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Chapter 1

Introduction

By an automorphic function, one usually means a function f of a semisimple (or more general,
a reductive) Lie group G with values in a complex vector space such that f is invariant under
the operation of a certain discrete subgroup Γ of G. In order to study automorphic functions,
one introduces the so-called automorphic forms which are functions that are only invariant under
the group operation up to multiplication by a certain factor. This factor is either given by a
representation of a maximal compact subgroup K of G or by a so-called factor of automorphy
when defining the functions on the homogeneous spaceG/K. The equivalence of these two concepts
is fairly hard to find in the literature and is carried out in detail in this thesis. However, this is
only a minor aspect of this thesis.

The theory of automorphic forms on semisimple Lie groups is closely connected to the theory of
symmetric spaces by the fact that the quotient G/K of a semisimple Lie group G by a maximal
compact subgroup K is always a symmetric space. The other way round, every non-Euclidian
symmetric space can be written as the quotient G/K of its semisimple group of isometries G by a
maximal compact subgroup K of G. Furthermore, the quotient only depends on the Lie algebra
g of G. Both the non-Euclidian symmetric spaces and the semisimple Lie algebras were classified
by Cartan in 1919.

A hermitian symmetric space is a symmetric space G/K that can be embedded into a complex
vector space such that G operates on the image by holomorphic transformations. The realization of
G/K in the complex vector space is called a hermitian domain in this case. When requiring auto-
morphic forms on hermitian domains to be holomorphic, the theory becomes richer since methods
of complex analysis can be applied. The classification of irreducible hermitian symmetric spaces
reveals the existence of four infinite series labeled by capital Roman letters and two exceptional
spaces. The symmetric spaces of the series III are those of the pair of the real symplectic group
Sp(n,R) and its maximal compact subgroup U(n). The corresponding homogeneous space can
be realized as the well-known Siegel space, the symplectic group operating by Moebius transfor-
mation, and the corresponding automorphic forms are the Siegel modular forms. The spaces IVq
of the series IV belong to the connected component SO+(2, q) of the simple Lie group SO(2, q).
The corresponding automorphic forms, sometimes called orthogonal modular forms, became ac-
quainted with Borcherds who received the Fields medal for proving the Moonshine Conjecture.
One important step was his discovery and application of a connection between the classical elliptic
modular forms and orthogonal modular forms. The even members II2n of the series II correspond
to certain “hermitian symplectic” groups Sp(n,H) over the quaternions with maximal compact
subgroups U(2n). The homogeneous space can be realized as a quaternary half-space in analogy to
the Siegel space and the resulting automorphic forms are called modular forms of quaternions. In
low dimensions, it turns out that some of the symmetric spaces of different series are isomorphic,
thus allowing a comparison of different types of automorphic forms.
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6 CHAPTER 1. INTRODUCTION

This thesis deals with a detailed study of an equivariant isomorphism

II4 ∼= IV6

and some consequences concerning the corresponding automorphic forms. As the title suggests,
both hermitian symmetric spaces can be realized as an open domain in a six-dimensional complex
vector space. In the monograph [Sat], Satake introduces equivariant embeddings of different
hermitian symmetric spaces into Siegel spaces in a very general context. This embedding is
studied here in the given special case and many details applying only to this case are carried out
explicitly.

In order to understand the above isomorphism, it is necessary to understand a certain amount
of Lie theory, especially the notion of isogeny. By isogeneous Lie groups, one means two Lie
groups having isomorphic Lie algebras. It turns out that this is equivalent to the fact that the
two Lie groups have the same simply connected covering Lie group. All groups of an equivalence
class of isogeneous groups are isomorphic to quotients of the universal covering group by discrete
subgroups of its center. On the other hand, when taking quotients by maximal compact subgroups,
isogeneous groups define isomorphic symmetric spaces. The connected component of the group of
isometries of this symmetric space is necessarily isomorphic to the so-called adjoint form, which is
defined as the quotient of the universal covering group by its center (assuming that the center is
discrete). However, it has to be added that most of the semisimple Lie groups are also algebraic
groups and the universal cover in the algebraic sense does not always agree with the topological
universal cover.

The special case treated in this thesis concerns the isogeny induced by the isomorphism

sp(2,H) ∼= so(2, 6).

The corresponding (algebraically) simply connected group is well-known to be the Spin group of
signature (2, 6). The Spin group is usually defined as a certain subgroup of the Clifford algebra of
the corresponding quadratic space. Its name is derived from physical applications concerning the
sub-atomic spin. When the irreducible representations of the orthogonal groups were classified by
Cartan, he found out that it was not possible to construct them all by applying linear algebra
to the standard representation of SO(n,C) on Cn. However, the structure theory of real and
complex Clifford algebras revealed further canonical representations. These representation of a
Clifford algebra and the restrictions to the Spin group are called spin representations or spinors.
All remaining irreducible representations of the orthogonal groups predicted by the general rep-
resentation theory can be constructed with the help of these spin representations.

In the case of signature (2, 6), there are two irreducible half-spin representations adding up to the
spin representation. In the final chapter of this thesis, the spin representation is explicitly described
on the standard generators of the Spin group, which are the so-called Eichler transformations. The
image of the spin representation turns out to be contained in the direct product of two copies of
Sp(2,H). Furthermore, the two resulting projections correspond to the half-spin representations
which are revealed to be two-sheeted coverings of Sp(2,H). However, SO+(2, 6) and Sp(2,H) are
shown not to be isomorphic since the representations have different kernels. Moreover, an explicit
isomorphism of the different realizations of the hermitian domains is given which is, of course,
equivariant under the operation of the adjoint form. It should be remarked that nearly all proofs
are carried out explicitly and without relying on the general Lie theory.

As a main result of this thesis, the image of the Spin group in the product Sp(2,H) × Sp(2,H)
is described with the help of an homomorphism Sp(2,H) → Sp(2,H)/ ± E. As a consequence,
it is possible to describe the operation of the Spin group on the Hermitian domain as Moebius
transformation.

