ψ+ =
1

54

√
3 (e126 − e135 + e156 − e234 + e246 − e345)

ψ− = − 1

54
(2 e123 + e126 − e135 − e156 − e234 − e246 + e345 + 2 e456)

J(e1) = −1

3

√
3 e1 −

2

3

√
3 e4 , J(e4) =

2

3

√
3 e1 +

1

3

√
3 e4

J(e2) = −1

3

√
3 e2 +

2

3

√
3 e5 , J(e5) = −2

3

√
3 e2 +

1

3

√
3 e5

J(e3) = −1

3

√
3 e3 +

2

3

√
3 e6 , J(e6) = −2

3

√
3 e3 +

1

3

√
3 e6

g =
1

9
( (e1)2 − (e2)2 − (e3)2 + (e4)2 − (e5)2 − (e6)2 − e1 · e4 − e2 · e5 − e3 · e6).



CHAPTER 6

Hitchin flow

In the final chapter, we discuss the evolution of half-flat and nearly half-flat structures.

All results in this chapter are part of [CLSS].

1. Half-flat structures and parallel G
(∗)
2 -structures

For compatibility reasons, we use the following notation introduced in [CLSS]. By

Hε,τ , we denote the real form of SL(3,C) corresponding to the standard basis defined

in section 4.1 of chapter 1, i.e. H−1,1 = SU(3) ⊂ SO(6), H−1,−1 = SU(1, 2) ⊂ SO(2, 4),

H1,1 = SL(3,R) ⊂ SO(3, 3). Let Gε,τ denote the corresponding real form of GC
2 in which

Hε,τ is embedded, i.e. G−1,1 = G2 ⊂ SO(7), and G−1,−1 = G1,1 = G∗2 ⊂ SO(3, 4).

Due to Proposition 3.3, chapter 3, a normalised Hε,τ -structure on a six-manifold M

can be identified with a pair (ω, ρ) ∈ Ω2M × Ω3M of stable forms which are compatible,

ω ∧ ρ = 0 ⇐⇒ ω(. , Jρ .) = −ω(Jρ . , .),(1.1)

and normalised,

J∗ρρ ∧ ρ =
2

3
ω3 ⇐⇒ φ(ρ) = 2φ(ω).(1.2)

In this chapter, we will assume that all Hε,τ -structures are normalised.

Now, let M be an orientable hypersurface in a seven-manifold N with Gε,τ -structure

ϕ and induced metric gϕ. There is a natural Hε,τ -structure (ω, ρ) on M which can be

defined by applying pointwise the algebraic construction of 4.5, chapter 1, as follows. In

the Riemannian case, this relation seems to appear first in [Cal]. Choosing a unit normal

vector field ξ ∈ X(N) with gϕ(ξ, ξ) = −ε, the pair (ω, ρ) given by

(1.3) ω = −ε(ξ ϕ)|TM , ρ = ϕ|TM

defines indeed an Hε,τ -structure on the hypersurface M which is normalised for the right

choice of ξ. Obviously, the stable three-form ϕ satisfies

(1.4) ϕ|TM = ξ[ ∧ ω + ρ

such that Lemma 4.4 of chapter 1 yields

(1.5) (∗ϕϕ)|TM = −ε(ξ[ ∧ ρ̂+ ω̂) = −ε(ξ[ ∧ J∗ρρ+
1

2
ω2).

In consequence, if the Gε,τ -structure ϕ is parallel, i.e. dϕ = 0 and d ∗ ϕ = 0, the induced

Hε,τ -structure on the hypersurface M is half-flat. For the compact forms, a complete

analysis of the relation of the intrinsic torsions of the G2-structure and the SU(3)-structure

on the hypersurface is carried out in [MC3].

Conversely, certain one-parameter families of half-flat structures define parallel G
(∗)
2 -

structures.



102 6. HITCHIN FLOW

Proposition 1.1. Let Hε,τ be a real form of SL(3,C), Gε,τ the corresponding real

form of GC
2 and (ρ, ω) a one-parameter family of Hε,τ -structures on a six-manifold M

with a parameter t from an interval I. Then, the three-form

ϕ = ω ∧ dt+ ρ

defines a parallel Gε,τ -structure on M×I if and only if the Hε,τ -structure (ρ, ω) is half-flat

for all t and satisfies the following evolution equations

ρ̇ = dω(1.6)

σ̇ = dρ̂(1.7)

with σ = 1
2
ω2.

Proof. Let (ρ, ω) be an Hε,τ -structure and ϕ = ω ∧ dt + ρ a stable three-form on

M̌ := M × I. By Lemma 4.4, ch. 1, the Hodge-dual of ϕ is given by

∗ϕ = ε (ρ̂ ∧ dt− σ) .

Denoting by ď the differential on M̌ and by d the differential on M we calculate

ďϕ = dω ∧ dt+ dt ∧ ρ̇+ dρ = (dω − ρ̇) ∧ dt+ dρ(1.8)

ď ∗ ϕ = ε (dρ̂ ∧ dt− dt ∧ σ̇ − dσ) = ε(dρ̂− σ̇) ∧ dt− εdσ(1.9)

Thus, ϕ defines a parallel Gε,τ -structure if and only if the evolution equations (1.6) and

(1.7) and the half-flat equations are satisfied. �

The evolution equations (1.6) and (1.7) are the Hitchin flow equations, as found

in [Hi1] for SU(3)-structures, applied to Hε,τ -structures. Their solutions (ρ, ω), called

Hitchin flow, have to satisfy possibly dependent conditions in order to yield a parallel

G
(∗)
2 -structure: the evolution equations and the compatibility equations for the family of

half-flat structures. The following theorem shows that the evolution equations together

with an initial condition already ensure that the family consists of half-flat structures.

A special version of this theorem was proved in [Hi1] under the assumption that M is

compact and that H = SU(3).

Theorem 1.2. Let (ρ0, ω0) be a half-flat Hε,τ -structure on a six-manifold M . Fur-

thermore, let (ρ, ω) ∈ Ω3M × Ω2M be a one-parameter family of stable forms with

parameters from an interval I satisfying the evolution equations (1.6) and (1.7). If

(ρ(t0), ω(t0)) = (ρ0, ω0) for a t0 ∈ I, then (ρ, ω) is a family of half-flat Hε,τ -structures. In

particular, the three-form

(1.10) ϕ = ω ∧ dt+ ρ

defines a parallel Gε,τ -structure on M × I and the induced metric

(1.11) gϕ = g(t)− εdt2,

has holonomy contained in Gε,τ , where g = g(t) is the family of metrics on M associated

to (ρ, ω).

Proof. Differentiating the evolution equations (1.6) and (1.7) gives dρ̇ = dσ̇ = 0. As

the initial structure (ρ0, ω0) is half-flat, this implies

dρ = 0 , dσ = 0(1.12)
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for all t ∈ I. Hence, in order to obtain a family of half-flat structures we have to verify

that the compatibility condition (1.1) holds for all t ∈ I.

Lemma 1.3. Let M be a six-manifold with Hε,τ -structure (ρ, ω), φ : Ω3M → Ω6M

defined pointwise by the map φ : Λ3T ∗pM → Λ6T ∗pM given in Proposition 3.4, chapter 1,

and ρ̂ defined by dφρ(ξ) = ρ̂ ∧ ξ for all ξ ∈ Ω3M . If LX denotes the Lie derivative, then

LX(φ(ρ)) = ρ̂ ∧ LXρ.