Another main result consists in the application of this description to determine the possible factors
of automorphy. In order to achieve this, the maximal compact subgroup K of the Spin group is
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described from different points of view. In analogy to Siegel modular forms, a factor of automorphy
with values in the complexification KC of the maximal compact subgroup is given. The possible
factors of automorphy are then obtained by composing representations of the complexification
with this factor of automorphy.

Of course, the correspondence of quaternary and orthogonal modular forms is by no means ex-
hausted by this thesis. Especially promising seems the comparison of Theta series which exist
only in the quaternary world and Borcherds products which exist only in the orthogonal world.

I would like to express my gratitude to Prof. Freitag for proposing and supervising this thesis.
Moreover, i thank my parents for their caring support.



Chapter 2

Matrix Groups over the
Quaternion Algebra

2.1 The Quaternion Algebra

In this section, the basic properties of Hamilton’s quaternions are listed without proofs. As a
reference serves e.g. [Ebb].

Definition 2.1. The quaternion algebra H is defined as the four-dimensional real algebra with
basis {1, i1, i2, i3} where 1 denotes the identity element and the other basis vectors are multiplied
according to the following rules:

i21 = i22 = i23 = i1i2i3 = −1

i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2

The subalgebra spanned by 1 will be identified with R. So 1H can be regarded as 1R and will be
omitted in the notation.

The most important properties of H are summarized in the following proposition. Recall that a
division algebra is an associative algebra such that each element has a unique multiplicative inverse.

Proposition 2.2. The quaternion algebra is an associative division algebra which is not commu-
tative. The center of H is R.

Given two quaternions x = x0 + x1i1 + x2i2 + x3i3 and y = y0 + y1i1 + y2i2 + y3i3 the conjugate
of a quaternion is defined as

x̄ := x0 − x1i1 − x2i2 − x3i3,

the real part as
Re(x) := x0,

the canonical scalar product as

〈x, y〉 := 2(x0y0 + x1y1 + x2y2 + x3y3),

and the norm as

|x| :=
√

1

2
〈x, x〉 =

√
x2

0 + x2
1 + x2

2 + x2
3.

Lemma 2.3. The most important rules for carrying out calculations in H are:

8



2.2. LINEAR ALGEBRA OVER THE QUATERNION ALGEBRA 9

(i) The conjugation on H is an involution, i.e. it is R-linear, xy = ȳx̄ and ¯̄x = x.

(ii) Re(x) = Re(x̄) = 1
2 (x+ x̄)

(iii) Re(xy) = Re(yx)

(iv) 〈x, y〉 = 2Re(xȳ) = 2Re(yx̄) = xȳ + yx̄ = x̄y + ȳx is R-bilinear, symmetric and positive
definite.

(v) xx̄ = x̄x = |x|2

(vi) |x| = |x̄|

(vii) |xy| = |x||y|

(viii) x2 − 2Re(x)x+ |x|2 = 0

2.2 Linear Algebra over the Quaternion Algebra

Due to the non-commutativity, one always has to be careful when trying to generalize linear
algebra to matrices over quaternions. For example, the concept of a determinant no longer makes
sense.

The set of n× n-Matrices with entries in H will be denoted by

Mn(H)

and carries the structure of an associative unital R-algebra. The identity element will always be
denoted by E and the group of units by

GL(n,H).

Lemma 2.4. The equality

AB
′

= B̄′Ā′ (2.1)

holds for all matrices A,B ∈ Mn(H), thus entry-wise conjugation followed by transposition is an
involution on Mn(H).

The proof is trivial, it might be remarked, though, that any similar equalities involving only
transposition or only conjugation, which are familiar from commutative linear algebra, do not
hold in general over non-commutative algebras.

The Gauss algorithm still works over a non-commutative skew field although calculations quickly
become very laborious. Nevertheless, this characterizes GL(n,H) as matrices with full rank and
one can easily deduce a set of generators for GL(n,H). In the case n = 2, the generators are
especially simple.

Lemma 2.5.

GL(2,H) = 〈
(

0 1
1 0

)
,

(
1 1
0 1

)
,

(
x 0
0 1

)
| x ∈ H 〉

Hermitian and Positive Definite Matrices

Hermitian and positive definite matrices with entries in H can often be treated like the well-known
real and complex analogons, especially in the case n = 2.
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Definition 2.6. A Matrix X ∈Mn(H) is called Hermitian if X = X̄ ′.
The set of all hermitian matrices is called

Sym(n,H) = {X ∈Mn(H) |X = X̄ ′}.

The operation
X 7→ X[A] := Ā′XA

leaves Sym(n,H) invariant for all A ∈Mn×m(H), so especially X[h] is real for all h ∈ Hn.

A hermitian matrix Y is called positive definite if Y [h] > 0 for all h ∈ Hn which is abbreviated by
X > 0. The set of all positive definite matrices is denoted by

Pos(n,H) = {Y ∈ Sym(n,H) | Y > 0}.

In [Kri], many properties of hermitian and positive definite matrices over the quaternions can
be found. For example, one can define a real determinant for hermitian matrices generalizing
the spectral theorem of linear algebra on hermitian matrices over H. In the case n = 2, the
determinant can simply be calculated for an X ∈ Sym(2,H) by

detX = det

(
x0 x1

x̄1 x2

)
= x0x2 − x̄1x1

which is always real because x0 and x2 obviously have to be real. This can be taken as a definition
in this thesis which deals only with the case n = 2. As easily verified, the inverse matrix of a
hermitian matrix X is

X−1 =
1

detX

(
x2 −x1

x̄1 x0

)
.

As an example of the trouble induced by non-commutativity, the reader may calculate the inverse
of an arbitrary 2 times 2 matrix with entries in H with the Gauss algorithm.

Another useful property in the case n = 2 is the fact that positive definite matrices can be
characterized by positive principal minors in exactly the same way as if working over R.

Lemma 2.7.

Pos(2,H) = {Y =

(
y0 y1

ȳ1 y2

)
| y0, y2 ∈ R, y1 ∈ H ; y0 > 0 , det (Y ) > 0}

Symplectic Matrices

Both the real and complex symplectic groups Spn(R) and Spn(C) are defined as the invariance
groups of standard alternating bilinear forms on R2n respectively C2n. However, over the quater-
nions, the symplectic group Sp(n,H) is defined as the invariance group of the standard alternating

sesquilinear form on H2n represented by the matrix J :=

(
0 E
−E 0

)
, that is 〈x, y〉 = x̄′Jy. In

other words, one has
Sp(n,H) := {M ∈M2n(H) | M̄ ′JM = J}.

The literature often uses the denotation Sp(2n,H) or SO∗(4n) (Helgason) or SU−(n,H) (Satake)
for the same or an isomorphic group. An isomorphism to the most common form SO∗(4n) is
given via the matrix representations in the following section.

Lemma 2.8. Sp(n,H) is a subgroup of GL(2n,H). Writing M =

(
A B
C D

)
, the following asser-

tions are equivalent.
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(i) M ∈ Sp(n,H)

(ii) M̄ ′ ∈ Sp(n,H)

(iii) Ā′C − C̄ ′A = B̄′D − D̄′B = 0 , Ā′D − C̄ ′B = E

(iv) AB̄′ −BĀ′ = CD̄′ −DC̄ ′ = 0 , AD̄′ −BC̄ ′ = E

In this case the inverse matrix of M is

M−1 =

(
D̄′ −B̄′
−C̄ ′ Ā′

)
Relations (iii) and (iv) are called fundamental relations of symplectic matrices.

Important for many concrete calculations will be the following set of simple generators of the
symplectic group.

Lemma 2.9.

Sp(n,H) = 〈 J ,
(
W̄ ′ 0
0 W−1

)
,

(
E S
0 E

)
|W ∈ GL(n,H) , S ∈ Sym(n,H) 〉

The center of the symplectic group is

Z(Sp(n,H)) = ±E.

The first two lemmata are shown in [Kri] whereas the last statement is proven by straightforward
computation using the first lemma.

2.3 Matrix Representations

The matrix representations of H over R and C will be used pretty extensively in this thesis. Recall
that a faithful representation of a unital K-algebra A is an injective homomorphism of unital
K-algebras from A into the algebra of endomorphisms of some vector space V over K.

Define the mappings

ˇ: H→M2(C) , x 7→ x̌ :=

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
and

ˆ: H→M4(R) , x 7→ x̂ :=


x0 x1 x2 x3

−x1 x0 −x3 x2

−x2 x3 x0 −x1

−x3 −x2 x1 x0

 .

The latter matrix represents the linear mapping of H given by multiplication by x̄ from the right
with respect to the standard basis. The complex matrix representation can be defined similarly
choosing an adequate basis of H as two-dimensional complex vector space.

Lemma 2.10. The maps ˇ and ˆ are faithful representations of the R-algebra H having the
following properties.

(i) det (x̌) = |x|2 , det (x̂) = |x|4

(ii) (ˇ̄x) = ¯̌x′ , ˆ̄x = x̂′
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Both representations can be extended to representations of the matrix algebras Mn(H). Define

ˇ: Mn(H)→M2n(C) , X = (xij) 7→ X̌ := (x̌ij)

and ̂: Mn(H)→M4n(R) , X = (xij) 7→ X̂ := (x̂ij).

Lemma 2.11. Bothˇand ̂are faithful representations of unital R-algebras satisfying

(i)
ˇ
A
′

= Ǎ
′
,

(ii) det X̌ is always real,

(iii) (det X̌)2 = det X̂,

(iv) If X ∈ Sym(2,H) additionally det (X̌) = (detX)2 and det (X̂) = (detX)4,

(v) If X ∈ Sp(n,H), det (X̌) = 1,

(vi) X ∈ GL(n,H) ⇔ X̌ ∈ GL(2n,C) ⇔ X̂ ∈ GL(4n,R) and

(vii) X ∈ Sp(n,H) ⇔ X̂ ∈ Sp(4n,R).

This lemma allows the definition of a substitute for the determinant of matrices over H via one of
the embeddings.

A Complexification of Sp(n,H)

This section deals with the extension of scalars of the R-algebra H by tensoring with C. The
isomorphisms

H⊗R C ∼= H⊕ iH

and

Mn(H⊗R C) ∼= Mn(H)⊕ iMn(H)

are well-known. A C-linear involution on H⊕ iH is obviously given by

X + iY 7→ X̄ ′ + iȲ ′.

Thus, the complexifications Sp(n,H⊗ C) and Sym(n,H⊗ C) ∼= Sym(n,H)⊕ iSym(n,H) can be
defined in the obvious way.

Lemma 2.12. The following maps are isomorphisms of C-algebras.

(i) H⊕ iH →̃M2(C) , x+ iy 7→ x̌+ iy̌

(ii) Mn(H)⊕ iMn(H) →̃M2n(C) , X + iY 7→ X̌ + iY̌

The proof consists mainly in comparing dimensions.

However, the relation
ˇ
A
′

= Ǎ
′

no longer holds over H⊕ iH since the complex conjugation on the
right hand side is not C-linear.

Lemma 2.13. After applying the isomorphism H⊗C →̃M2(C), the C-linear quarternary conju-
gation on H⊗ C corresponds to the mapping

M 7→ A−1M ′A with A =

(
0 1
−1 0

)
.
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This implies on the level of n × n-matrices with entries in H ⊗ C that quaternary conjugation
composed with transposition corresponds to the mapping

M 7→ J̃−1M ′J̃ with J̃ =


A

A
...

A


on M2n(C).

Proof. The quarternary conjugation on a matrix

(
a b
−b̄ ā

)
obviously results in

(
ā −b
b̄ a

)
. The

given matrix multiplication, which is clearly C-linear, yields the same result. On matrix level, the
proof is still trivial.

As a consequence of this lemma, the symplectic relation M̄ ′JM = J in GL(2n,H⊗C) translates
to

J̃−1M ′J̃JM = J ⇔ M ′ĨM = Ĩ

in GL(4n,C) with

Ĩ := J̃J =


A

...
A

−A
...
−A


when applying the embedding ˇ. The matrix Ĩ is invertible and symmetric because of −A = A′,
thus defines a symmetric non-degenerate bilinear form. As explained in the next chapter, the
image of Sp(n,H) must therefore be contained in an orthogonal group isomorphic to SO(4n,C).
A comparison of dimensions delivers that the complexification Sp(n,H ⊗ C) is isomorphic to
SO(4n,C).