Proof. First note that the GL(n,R)-equivariance of the map φ : Λ3T ∗pM → Λ6T ∗pM

implies that the corresponding map φ : Ω3M → Ω6M is equivariant under diffeomor-

phisms. Indeed, if ψ is a (local) diffeomorphism of M we get that

ψ∗(φ(ρ)) = φ(ψ∗ρ).

Let ψt be the flow of the vector field X. Then the Lie derivative is given by

LX(φ(ρ)) =
d

dt
(ψ∗t φ(ρ)) |t=0 =

d

dt
φ(ψ∗t ρ)|t=0 = dφρ(LXρ),

implying the statement. �

Lemma 1.4. A stable three-form ρ ∈ Ω3M on a six-manifold satisfies for any X ∈
X(M)

ρ̂X ∧ ρ = −ρ̂ ∧ ρX ,(1.13)

(dρ̂)X ∧ ρ = ρ̂ ∧ (dρ)X ,(1.14)

where ρX denotes the interior product of X with the form ρ.

Proof. The first identity is in fact (1.11), ch. 1, when considering that ρ + iερ̂ is an

ε-complex volume form due to Lemma 3.6, ch. 1. In order to prove the second identity,

we compute, using Lemma 1.3 in the second step,

(dρ̂)X ∧ ρ− ρ̂ ∧ (dρ)X = −dρ̂ ∧ ρX + ρ̂ ∧ d(ρX)− ρ̂ ∧ LXρ
= −d(ρ̂ ∧ ρX)− LX(φ(ρ))

= −d(ρ̂ ∧ ρX + φ(ρ)X)

(3.2)
= −1

2
d(ρ̂ ∧ ρX + ρ̂X ∧ ρ).

Hence, the first identity (1.13) implies (1.14). �

Using this lemma, we calculate the t-derivative of the six-form ωX ∧ ω ∧ ρ = σX ∧ ρ
for any vector field X:

∂

∂t
(σX ∧ ρ) = σ̇X ∧ ρ+ σX ∧ ρ̇

(1.6),(1.7)
= (dρ̂)X ∧ ρ+ σX ∧ dω

(1.14)
= ρ̂ ∧ (dρ)X + ωX ∧ d(ω2)

(1.12)
= 0.

Together with the initial condition ω0 ∧ ρ0 = 0 this implies that σX ∧ ρ = 0 for all t ∈ I
and for all vector fields X. Since ω is non degenerate, the product of any one-form with

ω ∧ ρ vanishes and thus, the compatibility condition ω ∧ ρ = 0 holds for all t.



104 6. HITCHIN FLOW

The preservation of the normalisation (1.2) in time is shown in [Hi1], in the final part

of the proof of Theorem 8. The idea is to compute the second derivative of the volume

form assigned to a stable three-form. In fact, the proof holds literally for all signatures

since all it uses is the first compatibility condition we have just proved. �

Corollary 1.5. Let M be a real analytic six-manifold with a half-flat Hε,τ -structure

that is given by a pair of analytic stable forms (ω0, ρ0).

(i) Then, there exists a unique maximal solution (ω, ρ) of the evolution equations (1.6),

(1.7) with initial value (ω0, ρ0), which is defined on an open neighbourhood Ω ⊂ R×M
of {0} ×M . In particular, there is a parallel Gε,τ -structure on Ω.

(ii) Moreover, the evolution is natural in the sense that, given a diffeomorphism f of M ,

the pullback (f ∗ω, f ∗ρ) of the solution with initial value (ω0, ρ0) is the solution of the

evolution equations for the initial value (f ∗ω0, f
∗ρ0).

In particular, if f is an automorphism of the initial structure (ω0, ρ0), then, for

all t ∈ R, f is an automorphism of the solution (ω(t), ρ(t)) defined on the (possibly

empty) open set Ut = {p ∈M | (t, p) ∈ Ω and (t, f(p)) ∈ Ω}.
(iii) Furthermore, assume that M is compact or a homogeneous space M = G/K such

that the Hε,τ -structure is G-invariant. Then there is a unique maximal interval I 3 0

and a unique solution (ω, ρ) of the evolution equations (1.6), (1.7) with initial value

(ω0, ρ0) on I ×M . In particular, there is a parallel Gε,τ -structure on I ×M .

Proof. If the manifold and the initial structure (ω0, ρ0) are analytic, there exists a

unique maximal solution of the evolution equations on a neighbourhood Ω of M × {0}
in M × R by the Cauchy-Kovalevskaya theorem. The naturality of the solution is an

immediate consequence of the uniqueness due to the naturality of the exterior derivative.

If M is compact, there is a maximal interval I such that the solution is defined on M × I.

The same is true for a homogeneous half-flat structure (ω0, ρ0) as it is determined by

(ω0, ρ0)|p for any p ∈M . �

We remark that, for a homogeneous half-flat structure (ω0, ρ0), the evolution equations

reduce to a system of ordinary differential equations due to the naturality assertion of

the corollary. This simplification will be used in Section 5.2 to construct metrics with

holonomy equal to G2 and G∗2.

1.1. Remark on completeness: geodesically complete conformal G2-metrics.

The G
(∗)
2 -metrics arising from the Hitchin flow on a six-manifold N are of the form

(I ×N, dt2 + gt)

with an open interval I = (a, b) and a family of Riemannian metrics gt depending on t ∈ I
(formula (1.11) in Theorem 1.2). As curves of the form t 7→ (t, x) are geodesics for this

metric, they are obviously geodesically incomplete if a or b ∈ R.

For the Riemannian case and compact manifolds N , we shall explain how one easily

obtains complete metrics by a conformal change of the G2-metric.

Lemma 1.6. Let N be a compact manifold with a family gr of Riemannian metrics.

Then the Riemannian metric on R×N defined by h = dr2 + gr is geodesically complete.
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Proof. Denote by d the distance on R×N induced by the Riemannian metric h =

dr2 + gr and by dr the distance on N induced by gr. For a curve γ in M = R × N we

have that the length of γ(t) = (r(t), x(t)) satisfies

`(γ) =

∫ 1

0

√
ṙ(t)2 + gr(t)(ẋ(t), ẋ(t))dt ≥

∫ 1

0

|ṙ(t)|dt ≥ |r(1)− r(0)|.

As the distance of two points p = (r, x) and q = (s, y) is defined as the infimum of the

lengths of all curves joining them, this inequality implies that

(1.15) d(p, q) ≥ |r − s|.

Note also that a curve γ(t) = ((s− r)t+ r, x) joining p = (r, x) and q = (s, x) in R×{x}
has length `(γ) = |r − s| and thus, for such p, q we get that d(p, q) = |r − s|. On the

other hand, for p = (r, x) and q = (r, y) with the same R-projection r we only get that

d(p, q) ≤ dr(x, y).

Since h has Riemannian signature we can use the Hopf-Rinow Theorem and consider

a Cauchy sequence pn = (rn, xn) ∈ R × N w.r.t. the distance d. Equation (1.15) then

implies that the sequence rn is a Cauchy sequence in R. Hence, rn converges to r ∈ R.

Since N is compact, the sequence xn has a subsequence xnk converging to x ∈ N . For

p = (r, x) and qnk := (r, xnk) the triangle inequality implies that

d(p, pnk) ≤ d (p, qnk) + d (qnk , pnk) ≤ dr(x, xnk) + d (qnk , pnk) = dr(x, xnk) + |r − rnk |.

Hence, pnk converges to p. As pn was a Cauchy sequence, we have found p as a limit for

pn. By the Theorem of Hopf and Rinow, M is geodesically complete. �

The lemma can be used to obtain the desired result.

Proposition 1.7. Let (M = I×N, h = dt2+gt) be a Riemannian metric on a product

of an open interval I and a compact manifold N . Then (M,h) is globally conformally

equivalent to a metric on R×N that is geodesically complete. The scaling factor depends

only on t ∈ I and is determined by a diffeomorphism ϕ : R→ I.

Proof. Let ϕ : R → I be a diffeomorphism with inverse r = ϕ−1. Changing the

coordinate t to r, the metric h on I ×N can be written as

h = (ϕ′(r)dr)
2

+ gϕ(r) = ϕ′(r)2

(
dr2 +

1

ϕ′(r)2
gϕ(r)

)
.

Hence, h is globally conformally equivalent to the metric dr2 + 1
ϕ′(r)2

gϕ(r) on R ×N . By

the lemma, this metric is geodesically complete. �

Regarding the solution of the Hitchin flow equations, we obtain the following conse-

quence of Theorem 1.2, Corollary 1.5, and Proposition 1.7.

Corollary 1.8. Let M be a compact analytic six-manifold with half-flat SU(3)-

structure given by analytic stable forms (ρ0, ω0). Then there is a complete metric on

R×M that is globally conformal to the parallel G2-metric obtained by the Hitchin flow.

In Example 5.9 of Section 5.2 we will construct explicit examples of this type. Finally,

note that due to the Cheeger-Gromoll splitting Theorem, see for example [Bes, Theorem

6.79], one cannot expect to obtain by the Hitchin flow irreducible G2-metrics that are

complete without allowing degenerations of gt.
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2. Nearly half-flat structures and nearly parallel G
(∗)
2 -structures

Recall that a G
(∗)
2 -structure ϕ on a seven-manifold N is called nearly parallel if

dϕ = µ ∗ϕ ϕ(2.1)

for a constant µ ∈ R∗. Nearly parallel G2- and G∗2-structures are also characterised by

the existence of a Killing spinor, refer [FKMS] respectively [Ka1].

Given an orientable hypersurfaceM in an almost seven-manifoldN with nearly parallel

G
(∗)
2 -structure ϕ, the induced Hε,τ -structure (1.3) satisfies the equation dρ = −1

2
εµω2 =

−εµω̂ due to the formulas (1.4) and (1.5). In order to remain compatible with [CLSS],

we call a Hε,τ -structure satisfying

dρ =
λ

2
ω2 = λσ(2.2)

nearly half-flat for the constant λ ∈ R∗ (and not for the constant λ
2

as in chapter 3).

In other words, the induced Hε,τ -structure on the hypersurface is nearly half-flat for the

constant −εµ.

In [FIMU], nearly half-flat SU(3)-structures have been introduced in the context of

evolution equations on six-manifolds M leading to nearly parallel G2-structures on the

product of M and an interval. For compact manifolds M , it is shown in [St] that a solution

of these evolution equations which is a nearly half-flat SU(3)-structure for a time t = t0
already defines a nearly parallel G2-structure. In the following, we extend the evolution

equations to all possible signatures and give a simplified proof for the properties of the

solutions which also holds for non-compact manifolds.

Proposition 2.1. Let Hε,τ be a real form of SL(3,C), Gε,τ the corresponding real

form of GC
2 and (ρ, ω) a one-parameter family of Hε,τ -structures on a six-manifold M

with a parameter t from an interval I. Then, the three-form

ϕ = ω ∧ dt+ ρ

defines a nearly parallel Gε,τ -structure for the constant µ 6= 0 on M × I if and only if the

Hε,τ -structure (ρ, ω) is nearly half-flat for the constant −εµ for all t ∈ I and satisfies the

evolution equation

ρ̇ = dω − εµρ̂.(2.3)

Proof. The assertion follows directly from the following computation, analogously

to the proof of Proposition 1.1:

ďϕ = dω ∧ dt+ dt ∧ ρ̇+ dρ = (dω − ρ̇) ∧ dt+ dρ,

µ ∗ ϕ = εµ (ρ̂ ∧ dt− σ) .

�

The main theorem for the parallel case generalises as follows. Recall (3.3) that for a

stable four-form σ = 1
2
ω2 = ω̂, the application of the operator σ 7→ σ̂ yields the stable

two-form
ˆ̂ω = σ̂ =

1

2
ω.
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Theorem 2.2. Let (ρ0, ω0) be a nearly half-flat Hε,τ -structure for the constant λ 6= 0

on a six-manifold M . Let M be oriented such that ω3
0 > 0. Furthermore, let ρ ∈ Ω3M be

a one-parameter family of stable forms with parameters coming from an interval I such

that ρ(t0) = ρ0 and such that the evolution equation

ρ̇ =
2

λ
d(d̂ρ) + λ ρ̂(2.4)

is satisfied for all t ∈ I. Then (ρ, ω = 2
λ
d̂ρ) is a family of nearly half-flat Hε,τ -structures

for the constant λ. In particular, the three-form

ϕ = ω ∧ dt+ ρ

defines a nearly parallel Gε,τ -structure for the constant −ελ on M × I.

Proof. First of all, we observe that dρ is stable in a neighbourhood of the stable form

dρ0 = λσ0, since stability is an open condition. Furthermore, the operator dρ 7→ d̂ρ is

uniquely defined by the orientation induced from ω0. Therefore, the evolution equation is

locally well-defined and we assume that ρ is a solution on an interval I. The only possible

candidate for a nearly half-flat structure for the constant λ is (ρ, ω = 2
λ
d̂ρ) since only this

two-form ω satisfies the nearly half-flat equation σ = ω̂ = 1
λ
dρ. Obviously, it holds

(2.5) dσ = 0 = dω ∧ ω.

By Proposition 2.1, it only remains to show that this pair of stable forms defines an Hε,τ -

structure, or equivalently, that the compatibility conditions (1.1) and (1.2) are preserved

in time. By taking the exterior derivative of the evolution equation, we find

(2.6) σ̇ =
1

λ
dρ̇ = dρ̂

which is in fact the second evolution equation of the parallel case. Completely analogous

to the parallel case, the following computation implies the first compatibility condition:

∂

∂t
(σX ∧ ρ) = σ̇X ∧ ρ+ σX ∧ ρ̇

(2.4),(2.6)
= (dρ̂)X ∧ ρ+ σX ∧ dω + λσX ∧ ρ̂

(1.14),(2.2)
= ρ̂ ∧ (dρ)X + ωX ∧ ω ∧ dω + (dρ)X ∧ ρ̂

(2.5)
= 0.

The proof of the second compatibility condition in [Hi1] again holds literally since the

term ρ̂ ∧ ρ̇ = ρ̂ ∧ dω is the same as in the case of the parallel evolution. �

The system (2.4) of second order in ρ can easily be reformulated into a system of

first order in (ω, ρ) to which we can apply the Cauchy-Kovalevskaya theorem. Indeed, a

solution (ω, ρ) of the system

ρ̇ = dω + λρ̂ , σ̇ = dρ̂,(2.7)

with nearly half-flat initial value (ω(t0), ρ(t0)) is nearly half-flat for all t and also satisfies

the system (2.4). Conversely, (2.4) implies (2.7) with σ = ω̂ = 1
λ
dρ.
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Therefore, for an initial nearly half-flat structure which satisfies assumptions analogous

to those of Corollary 1.5, we obtain existence, uniqueness and naturality of a solution of

the system (2.7), or, equivalently, of (2.4).

3. Cocalibrated G
(∗)
2 -structures and parallel Spin(7)- and Spin0(3, 4)-structures

In [Hi1], another evolution equation is introduced which relates cocalibrated G2-

structures on compact seven-manifolds M to parallel Spin(7)-structures. As before, we

generalise the evolution equation to non-compact manifolds and indefinite metrics.