The matrix embeddingˇalso induces an isomorphism of Sp(n,H) with the group

SO∗(4n) := {M ∈ SL(4n,C) | M̄ ′JM = J , M ′M = E}

which is defined for example in [Hel].

An easy calculation yields the image of GL(n,H) in GL(2n,C) under the embeddingˇwhich is

GL(n,H) ∼= {M ∈ GL(2n,C) | J̃−1MJ̃ = M̄}.

Thus,

Sp(n,H) ∼= {M ∈ SL(4n,C) | J̃−1MJ̃ = M̄ , M ′ĨM = Ĩ}
= {M ∈ SL(4n,C) | M̄ ′Ĩ J̃−1M = Ĩ J̃−1 , M ′ĨM = Ĩ}
∼= SO∗(4n)

where the last isomorphism is given by an adequate change of basis.



Chapter 3

Classical Orthogonal Groups

By a classical orthogonal group, one usually means the real and complex orthogonal groups and
all groups having the same Lie algebra. The classical references for the whole chapter are [Che]
and [Die]. The definitions and some details about the Clifford algebra and the Spin groups are
taken from more recent books like [Ha-OM] or [Law].

3.1 Quadratic Spaces

The section summarizes the standard facts about quadratic spaces over fields of characteristic
different from 2.

Bilinear forms and quadratic forms

Let V be a finite-dimensional vector space over a field K. If characteristic K is different from 2,
there is a one-to-one correspondence between symmetric bilinear forms on V and quadratic forms
on V . The correspondence is given by assigning to a symmetric bilinear form

〈 , 〉 : V × V → K

the quadratic form

q(x) :=
1

2
〈x, x〉.

and the other way round by the polarization formula

〈x, y〉 = q(x+ y)− q(x)− q(y).

After choosing a basis e1, ..., en of V, a bilinear form is represented by the so-called Gram matrix

G = (gij) := (〈ei, ej〉).

When the basis is changed by a matrix A = (aij), fi =
∑
j aijej the Gram matrix transforms to

A′GA.

A symmetric bilinear form is called non-degenerate if the linear map

V → V ∗ , x 7→ 〈., x〉

is injective for all x ∈ V . Equivalent is the property that the Gram matrix representing the bilinear
form is invertible for one and hence for any basis.

In this thesis, a field is always considered to have a characteristic different from 2.

14
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Quadratic Spaces

Definition 3.1. (i) A pair (V, 〈 , 〉) of a finite-dimensional vector space over a field of charac-
teristic different from 2 and a non-degenerate symmetric bilinear form on V will be called a
quadratic space. (V, q) shall denote the same quadratic space where q is the corresponding
quadratic form.

(ii) An isometry of two quadratic spaces (Vi, 〈 , 〉i) over the same field K is a linear map σ : V1 →
V2 satisfying 〈σ(x), σ(y)〉1 = 〈x, y〉2.

(iii) Two quadratic space are called isomorphic (as quadratic spaces), if there is a bijective isom-
etry.

(iv) An orthogonal transformation of a quadratic space (V, 〈 , 〉) is an isometric automorphism of
V.
The orthogonal group O(V ) = O(V, 〈, 〉) is defined as the group of orthogonal transformations
of a quadratic space. In other words, an orthogonal group is the invariance group of a non-
degenerate symmetric bilinear form on a finite-dimensional vector space.

(v) The special orthogonal group SO(V ) denotes the subgroup of O(V ) of orthogonal transfor-
mations of determinant 1.

Orthogonal transformations have necessarily a determinant of 1 or −1, which is easily proved
introducing a basis. Hence, SO(V ) has index 2 in O(V ).

Lemma 3.2. For dimV ≥ 3, the center of O(V ) is {±idV }. Hence, the center of SO(V ) is
{±idV } in even dimension and trivial in odd dimension in this case.

The following facts about quadratic spaces over C and R are well known from linear algebra.

Proposition 3.3. (i) Every quadratic space (V, q) over C of dimension n is isomorphic to Cn
equipped with the quadratic form

q(x) = x2
1 + ...+ x2

n.

So an isomorphism class of a complex quadratic space is already determined by the dimension
of V.

(ii) Let Rp,q denote the quadratic space (Rp+q, q) with the quadratic form

q(x) = x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q.

Every quadratic space (V, q) over R is isomorphic to an Rp,q. So an isomorphism class of
real quadratic spaces is determined by the pair (p, q) which is called the signature of (V, q).

The orthogonal groups of these standard quadratic spaces can be identified with some well-known
matrix groups.

O(n,C) := {A ∈ GL(n,C) |A′A = E}
O(p, q) := {A ∈ GL(n,R) |A′Ep,qA = Ep,q}
O(n) := O(n,R) = O(n, 0) = {A ∈ GL(n,R) |A′A = E}

Ep,q denotes a diagonal matrix with diagonal entries p times 1 and q times −1. By the proposition,
all orthogonal groups over C and R are isomorphic to one of these matrix groups.

The classification of non-degenerate hermitian forms on complex vector spaces looks completely
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analogous. This motivates the following definition of the standard unitary groups.

U(p, q) := {A ∈ GL(n,C) | Ā′Ep,qA = Ep,q}
SU(p, q) := {A ∈ SL(n,C) | Ā′Ep,qA = Ep,q}
U(n) := {A ∈ GL(n,C) | ĀA = E}
SU(n) := {A ∈ SL(n,C) | Ā′A = E}.

Proposition 3.4. Every quadratic space admits an orthogonal basis e1, ...en, that is
〈ei, ej〉 = aiδij.

Over R, the ai can obviously be normalized to ±1 and the resulting basis is called orthonormal.

Definition 3.5. (i) The orthogonal direct sum V1 ⊥ V2 of two quadratic spaces (Vi, 〈 , 〉i) is
defined as the quadratic space (V1 ⊕ V2, 〈 , 〉) with the bilinear form

〈x1 + x2, y1 + y2〉 = 〈x1, y1〉1 + 〈x2, y2〉2.