As we have already seen in Section 4.3 of chapter 1, the stabiliser in GL(V ) of a four-

form Φ0 on an eight-dimensional vector space V is Spin(7) or Spin0(3, 4) if and only if it

can be written as in (4.12) of chapter 1 for a stable three-form ϕ on a seven-dimensional

subspace with stabiliser G2- or G∗2, respectively. Thus, a Spin(7)- or Spin0(3, 4)-structure

on an eight-manifold M is defined by a four-form Φ ∈ Ω4M such that Φp ∈ Λ4T ∗pM has

this property for all p. By formula (4.13) of chapter 1 for the metric gΦ induced by Φ, an

oriented hypersurface in (M,Φ) with spacelike unit normal vector field n with respect to

gΦ carries a natural G2- or G∗2-structure, respectively, defined by ϕ = n Φ.

A Spin(7)- or Spin0(3, 4)-structure Φ is parallel if and only if dΦ = 0. We remark that

the proof for the Riemannian case given in [Sa2, Lemma 12.4] is not hard to transfer to

the indefinite case when considering [Br1, Proposition 2.5] and using the complexification

of the two spin groups.

Due to this fact, the induced G
(∗)
2 -structure ϕ on an oriented hypersurface in an eight-

manifold M with parallel Spin(7)- or Spin0(3, 4)-structure Φ is cocalibrated, i.e. it satisfies

d ∗ϕ ϕ = 0.(3.1)

Conversely, a cocalibrated G
(∗)
2 -structure can be embedded in an eight-manifold with

parallel Spin(7)- or Spin0(3, 4)-structure as follows.

Theorem 3.1. Let M be a seven-manifold and ϕ ∈ Ω3M be a one-parameter family

of stable three-forms with a parameter t in an interval I satisfying the evolution equation

∂

∂t
(∗ϕϕ) = dϕ.(3.2)

If ϕ is cocalibrated at t = t0 ∈ I, then ϕ defines a family of cocalibrated G2- or G
(∗)
2 -

structures for all t ∈ I. Moreover, the four-form

(3.3) Φ = dt ∧ ϕ+ ∗ϕϕ

defines a parallel Spin(7)- or Spin0(3, 4)-structure on M × I, respectively, which induces

the metric

(3.4) gΦ = gϕ + dt2.

Proof. Since the time derivative of d∗ϕ vanishes when inserting the evolution equa-

tion, the family stays cocalibrated if it is cocalibrated at an initial value. As before, we

denote by ď the exterior differential on M̌ := M × I and differentiate the four-form (3.3):

ďΦ = −dt ∧ dϕ+ d(∗ϕ) + dt ∧ ∂

∂t
(∗ϕ).
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Obviously, this four-form is closed if and only the evolution equation is satisfied and the

family is cocalibrated. The formula for the induced metric corresponds to formula (4.13)

of chapter 1. �

As before, the Cauchy-Kovalevskaya theorem guarantees existence and uniqueness of

solutions if assumptions analogous to those of Corollary 1.5 are satisfied.

Remark 3.2. We observe that nearly parallel G2- and G∗2-structures are in particular

cocalibrated such that analytic nearly half-flat structures in dimension six can be em-

bedded in parallel Spin(7)- or Spin0(3, 4)-structures in dimension eight by evolving them

twice with the help of the Theorems 2.2 and 3.1.

4. Evolution of nearly ε-Kähler manifolds

In order to illustrate the results of the previous sections, we discuss the evolution

of nearly ε-Kähler manifolds. The explicit solution of the Hitchin flow yields a simple

and unified proof for the correspondence of nearly ε-Kähler manifolds and parallel G
(∗)
2 -

structures on cones. We complete the picture by considering similarly the evolution

of nearly Kähler structures to nearly parallel G
(∗)
2 -structures on (hyperbolic) sine cones

and the evolution of nearly parallel G
(∗)
2 -structures to parallel Spin(7)- and Spin0(3, 4)-

structures on cones. Our presentation in terms of differential forms unifies various results

in the literature, which were originally obtained using spinorial methods, and applies to

all possible real forms of the relevant groups.

4.1. Cones over nearly ε-Kähler manifolds. Recall that we proved in chapter

3, Theorem 5.5, that a nearly ε-Kähler six-manifold with ‖∇J‖2 = 4 is equivalent to a

normalised Hε,τ -structure (ω, ρ) which satisfies

dω = 3ρ ,(4.1)

dρ̂ = 4ω̂.(4.2)

In particular, nearly ε-Kähler structures (ω, ρ) in dimension six are half-flat and the

structure (ω, ρ̂) is nearly half-flat (for the constant λ = 4).

Proposition 4.1. Let (M,h0) be a pseudo-Riemannian six-manifold of signature

(6, 0), (4, 2) or (3, 3) and let (M̄ = M × R+, ḡε = h0 − εdt2) be the timelike cone for

ε = 1 and the spacelike cone for ε = −1. There is a one-to-one correspondence be-

tween nearly ε-Kähler structures (h0, J) with ‖∇J‖2 = 4 on (M,h0) and parallel G2- and

G∗2-structures ϕ on M̄ which induce the cone metric ḡε.

Proof. This well-known fact is usually proved using Killing spinors, see [Bär], [Gru]

and [Ka2]. We give a proof relying exclusively on the framework of stable forms and the

Hitchin flow. For Riemannian signature, this point of view is also adopted in [ChSa] and

[Bu2].

The Hε,τ -structures inducing the given metric h0 are the reductions of the bundle of

orthonormal frames of (M,h0) to the respective group Hε,τ . Given any Hε,τ -reduction

(ω0, ρ0) of h0, we consider for t ∈ R+ the one-parameter family

(4.3) ω = t2ω0 , ρ = t3ρ0,
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which induces the family of metrics h = t2h0. By formula (1.11), the metric gϕ on M̄

induced by the stable three-form ϕ = ω ∧ dt+ ρ is exactly the cone metric ḡε.

It is easily verified that the family (4.3) consists of half-flat structures satisfying the

evolution equations if and only if the initial value (ω(1), ρ(1)) = (ω0, ρ0) satisfies the

exterior system (4.1), (4.2). Therefore, the stable three-form ϕ on the cone (M̄, ḡε) is

parallel if and only if the Hε,τ -reduction (ω0, ρ0) of h0 is a nearly ε-Kähler structure with

‖∇J‖2 = 4.

Conversely, let ϕ be a stable three-form on M̄ which induces the cone metric ḡε. Since

∂t is a normal vector field for the hypersurface M = M × {1} satisfying ḡ(∂t, ∂t) = −ε,
we obtain an Hε,τ -reduction (ω0, ρ0) of h0 defined by

(4.4) ω0 = (∂t ϕ)|TM , ρ0 = ϕ|TM

with the help of Proposition 4.5 of chapter 1. Since the two constructions are inverse to

each other, the proposition follows. �

Example 4.2. Consider the flat (R(3,4) \ {0}, 〈., .〉) which is isometric to the cone

(M ε × R+, t2hε − εdt2) over the pseudo-spheres M ε := {p ∈ R(3,4) | 〈p, p〉 = −ε}, ε = ±1,

with the standard metrics hε of constant sectional curvature −ε and signature (2, 4) for

ε = −1 and (3, 3) for ε = 1. Obviously, a stable three-form ϕ inducing the flat metric

〈., .〉 is parallel if and only if it is constant. Thus, the previous discussion and Proposition

4.5 of chapter 1, in particular formula (4.11), yield a bijection

SO(3, 4)/G∗2 → {ε-complex structures J on M ε such that (hε, J) is nearly ε-Kähler}
ϕ 7→ J with Jp(v) = −p× v, ∀ p ∈M ε

where the cross-product × induced by ϕ is defined by formula (3.14) of chapter 1. In other

words, the pseudo-spheres (M ε, hε) admit a nearly ε-Kähler structure which is unique up

to conjugation by the isometry group O(3, 4) of hε. In fact, these ε-complex structures

on the pseudo-spheres are already considered in [Li] and the nearly para-Kähler property

for ε = 1 is for instance shown in [Bej].

4.2. Sine cones over nearly ε-Kähler manifolds. For Riemannian signature, it

has been shown in [FIMU] that the evolution of a nearly Kähler SU(3)-structure to

a nearly parallel G2-structure induces the Einstein sine cone metric. This result can be

extended as follows. We prefer to consider (hyperbolic) cosine cones since they are defined

on all of R in the hyperbolic case.

Proposition 4.3. Let (M,h0) be a pseudo-Riemannian six-manifold.

(i) If h0 is Riemannian, or has signature (2, 4), respectively, there is a one-to-one corre-

spondence between nearly (pseudo-)Kähler structures (h0, J) on M with ‖∇J‖2 = 4

and nearly parallel G2-structures, or G∗2-structures, respectively, for the constant

µ = −4 on the spacelike cosine cone

(M × (−π
2
,
π

2
), cos2(t)h0 + dt2).

(ii) If h0 has signature (3, 3), there is a one-to-one correspondence between nearly para-

Kähler structures (h0, J) on M with ‖∇J‖2 = 4 and nearly parallel G∗2-structures
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for the constant µ = 4 on the timelike hyperbolic cosine cone

(M × R, − cosh2(t)h0 − dt2).

Proof. (i) Starting with any SU(3)- or SU(1, 2)-reduction (ω0, ρ0) of h0, the one-

parameter family

ω = cos2(t)ω0 , ρ = − cos3(t)(sin(t)ρ0 + cos(t)ρ̂0)

with (ω(0), ρ(0)) = (ω0,−ρ̂0) defines a stable three-form ϕ = ω ∧ dt + ρ on M ×
(−π

2
, π

2
). Since zΨ0 = z(ρ0 + iρ̂0) is a (3, 0)-form w.r.t. the induced almost complex

structures JRe (zΨ0) for all z ∈ C∗, the structure Jρ = Jρ0 is constant in t. Thus,

the metric gϕ induced by ϕ is the cosine cone metric. Moreover, it holds ρ̂ =

− cos3(t)(sin(t)ρ̂0 − cos(t)ρ0) due to Corollary 3.7.

It takes a short calculation to verify that the one-parameter family is nearly half-

flat (for the constant λ = −4) and satisfies the evolution equation (2.3) if and only

(ω0, ρ0) satisfies the exterior system (4.1), (4.2). Thus, applying Proposition 2.1, the

three-form ϕ = ω ∧ dt + ρ defines a nearly parallel Gε,τ -structure on M × (−π
2
, π

2
)

(for the constant µ = −4) if and only if (h0, Jρ0) is nearly ε-Kähler with ‖∇J‖2 = 4.

The inverse construction is given by (4.4) in analogy to the case of the ordinary

cone.

(ii) The proof in the para-complex case is completely analogous if we consider the one-

parameter family

ω = cosh2(t)ω0 , ρ = − cosh3(t)(sinh(t)ρ0 + cosh(t)ρ̂0)

which is defined for all t ∈ R. We note the following subtleties regarding signs. By

Proposition 3.4 of chapter 1, we know that the mapping ρ 7→ ρ̂ is homogeneous of

degree 1, but not linear. Indeed, by applying Corollary 3.7 of chapter 1, we find

̂sinh(t)ρ0 + cosh(t)ρ̂0 = − sinh(t)ρ̂0 − cosh(t)ρ0.

Using this formula, one can check that Jρ = Jρ̂0 = −Jρ0 is constant in t such that

the metric induced by (ω, ρ) is in fact h = − cosh2(t)h0.

�

The fact that the (hyperbolic) cosine cone over a six-manifold carrying a Killing spinor

carries again a Killing spinor was proven in [Ka1]. By relating spinors to differential

forms, these results also imply the existence of a nearly parallel G
(∗)
2 -structures on the

(hyperbolic) cosine cone over a nearly ε-Kähler manifold.

Example 4.4. The (hyperbolic) cosine cone of the pseudo-spheres (M ε, hε) of Exam-

ple 4.2 has constant sectional curvature 1, for instance due to [ACGL, Corollary 2.3],

and is thus (locally) isometric to the pseudo-sphere S3,4 = {p ∈ R(4,4) | 〈p, p〉 = 1} =

Spin0(3, 4)/G∗2.

4.3. Cones over nearly parallel G
(∗)
2 -structures. By Lemma 9 in [Bär], there

is a one-to-one correspondence on a Riemannian seven-manifold (M, g0) between nearly

parallel G2-structures and parallel Spin(7)-structures on the Riemannian cone. In order to

illustrate the evolution equations for nearly parallel G∗2-structures, we extend this result

to the indefinite case by applying Theorem 3.1. This is possible since nearly parallel
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G∗2-structures are in particular cocalibrated. Again, the fact that the cone over a nearly

parallel G∗2-manifold admits a parallel spinor can be derived from the connection to Killing

spinors as observed in [Ka1].

Proposition 4.5. Let (M, g0) be a pseudo-Riemannian seven-manifold of signature

(3, 4). There is a one-to-one correspondence between nearly parallel G∗2-structures for the

constant 4 which induce the given metric g0 and parallel Spin0(3, 4)-structures on M×R+

inducing the cone metric ḡ = t2g0 + dt2.

Proof. Let ϕ0 be any cocalibrated G∗2-structure on M inducing the metric g0. The

one-parameter family of three-forms defined by ϕ = t3ϕ0 for t ∈ R+ induces the family of

metrics g = t2g0 such that the Hodge duals are ∗ϕϕ = t4 ∗ϕ0 ϕ0. By (3.4), the Spin0(3, 4)-

structure Ψ = dt ∧ ϕ + ∗ϕϕ on M × R+ induces the cone metric ḡ. Conversely, given a

Spin0(3, 4)-structure Ψ on the cone (M × R+, ḡ), we have the cocalibrated G∗2-structure

ϕ0 = ∂t Ψ on M , which also induces the given metric g0. Since the evolution equation

(3.2) is satisfied if and only if the initial value ϕ0 is nearly parallel for the constant 4 and

since the two constructions are inverse to each other, the assertion follows from Theorem

3.1. �

Example 4.6. We consider again the easiest example, i.e. the flat R(4,4) \{0} which is

isometric to the cone over the pseudo-sphere S3,4. Analogous to Example 4.2, the propo-

sition just proved yields a proof of the fact that the nearly parallel G∗2-structures for the

constant 4 on S3,4 are parametrised by SO(4, 4)/ Spin0(3, 4), i.e. by the four homogeneous

spaces (4.14). In particular, these structures are conjugated by the isometry group O(4, 4)

of S3,4.

Summarising the application of the three Propositions 4.1, 4.3 and 4.5 to pseudo-

spheres, we find a mutual one-to-one correspondence between

(1) nearly pseudo-Kähler structures with ‖∇J‖2 6= 0 on (S2,4, gcan),

(2) nearly para-Kähler structures with ‖∇J‖2 6= 0 on (S3,3, gcan),

(3) parallel G∗2-structures on (R(3,4), gcan),

(4) nearly parallel G∗2-structures on the spacelike cosine cone over (S2,4, gcan),

(5) nearly parallel G∗2-structures on the timelike hyperbolic cosine cone over (S3,3, gcan),

(6) nearly parallel G∗2-structures on (S3,4, gcan) and

(7) parallel Spin0(3, 4)-structures on (R(4,4), gcan).