(ii) Two vectors x,y of a quadratic space are called orthogonal to each other, if 〈x, y〉 = 0.
A vector x with q(x) = 0 is called isotropic, otherwise anisotropic.

(iii) The orthogonal complement W⊥ of a subspace W of a quadratic space V is defined as the
subspace of all vectors orthogonal to all vectors of W .

The equality
dimW + dimW⊥ = dimV

holds for any subspace W , whereas
W ⊥W⊥ = V

if and only if the restriction of the bilinear form to W is non-degenerate.

Reflections

The previous observation leads to the decomposition V = K · a ⊥ a⊥ for any anisotropic vector a.
In this case, the reflection σa along a is the automorphism of V which maps a to −a and operates
trivially on the hyperplane a⊥. This reflection σa can also be expressed by the formula

σa(x) = x− 〈x, a〉
q(a)

a

As easily proven, a reflection is an orthogonal transformation of determinant −1. The following
important result is still not hard to prove.

Proposition 3.6. Let (V, 〈 , 〉) be a quadratic space. The orthogonal group O(V) is generated by
the reflections along anisotropic vectors. An orthogonal transformation belongs to the subgroup
SO(V) if and only if it can be written as a product of an even number of reflections.

Hyperbolic Planes

A hyperbolic plane is a two dimensional quadratic space V which admits a basis f1, f2 with the
Gram matrix (

0 1
1 0

)
.

In the case K = R, a hyperbolic plane has the signature (1,1), which is immediately verified when
changing to the basis 1√

2
(f1 ± f2).
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The other way round starting with the prototype of an indefinite real quadratic space Rp,q,
p, q ≥ 1, as defined above with standard basis e1, ..., en one finds a hyperbolic plane as the
subspace spanned by 1√

2
(e1 ± ep+1). The orthogonal complement of this subspace is isomorphic

to Rp−1,q−1. Induction implies the following lemma.

Lemma 3.7. Let V = Rp,q be a real quadratic space with p ≤ q. Then V is isomorphic to a direct
sum of p hyperbolic planes and a negative definite subspace V0.

V ∼= H1 ⊥ ... ⊥ Hp ⊥ V0

Witt’s Theorem

The most fundamental result about orthogonal groups is Witt’s Theorem. The proof takes some
time but can be found in any of the references.

Proposition 3.8. (Witt’s Theorem) Let (V, 〈 , 〉) be a quadratic space as defined above. Let W1,
W2 be subspaces of V and let σ : W1 → W2 be an isometry. Then σ can be extended to an
orthogonal transformation of O(V ).

The Vector Representation of an Orthogonal Group

To begin with, some definitions concerning representations are recalled.

A representation of a group G on a vector space V is a group homomorphism ρ of G in the
group GL(V ) of automorphisms of V . Often the vector space V itself is called a representation
of G (or a G-module) if G acts on V via a representation ρ. An equivariant or G-linear map
of two representations V and W is a linear map V → W that commutes with the action of G.
Hence, two representations are called equivalent if there is an equivariant isomorphism V → W .
A representation V is called irreducible (or simple) if there is no proper nonzero subspace W that
is invariant under the action of G (that is G-invariant) and completely reducible if there is a direct
sum decomposition of V into G-invariant subspaces.

Given a quadratic space (V, q), the standard action of the orthogonal group O(V ) on V is obviously
a representation which is called the vector representation of O(V ). It is a well-known fact, that
this representation is irreducible when the characteristic of K is different from 2 (cf. [Che], prop.
I.6.2 ).

If x is an element with norm q(x) 6= 0, the subspace of V spanned by all vectors v of the same
norm as x is obviously invariant under the operations of O(V ). The irreducibility of the vector
representation immediately implies the following lemma.

Lemma 3.9. Let (V, q) be a quadratic space with char K 6= 2 and q non-degenerate and let x be
an element with norm q(x) 6= 0. Then V has a basis of vectors of the same norm q(x).

3.2 Clifford Algebras

Informally, the Clifford algebra of a quadratic space V is the free associative algebra generated
by V modulo the relation v2 = q(v). In modern algebraic language, this can be expressed slightly
more formally.
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Definition 3.10. Let (V, q) be a quadratic space. An associative K-algebra C = C (V ) = C (V, q)
together with a linear map ι : V → C (V, q) is a Clifford algebra of V if and only if any linear
mapping ψ : V → A into any associative K-algebra A satisfying ψ(x)2 = q(x) · 1A factors through
C (V, q). More exactly, there is a unique homomorphism φ : C (V, q) → A of K-algebras making
the following diagram commutative.

V
ι //

ψ ��>
>>

>>
>>

> C (V, q)

∃!φ
{{xx

xx
xx

xx
x

A

By abstract nonsense, a Clifford algebra is uniquely determined up to a unique isomorphism. The
definition implies that

ι(a)2 = q(a) · 1C ∀a ∈ V

or equivalently by polarization

ι(a)ι(b) + ι(b)ι(a) = 〈a, b〉 · 1C ∀a, b ∈ V.

Proposition 3.11. The Clifford algebra C (V, q) exists for any quadratic space (V, q). The map ι
is injective and C (V, q) has dimension 2n over K, if n = dim(V ).

Proof. One defines the Clifford algebra as the quotient of the tensor algebra
⊕
V ⊗i by the two-

sided ideal generated by all elements x⊗ x− q(x) · 1C for x ∈ V . Then the embedding of V and
the universal property follow from the corresponding properties of the tensor algebra. Details and
the proof of the dimension can be found e.g. in [La].

For the sake of readability, the vector space V will be identified with ι(V ) and ι will be omitted
in the notation. After choosing a basis of V , the Clifford algebra C is spanned as a vector space
over K by

e1
ν1 ...en

νn with νi = 0 or 1 for i = 1, ..., n

Using the defining relations

ei
2 = q(ei) and eiej + ejei = 〈ei, ej〉 for i 6= j,

basis vectors can be multiplied in a convenient way especially when an orthonormal basis is chosen.