This geometric correspondence is reflected in the algebraic fact that the four homogeneous

spaces (4.14) are isomorphic.

5. Evolution of half-flat structures on nilmanifolds Γ \H3×H3

In this section, we will develop a method to explicitly determine the parallel G
(∗)
2 -

structure induced by an arbitrary invariant half-flat structure on a compact nilmanifold

Γ \H3×H3 without integrating. In particular, this method is applied to construct three

explicit large families of metrics with holonomy equal to G2 or G∗2, respectively.

5.1. Evolution of invariant half-flat structures on nilmanifolds. Given as ini-

tial value a half-flat structure on a Lie algebra, the evolution equations

ρ̇ = dω , σ̇ = dρ̂ ,(5.1)
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reduce to a system of ordinary differential equations and a unique solution exists on a

maximal interval I. Due to the structure of the equation, the solution differs from the

initial values by adding exact forms to σ0 and ρ0. In other words, an initial value (σ0, ρ0)

evolves within the product [σ0]× [ρ0] of their respective Lie algebra cohomology classes.

Every nilpotent Lie group N with rational structure constants admits a cocompact

lattice Γ and the resulting compact quotients Γ\N are called nilmanifolds. Recall that

a geometric structure on a nilmanifold Γ\N is called invariant if is induced by a left-

invariant geometric structure on N .

Explicit solutions of the Hitchin flow equations on several nilpotent Lie algebras can

be found for instance in [CF] and [AS]. In both cases, a metric with holonomy contained

in G2 has been constructed before by a different method and this information is used to

obtain the solution. For a symplectic half-flat initial value, another explicit solution on

one of these Lie algebras is given in [CT]. In all cases, the solution depends only on one

variable.

At least for four nilpotent Lie algebras including h3 ⊕ h3, a reason for the simple

structure of the solutions has been observed in [AS]. Indeed, the following lemma shows

that the evolution of σ takes place in a one-dimensional space. As it is common practice in

the literature, we define a nilpotent Lie algebra by giving the image of a basis of one-forms

under the exterior derivative, see for instance [Sa2]. The same reference also contains a

list of all six-dimensional nilpotent Lie algebras.

Lemma 5.1. Let ρ be a closed stable three-form with dual three-form ρ̂ on a six-

dimensional nilpotent Lie algebra g.

(i) If g is one of the three Lie algebras

(0, 0, 0, 0, e12, e34) , (0, 0, 0, 0, e13 + e42, e14 + e23) , (0, 0, 0, 0, e12, e14 + e23),

then dρ̂ ∈ Λ4U for the four-dimensional kernel U of d : Λ1g∗ → Λ2g∗.

(ii) If g is the Lie algebra

(0, 0, 0, 0, 0, e12 + e34),

then dρ̂ ∈ Λ4U for the four-dimensional subspace U = span{e1, e2, e3, e4} of ker d.

Remark 5.2. The assertion of the lemma is not true for the remaining six-dimensional

nilpotent Lie algebras with b1 = dim(ker d) = 4 or b1 = 5. In each case, we have

constructed a closed stable ρ such that dρ̂ is not contained in Λ4(ker d).

In fact, this lemma can also be viewed as a corollary of the following lemma which we

will prove first.

Lemma 5.3. Let ρ be a closed stable three-form on one of the four Lie algebras of

Lemma 5.1 and let U be the four-dimensional subspace of ker d defined there. In all four

cases, the space U is Jρ-invariant where Jρ denotes the almost (para-)complex structure

induced by ρ.

Proof. For λ(ρ) < 0, the assertion is similar to that of [AS, Lemma 2]. However,

since the only proof seems to be given for the Iwasawa algebra for integrable J in [KeS,

Theorem 1.1], we give a complete proof.
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Let g be one of the three Lie algebras given in part (i) of Lemma 5.1 and U = ker d.

Obviously, the two-dimensional image of d lies within Λ2U in all three cases. By J = Jρ
we denote the almost ε-complex structure associated to the closed stable three-form ρ.

We define the J-invariant subspace W := U ∩ J∗U of g such that 2 ≤ dimW ≤ 4.

In fact, dimW = 4 is equivalent to the assertion. The other two cases are not possible,

which can be seen as follows. To begin with, assume that W is two-dimensional. When

choosing a complement W ′ of W in U , we have by definition of W that

V = W ⊕W ′ ⊕ J∗W ′.

We observe that, for ε = 1, the ±1-eigenspaces of J restricted to W ′ ⊕ J∗W ′ are both

two-dimensional. Therefore, we can choose for both values of ε a basis

{e1, e2, e3, e4 = J∗e1, e5 = J∗e2, e6 = J∗e3}

of V such that e1, e2, e3 and e4 are closed and de5, de6 ∈ Λ2U . Since ρ+ iεJ
∗
ρρ is a (3, 0)-

form in both cases, it is possible to change the basis vectors e1, e4 within W ⊂ ker d such

that

ρ+ iεJ
∗
ρρ = (e1 + iεe

4) ∧ (e2 + iεe
5) ∧ (e3 + iεe

6)

and thus

ρ = e123 + εe156 − εe246 + εe345.

By construction of the basis, we have that

0 = dρ = −εe1 ∧ de5 ∧ e6 + εe1 ∧ e5 ∧ de6 + α

with α ∈ Λ4U . As the first two summands are linearly independent and not in Λ4U ,

we conclude that both e1 ∧ de5 and e1 ∧ de6 vanish. Thus, the closed one-form e1 has

the property that the wedge product of e1 with any exact two-form vanishes. However,

an inspection of the standard basis of each of the three Lie algebras in question reveals

that such a one-form does not exist on these Lie algebras and we have a contradiction to

dimW = 2.

Since a J-invariant space cannot be three-dimensional for ε = −1, the proof is finished

for this case. However, if ε = 1, the case dimW = 3 cannot be excluded that easy.

Assuming that it is in fact dimW = 3, we choose again a complement W ′ of W in U and

find a decomposition

V = W ⊕W ′ ⊕ J∗W ′ ⊕W ′′

with J∗W ′′ = W ′′. Without restricting generality, we can assume that J acts trivially

on W ′′. Then, we find a basis for V such that the +1-eigenspace of J is spanned by

{e1, e4 + e5, e6} and the −1-eigenspace by {e2, e3, e4 − e5}, where e1, e2, e3 and e4 are

closed and e5 = J∗e4. Since the given closed three-form ρ generates this J , it has to be

of the form

ρ = ae1 ∧ (e4 + e5) ∧ e6 + be23 ∧ (e4 − e5)

for two real constants a, b. The vanishing exterior derivative

dρ = ae1 ∧ d(e56) mod Λ4U

leads to the same contradiction as in the first case and part (i) is shown.

In fact, the same arguments apply to the Lie algebra of part (ii). The four-dimensional

space U ⊂ ker d spanned by {e1, ..., e4} also satisfies imd ⊂ Λ2U . Going through the above
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arguments, the only difference is that e5 or e6 may be closed. However, at least one of

them is not closed and its image under d generates the exact two-forms. Again, there is

no one-form β ∈ U such that β ∧γ = 0 for all exact two-forms γ and the arguments given

in part (i) lead to contradictions for both dimW = 2 and dimW = 3. �

Proof of Lemma 5.1. Let ρ be a closed stable three-form on one of the four nilpo-

tent Lie algebras and U ⊂ ker d as defined in the lemma. For both values of ε, we can

apply Lemma 5.3 and choose two linearly independent closed (1, 0)-forms E1 and E2

within the Jρ-invariant space U ⊗ Cε. Considering that ρ + iερ̂ is a (3, 0)-form for both

values of ε, there is a third (1, 0)-form E3 such that ρ + iερ̂ = E123. Since dρ = 0 and

imd ⊂ Λ2U , it follows that the exterior derivative

dρ̂ = εiεd(E123) = εiεE
12 ∧ dE3

is an element of Λ4U . �

5.2. Solving the evolution equations on H3×H3. Due to the preparatory work of

Lemma 2.1, chapter 5, and Lemma 5.1 of the previous section, it turns out to be possible

to explicitly evolve every half-flat structure on h3 ⊕ h3 without integrating.

Proposition 5.4. Let (ω0, ρ0) be any half-flat Hε,τ -structure on h3⊕h3 with ωk1
0 = 0.

Then, the solution of the evolution equations (5.1) is affine linear in the sense that

σ(t) = σ0 + t dρ̂0 , ρ(t) = ρ0 + t dω0(5.2)

and is well-defined for all t ∈ R.

Proof. Let {e1, . . . , f3} be a standard basis such that ω0 is in one of the normal forms

ω2, . . . , ω5 of Lemma 2.1 which satisfy ωk1
0 = 0. By Lemma 5.1 and the second evolution

equation, we know that there is a function y(t) with y(0) = 0 such that

σ(t) = σ0 + y(t)e12f 12 =
1

2
ω2

0 + y(t)e12f 12.

For each of the four normal forms, the unique two-form ω(t) with 1
2
ω(t)2 = σ(t) and

ω(0) = ω0 is

ω(t) = ω0 − y(t)e1f 1.

However, the two-form e1f 1 is closed such that the exterior derivative dω(t) = dω0 is

constant. Therefore, we have ρ(t) = ρ0 + t dω0 by the first evolution equation. Moreover,

the two-form ω(t) is stable for all t ∈ R since it holds φ(ω(t)) = φ(ω0) for each of the

normal forms and for all t ∈ R. It remains to show that dρ̂(t) is constant in all four cases

which implies that the function y(t) is linear by the second evolution equation.

As explained in section 2 of chapter 5, it is easy to write down, for each normal form

ω0 separately, all compatible, closed three-forms ρ0, which depend on nine parameters.

For ρ(t) = ρ0 + t dω0, we verify with the help of a computer that λ(ρ(t)) = λ(ρ0) is

constant such that ρ(t) is stable for all t ∈ R since ρ0 is stable. When we also calculate

Jρ(t) and ρ̂(t) = J∗ρ(t)ρ(t), it turns out in all four cases that dρ̂(t) is constant. This finishes

the proof. �

We cannot expect that this affine linear evolution of spaces which have one-dimensional

holonomy, due to Proposition 2.4, ch. 5, yields metrics with full holonomy G∗2. Indeed,
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due to the following result the geometry does not change significantly compared to the

six-manifold.

Corollary 5.5. Let (ω0, ρ0) be a half-flat Hε,τ -structure on h3 ⊕ h3 with ωk1
0 = 0

and let gϕ be the Ricci-flat metric induced by the parallel stable three-form ϕ on M × R
defined by the solution (5.2) of the evolution equations with initial value (ω0, ρ0). Then, the

pseudo-Riemannian manifold (M ×R, gϕ) is either flat or isometric to the product of the

four-dimensional para-hyper-Kähler symmetric space (N4, gPHK) and a three-dimensional

flat factor.

Proof. By formula (1.11), the metric gϕ is determined by the time-dependent metric

g(t) induced by (ω(t), ρ(t)). All assertions follow from the analysis of the curvature of gϕ
completely analogous to the proof of Proposition 2.4, ch. 5. �

The situation changes completely when we consider the first normal form ω1 of Lemma

2.1, ch. 5.

Proposition 5.6. Let (ω0, ρ0) be any normalised half-flat Hε,τ -structure on h3 ⊕ h3

with ωk1
0 6= 0. There is always a standard basis {e1, . . . , f3} such that ω0 = e1f 1 + e2f 2 +

e3f 3. In such a basis, we define (ω(x), ρ(x)) by

ρ(x) = ρ0 + x(e12f 3 − e3f 12),

ω(x) = 2 (εκ(x))−
1
2

(
1

4
εκ(x) e1f 1 +

1

4
εκ(x) e2f 2 + e3f 3

)
,

where κ(x) (e123f 123)⊗2 = λ(ρ(x)). Furthermore, let I be the maximal interval containing

zero such that the polynomial κ(x) of order four does not vanish for any x ∈ I. The

parallel stable three-form (1.10) on M × I obtained by evolving (ω0, ρ0) along the Hitchin

flow (5.1) is

ϕ =
1

2

√
εκ(x)ω(x) ∧ dx+ ρ(x).

The metric induced by ϕ, which has holonomy contained in Gε,τ , is by (1.11) given as

(5.3) gϕ = g(x)− 1

4
κ(x)dx2,

where g(x) denotes the metric associated to (ω(x), ρ(x)). The variable x is related to the

parameter t of the Hitchin flow by the ordinary differential equation (5.6).

Proof. Since ωk1
0 6= 0, we can always choose a standard basis such that ω0 = e1f 1 +

e2f 2 + e3f 3 is in the first normal form of Lemma 2.1. Then ρ0 is of the form (2.3), ch. 5.

Moreover, by Lemma 5.1, there is a function y(t) which is defined on an interval

containing zero and satisfies y(0) = 0 such that the solution of the second evolution

equation can be written

σ(t) = σ0 + y(t)e12f 12.

The unique ω(t) that satisfies ω(0) = ω0 and 1
2
ω(t)2 = σ(t) for all t is

ω(t) =
√

1− y(t) e1f 1 +
√

1− y(t) e2f 2 +
1√

1− y(t)
e3f 3.
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Since

(5.4) dω(t) =
1√

1− y(t)
(e12f 3 − e3f 12),

there is another function x(t) with x(0) = 0 such that the solution of the first evolution

equation can be written

(5.5) ρ(t) = ρ0 + x(t)(e12f 3 − e3f 12).

This three-form is compatible with ω(t) for all t, as one can easily see from (2.3), ch. 5.

Furthermore, the solution is normalised by Theorem 1.2, which implies√
ελ(ρ(t)) = φ(ρ(t)) = 2φ(ω(t)) = −2

√
1− y(t) e123f 123.

Hence, we can eliminate y(t) by

y(t) = 1− 1

4
εκ(x(t)).

We remark that the normalisation of ρ0 = ρ(0) corresponds to κ(0) = 4ε. Comparing

(5.4) and (5.5), the evolution equations are equivalent to the single ordinary differential

equation

ẋ =
2√

εκ(x(t))
(5.6)

for the only remaining parameter x(t). In fact, we do not need to solve this equation

in order to compute the parallel G
(∗)
2 -form when we substitute the coordinate t by x via

the local diffeomorphism x(t) satisfying dt = 1
2

√
εκ(x(t)) dx. Inserting all substitutions

into the formulas (1.10) and (1.11) for the stable three-form ϕ on M × I and the induced

metric gϕ, all assertions of the proposition follow immediately from Theorem 1.2. �

Example 5.7. The invariant κ(x) and the induced metric g(x) for the three explicit

half-flat structures of Example 2.2, ch. 5, are the following.