Example 3.12. The Clifford algebras of R0,0, R0,1 and R0,2 are isomorphic to R, C and H
respectively. From this point of view, the concept of a Clifford algebra may be regarded as a
generalization of the quaternion algebra.

The even and odd part, C + = C +(V, q) and C− = C−(V, q), of a Clifford algebra are defined as
the span of products of an even respective odd number of basis elements. This definition provides
the Clifford algebra with the structure of a Z/2Z-graded algebra which means that

C = C + ⊕ C− , C +C− ⊂ C− , C−C + ⊂ C− , C +C + ⊂ C + , C−C− ⊂ C +.

Both parts have dimensions 2n−1, as follows from counting basis vectors. Furthermore, C + is
obviously generated by the two-products of basis vectors of an arbitrary basis of V.

Remark 3.13. (i) The linear embedding V → C (V ) , v 7→ −v lifts by the universal property
of the Clifford algebra to the unique main automorphism ∗ : C → C of the Clifford algebra,
that is

(a+ b)∗ = a∗ + b∗ , (ab)∗ = a∗b∗ , v∗ = −v , λ∗ = λ∗

for a, b ∈ C , v ∈ V , λ ∈ K.
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(ii) There is a unique involution ′ : C → C of the Clifford algebra called the main involution
with the properties

(a+ b)′ = a′ + b′ , (ab)′ = b′a′ , v′ = v , λ′ = λ

for a, b ∈ C , v ∈ V , λ ∈ K.

Both the main automorphism ∗ and the main involution ′ respect the Z/2Z-grading and commute
with each other. In addition, the main automorphism acts trivially on the even part C + of the
Clifford algebra.

Chiral Elements and the Center of a Clifford Algebra

After choosing an orthogonal basis e1, ..., en of V, the element

χ := e1...en

can be defined which is called a chiral element of the Clifford algebra C (V ) by some authors. The
line K · χ does not depend on the choice of the basis as a change of basis by an invertible matrix
A yields the new chiral element χ̃ = detAχ. Easy calculations result in the equation

χei = (−1)n−1eiχ

and the center Z of a Clifford algebra which is (confer [Die])

Lemma 3.14.

Z(C ) =

{
K if dim V is even,
K ⊕K · χ if dim V is odd,

and

Z(C +) =

{
K ⊕K · χ if dim V is even,
K if dim V is odd.

The Structure of the Clifford Algebra

Recall that a quadratic space is defined here over a field of characteristic different from two and
that its quadratic form is always assumed to be non-degenerate. Under this presumptions, some
important results about the structure of the Clifford algebra are proved in [Che]. Actually, the fol-
lowing proposition is already a corollary using the results about the center calculated above. Recall
that a central simple K-algebra is a K-algebra with center K having no non-trivial two-sided ideals.

Proposition 3.15. (i) Assume (V,q) is a quadratic space of even dimension. Then the Clifford
algebra C (V, q) is a central simple algebra.
The even part C +(V, q) is either simple or the direct sum of two simple ideals. If C + is not
simple, there is a chiral element χ of square 1 and the two simple ideals of C + are spanned
by 1 + χ and 1− χ.

(ii) If the dimension of V is odd, C + is central simple. The whole Clifford algebra is isomorphic
to Z(C )⊗ C + and is either simple or the direct sum of two simple ideals.

A finite-dimensional simple algebra over a field K of characteristic 0 is always isomorphic to a
matrix algebra over a skew field in which K is central. In the case of R, the only skew fields with
this property are R, C and H. The Clifford algebra of the quadratic space Rp,q is denoted by
C (p, q). The complete list of all real Clifford algebras C (p, q) identified with matrix algebras can
be found in the monograph [Law] including proofs.
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The structure of nearly all even parts C +(p, q) of real Clifford algebras follows from this
classification by the following lemma.

Lemma 3.16. Suppose q ≥ 1 and let e1, ..., ep+q denote the standard orthonormal basis of Rp,q.
Then the map defined on generators by

C +(p, q)→ C (p, q − 1) , ep+qei 7→ ei 1 ≤ i ≤ p+ q − 1

is an isomorphism of algebras.

In this thesis, the isomorphism

C +(2, 6) ∼= C (2, 5) ∼= M4(H)⊕M4(H)

is crucial and will be constructed explicitly.

3.3 Spin Groups

In order to adequately introduce the Pin groups together with the Spin groups, the definitions in
this chapter are given in a slightly more general context than needed. However, this is useful for
orthogonal modular forms and elucidates possible generalizations of this thesis. [Law] serves as a
reference for this section.

Definition 3.17. Define the twisted Clifford group G = G(V, q) of a quadratic space (V, q) as the
group of invertible elements x of the Clifford algebra C such that x∗vx−1 ∈ V for all v ∈ V . The
resulting group homomorphism

π : G(V, q)→ GL(V ) , x 7→ (v 7→ x∗vx−1)

is called the twisted adjoint representation of the Clifford group. Define further the Clifford norm
N as the mapping

N : C → C , x 7→ xx∗′.

The most important properties of π and N are summarized in the following proposition.

Proposition 3.18. The Clifford norm restricted to the twisted Clifford group defines a homomor-
phism

N : G→ K∗.

The following sequence of groups is exact.

1 // K∗ // G(V, q)
π // O(V, q) // 1

An anisotropic vector a ∈ V viewed as an element of the Clifford algebra is mapped by π to the
reflection σa along a.

Proof. The first statement, the computation of the kernel of π and the orthogonality of the trans-
formation π(x) are Propositions 2.5, 2.4 and 2.6 in [Law]. The calculation

a∗va−1 = −av a

q(a)
= − a

q(a)
(〈a, v〉 − av) = −〈a, v〉

q(a)
a+ v = σa(v)

proves the second statement which implies the surjectivity of π.
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Definition 3.19. Define the Pin group and the Spin group of a quadratic space (V, q) as

Pin(V ) := {x ∈ G | N(x) = 1}
Spin(V ) := Pin(V ) ∩ C +.

This definition of the Spin group agrees with the classical definition of [Che] since the main
automorphism acts trivially on the even part C + of the Clifford algebra.

The Clifford norm on K∗ · 1C is obviously given by N(λ) = λ2. Then a short chase in the
commutative diagram

1 // K∗ //

N

��

G(V, q)
π //

N

��

O(V, q) //

SN

��

1

1 // (K∗)2 // K∗ // K∗/(K∗)2 // 1

defines the so-called Spinor norm homomorphism SN : O(V, q)→ K∗/(K∗)2.
A reflection σa lifts to a λa ∈ G(V, q) with λ ∈ K∗ and then N(λa) = λ2aa∗′ = −q(a)λ2 implies

SN(σa) = −q(a) · (K∗)2. (3.1)

This minus sign is again due to the twisting and vanishes on the even part. Hence SN corresponds
to the classical Spinor norm when restricted to the Spin group.

Proposition 3.20. The restriction of the twisted adjoint representation π to Pin(V) and Spin(V)
yields the exact sequences

1 // {±1} // Pin(V )
π // O(V )

SN // K∗/K∗2

1 // {±1} // Spin(V )
π // SO(V )

SN // K∗/K∗2

Proof. Let g ∈ O(V ) be in the kernel of the Spinor norm, that is g = π(x) with x ∈ G and
N(x) = λ2 for an λ ∈ K∗. But then N(xλ ) = 1 and π(xλ ) = π(x) = g, hence g is the image
of x

λ ∈ Pin(V ) as needed. The kernel of π restricted to Pin(V ) is {±1} because λ ∈ K∗ with
N(λ) = λ2 = 1 implies λ = ±1. An even product of reflections lifts to an element of the even
part of the Clifford algebra and therefore the exact sequence involving Spin(V ) and SO(V ) is
immediately implied by the first sequence.

The kernel of the Spinor norm homomorphism restricted to SO(V ) respectively the image of
Spin(V ) under the homomorphism π is called the Spinorial kernel and denoted by

SO+(V ).

In accordance, the whole kernel of the Spinor norm, that is the image of Pin(V ) in the orthogonal
group O(V ), is denoted by

O+(V )

such that SO+(V ) = SO(V ) ∩O+(V ). When the underlying field is R, one obviously has

R∗/(R∗)2 ∼= {±1} ∼= Z/2Z.

Then (3.1) shows that O+(V ) is generated by the reflections along vectors a of norm q(a) = −1
and two-products of reflections along vectors a and b of norm q(a) = q(b) = 1. In the positive
definite case, this implies that O+ = SO+ = SO and in the negative definite case O+ = O and
SO+ = SO.
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The Case R2,n

The quadratic space R2,n is the only one that matters in this thesis as orthogonal modular forms
can be defined only for the groups O(2, n). The denotations Spin(2, n) and Pin(2, n) do not need
explanations.

The signature (2, n) guarantees the existence of vectors of positive and negative norm. Hence, the
Spinorial kernel SO+(2, n) is a subgroup of index 2 in SO(2, n) and of index 4 in O(2, n).

When e1, ..., en+2 denotes the standard orthonormal basis of R2,n, consider the chiral element

χ = e1...en+2

corresponding to this basis. Obviously one has N(χ) = (−1)2+n(−1)n = 1. Furthermore, one
calculates

χ∗eiχ
−1 = (−1)n+2e1...en+2ei(−1)nen+2...e1 = (−1)n︸ ︷︷ ︸

signature (2,n)

(−1)n+1︸ ︷︷ ︸
transpositions

ei = (−1)2n+1ei.

Therefore, χ ∈ Pin(2, n) and
π(χ) = −idV . (3.2)

In other words, −id = σe1 ...σen+2 is the product of the reflections along all the basis vectors.

Lemma 3.21. If n is even, the center of Spin(2, n) is

Z(Spin(2, n)) = {±1,±χ} ∼= Z/2Z× Z/2Z,

and {±1} if n is odd.

Proof. First of all, observe that the Spin group generates C + as an R-algebra. To see this, choose
a basis e1, ..., en according to Lemma 3.9 of vectors of the same norm q(ei) = a 6= 0. Then the
elements a−1eiej have the norm N(a−1eiej) = a−2q(ei)q(ej) = 1 and generate C +. The relation
(eiej)

∗v(eiej)
−1 ∈ V is obvious.

Therefore, the center of the Spin group is contained in Z(C +). The rest is easily seen when
calculating the Clifford norm of the elements of Z(C +).

Eichler Calculus

Eichler transformations are introduced to find a set of generators of most Spin groups, not including
those of quadratic spaces without isotropic vectors. They are especially important as they preserve
most of their properties when the field K is replaced by a ring.

Let V be a quadratic space having an isotropic vector. Let u be such a vector and let v be a vector
in the orthogonal complement of u or in terms of the Clifford algebra

u2 = 0 , uv = −vu.

These relations imply after a short calculation that 1 + uv lies in the Spin group. The same
calculation yields the image of 1 +uv in the Spinorial kernel SO+(V ) which is denoted by E(u, v)
and acts on V as

a 7→ E(u, v)(a) = a− 〈a, u〉v + 〈a, v〉u− q(v)〈a, u〉u
These orthogonal transformations are called Eichler transformations, as well as their inverse images

±(1 + uv)

in Spin(V).
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Proposition 3.22. Suppose the quadratic space V has an isotropic vector and dim(V ) ≥ 3. Then
the Spinorial kernel SO+(V ) is generated by Eichler transformations.

This is Theorem 6.4.27 in [Ha-OM].

The prerequisites are always satisfied for the relevant quadratic spaces R2,n, n ≥ 1. If Lemma 3.7
is applied to V = R2,n, n ≥ 2, that is V decomposes into

V = H1 ⊥ H2 ⊥ V0 = Rf1 ⊕ Rf2 ⊥ Rf3 ⊕ Rf4 ⊥ V0 ,

the negative definite subspace V0 has no isotropic vectors. Hence, the proposition provides a
practical set of generators of Spin(2,n) which consists of −1C and all

1 + fiv , 1 ≤ i ≤ 4 (3.3)

where fi is one of the hyperbolic basis vectors and v is in V0 or one of the two hyperbolic basis
vectors orthogonal to the current fi.