If (ω0, ρ0) is the SU(3)-structure (2.4), it holds

κ(x) = (x−
√

2)3(x+
√

2), I = (−
√

2,
√

2),

g(x) = (1− 1

2

√
2x)

(
(e1)2 + (e2)2−4κ(x)−1(e3)2 + (e4)2 + (e5)2−4κ(x)−1(e6)2

)
+
√

2x(1− 1

2

√
2x)

(
e1 ·e4 + e2 ·e5 + 4κ(x)−1e3 ·e6

)
.

If (ω0, ρ0) is the SU(1, 2)-structure (2.5), we have

κ(x) = (x−
√

2)(x+
√

2)3, I = (−
√

2,
√

2),

g(x) = (1 +
1

2

√
2x)

(
(e1)2 − (e2)2 + 4κ(x)−1(e3)2 + (e4)2 − (e5)2 + 4κ(x)−1(e6)2

)
−
√

2x(1 +
1

2

√
2x)

(
e1 ·e4 + e2 ·e5 + 4κ(x)−1e3 ·e6

)
.

And for the SL(3,R)-structure (2.6), it holds

κ(x) = (2 + x2)2, I = R,
g(x) = (2 + x2)

(
e1 ·e4 + e2 ·e5

)
+ 4(2− x2)κ(x)−1e3 ·e6 + 4

√
2xκ(x)−1

(
(e3)2 − (e6)2

)
.
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Theorem 5.8. Let (ω(x), ρ(x)) be the solution of the Hitchin flow with one of the

three half-flat structures (ω0, ρ0) of Example 2.2, ch. 5, as initial value (see Proposition

5.6 for the explicit solution and Example 5.7 for the corresponding metric g(x), defined

for x ∈ I).

Then, the holonomy of the metric gϕ on M × I defined by formula (5.3) equals G2 for

the SU(3)-structure (ω0, ρ0) and G∗2 for the other two structures.

Moreover, restricting the eight-parameter family of half-flat structures given by (2.3),

ch. 5, to a small neighbourhood of the initial value (ρ0, ω0) yields in each case an eight-

parameter family of metrics of holonomy equal to G2 or G∗2.

Proof. For all three cases, we transform the left-invariant frame into a coordinate

frame as explained in the proof of Lemma 2.4, chapter 4, and calculate the curvature R

of the metric gϕ defined by (5.3). Carrying this out with the package “tensor” contained

in Maple 10, we obtain that the rank of the curvature viewed as endomorphism on two-

vectors is 14. This implies that the holonomy of gϕ in fact equals G2 or G∗2.

The assertion for the eight-parameter family is an immediate consequence. Indeed, by

construction, the rank of the curvature endomorphism is bounded from above by 14 and

being of maximal rank is an open condition. �

To conclude this section we address the issue of completeness and use the Riemannian

family in Example 5.7 and Corollary 1.8 to construct a complete conformally parallel

G2-metric on R× (Γ\H3 ×H3).

Example 5.9. Let H3 be the Heisenberg group and N = Γ\H3 × H3 be a compact

nilmanifold given by a lattice Γ. Let us denote by x : I → (−
√

2,
√

2) the maximal

solution to the equation

ẋ(t) =
2√

(
√

2− x(t))3(x(t) +
√

2)
,

with initial condition x(0) = 0, defining the t-dependent family of Riemannian metrics

gt =

√
2− x(t)√

2

(
(e1)2 + (e2)2 + (e4)2 + (e5)2

)
+ x(t)

(√
2− x(t)

) (
e1 · e4 + e2 · e5

)
+

2
√

2

(
√

2− x(t))2(x(t) +
√

2)

(
(e3)2 + (e6)2

)
− 4x(t)

(
√

2− x(t))2(x(t) +
√

2)
e3 · e6.

If ϕ : R→ I is a diffeomorphism, then the metric

dr2 +
1

ϕ′(r)2
gϕ(r)

is globally conformally parallel G2 and geodesically complete.
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[RC] R. Reyes Carrión, Some special geometries defined by Lie groups, PhD-thesis, Oxford, 1993.

[RV] F. Raymond and T. Vasquez, 3-manifolds whose universal coverings are Lie groups, Topology

Appl. 12 (1981), 161–179.

[Sa1] S. Salamon, Riemannian geometry and holonomy groups, Pitman Research Notes in Mathe-

matics Series, 201. Longman Scientific & Technical, Harlow; copublished in the United States

with John Wiley & Sons, Inc., New York, 1989.

[Sa2] S. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001),

no. 2-3, 311–333.
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Zusammenfassung

Eine SU(3)-Struktur auf einer sechsdimensionalen Mannigfaltigkeit ist definiert durch

ein Paar von globalen Differentialformen (ω, ρ) ∈ Ω2M × Ω3M , die mehrere Kompatibi-

litätsbedingungen erfüllen. Eine SU(3)-Struktur heißt halbflach, falls die beiden definie-

renden Formen das äußere Differentialgleichungssystem

dω2 = 0, dρ = 0

lösen. Halbflache Strukturen wurden 2001 von N. Hitchin als natürliche Startwerte einer

geometrischen Evolutionsgleichung eingeführt, wobei die Lösung der Evolution Metri-

ken mit Holonomie G2 induziert. In der Physik werden halbflache Strukturen als interne

Mannigfaltigkeiten bei Kompaktifizierungen von zehndimensionalen Superstringtheorien

studiert.

In der vorliegenden Dissertation werden linksinvariante halbflache SU(3)-Strukturen

auf sechsdimensionalen Liegruppen studiert, insbesondere auf Produkten von dreidimen-

sionalen Liegruppen. Das Hauptergebnis der Arbeit ist die vollständige Klassifikation der-

jenigen Produkte von zwei dreidimensionalen Liegruppen, die eine linksinvariante halb-

flache SU(3)-Struktur zulassen. Eine ähnliche Klassifizierung wird unter der Zusatzbedin-

gung bewiesen, dass die beiden Faktoren orthogonal zueinander sind.

Desweiteren wird auf den Liegruppen S3 × S3 und H3 × H3 das Problem studiert,

wieviele linksinvariante halbflache SU(3)-Strukturen modulo Liegruppenautomorphismen

existieren. In beiden Fällen wird das Problem vollständig durch die explizite Parametrisie-

rung dieser Strukturen gelöst. Auf der Liegruppe SL(2,R)× SL(2,R) wird mit ähnlichen

Methoden die Eindeutigkeit der bekannten linksinvarianten nearly pseudo-Kählerstruktur

nachgewiesen, die insbesondere auch halbflach ist.

Im letzten Abschnitt der Arbeit wird ausführlich der Hitchinfluss behandelt. Unter

anderem wird ein neuer Beweis für Hitchins Hauptresultat gegeben, der auch für indefinite

Metriken und nichtkompakte Mannigfaltigkeiten angewendet werden kann. Auf H3 ×H3

wird der Hitchinfluss explizit gelöst für alle zuvor parametrisierten halbflachen SU(3)-

Strukturen. Dabei werden auch Beispiele von neuen Metriken mit Holonomie gleich G2

und gleich G∗2 konstruiert.





Lebenslauf

Fabian Schulte-Hengesbach

geboren am 2. Dezember 1979 in Arnsberg, Westfalen

1999 Abitur am Gymnasium Laurentianum Arnsberg

2000 Zivildienst beim Deutschen Roten Kreuz, Kreisverband Arnsberg

2002 Vordiplome in Mathematik und Physik mit Nebenfach Informatik an der

Ruprecht-Karls-Universität Heidelberg

2003
”
ERASMUS“-Semester an der Università degli studi di Roma la Sapienza
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