3.4 Spin Representations

The classification of all irreducible representations revealed the existence of representations of real
and complex orthogonal groups that could not be obtained as quotients of tensor products of the
standard vector representation. These remaining representations, the spin representations, can be
constructed via the Clifford algebra as follows.

Recall that a representation of an associative algebra A on a vector space V is a homomorphism
in the algebra of endomorphisms End(V ) of a vector space V . This definition is equivalent to
the notion of an A-module. Equivalence and irreducible representations correspond to A-linear
mappings and simple A-modules.

There is a well-known theorem that all irreducible representations of a simple algebra are equivalent
(confer for example [La], XVII, §4).

Consider now the Clifford algebra C (V, q) of a quadratic space of even dimension. By Proposition
3.15 and this theorem, C has only one irreducible representation up to isomorphism. Any repre-
sentative of this isomorphism class is called a spin representation of C . By restriction, the spin
representations of the even part C + and the Spin group are defined.

If C + decomposes in the sum of two simple ideals, this representation decomposes in the sum of
two inequivalent irreducible representations which are called the half-spin representations. The
inequivalence follows again from a theorem of the representation theory of K-algebras. However,
in the special case R2,6 considered here it will be shown explicitly in the final chapter. The
properties of the spin representation of the Spin group are summarized in the following proposition.

Proposition 3.23. Let char K /∈ {2, 3}. If C + is a simple algebra, the spin representation of the
Spin group is irreducible. If C + is not simple, the spin representation is the sum of the inequivalent
half-spin representations of the Spin group.

Proof. This is Proposition II.4.3 in [Che]. The proof relies on the fact that the Spin group generates
C + as a K- algebra (as shown for R in the proof of Lemma 3.21) and therefore the restricted spin
representation has the same properties as the spin representation of C +.

In the odd case, the spin representation is defined as the only irreducible representation of the
even part C + which lifts to two spin representations of the whole Clifford algebra as anticipated
by Proposition 3.15.



Chapter 4

Lie Theory

Lie theory is a vast subject. In this chapter, the main definitions and facts are outlined as short
as possible. Only the notion of isogeny and its connection to the theory of covering spaces is
described in detail. Furthermore, a lot of facts concerning the matrix groups involved in this
thesis are summarized. A general reference would be [Hel]. Many details were taken from the
monographs [Bump], [War] and [Ful].

4.1 Lie Groups and Lie Algebras

A Lie algebra over a field K is a vector space over K endowed with an alternating bilinear operation
(x, y) 7→ [x, y] (called bracket) satisfying the Jacobi identity, that is

[x, x] = 0 and [x, [y, z] + [z, [x, y]] + [y, [z, x]] = 0.

A homomorphism of Lie algebras is a K-linear mapping respecting the bracket operation.

A (real) Lie group is a group with the structure of a smooth manifold such that multiplication
and inversion are smooth. A homomorphism of Lie groups is a group homomorphism that is also
a smooth map. Complex Lie groups and homomorphisms of complex Lie groups are defined by
simply replacing “smooth” by “complex analytic” in the previous definitions.

The Lie algebra g of a Lie group G can be defined either as the tangent space at the identity
element or as the vector space of left-invariant vector fields both with the commutator as bracket
operation. The differential of any Lie group homomorphism at the identity turns out to be a
homomorphism of Lie algebras.

An ideal h of a Lie algebra g is a subspace satisfying [h, g] ⊂ h and an ideal is Abelian if [h, h] = 0.
A Lie algebra is called simple if it has no non-trivial ideals and semisimple if it has no Abelian
ideals. Equivalently a Lie algebra is semisimple if and only if it decomposes uniquely in the direct
sum of simple ideals. A Lie group is called simple respectively semisimple if its Lie algebra has
these properties.

There is a basic result that all closed subgroups of the complex general linear group are real
Lie groups. Obviously, all matrix groups introduced in the preceding chapters are closed in some
general linear group and hence real Lie groups. Among those, only the groups GL(n,C), SL(n,C),
SO(n,C) and Sp(n,C) turn out to be complex Lie groups. The last three are simple and GL(n,C)
is not even semisimple. Similarly, U(n) and GL(n,R) are not semisimple, whereas SL(n,R),
Sp(n,R), SO(p, q) and Sp(n,H) are simple.

24
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To calculate the Lie algebra of a Lie group, the exponential map has to be introduced, one of
the most important means in Lie theory. For a matrix group it can simply be defined as the
exponential series of matrices, that is

exp : Mn(C)→ GL(n,C) , X 7→
∞∑
i=0

Xi

i!
.

The series converges for all matrices, but the functional equation of the one-dimensional expo-
nential map holds only for commuting matrices. However, this property suffices to make the
map

t 7→ exp(tX)

a one-parameter subgroup of GL(n,C), that is a continuous homomorphism R → GL(n,C). In
the case of a general Lie group, the exponential map of a tangential vector X at e is constructed
by solving a certain ordinary differential equation. Since this thesis works only with matrix
groups, the general exponential map is omitted.

Proposition 4.1. Let G be a closed subgroup of GL(n,C).

(i) The set g of all matrices X ∈ Mn(C), such that exp(tX) ∈ G for all t, is a Lie algebra of
the same dimension as G as a manifold. This is the Lie algebra of G in the general sense
defined above.

(ii) The map X 7→ exp(X) gives a diffeomorphism of a neighborhood of the origin in g onto a
neighborhood of the identity in G.

(iii) The exponentials of all elements of the Lie algebra generate the connected component of the
identity of G.

The second part of the proposition allows to write the multiplication of the Lie group sufficiently
close to the identity in terms of the Lie algebra via the exponential map and its inverse. The
resulting formula is called Campbell-Hausdorff formula. This is meant in the first place when
asserting that the group structure of the connected component of G is encoded in the Lie algebra
when also considering the third part.

The first part of the proposition gives a handy way to calculate the Lie algebras of matrix Lie
groups. They will always be denoted by the small German version of the letter of the Lie group.
The calculation for some of the matrix groups mentioned above yields the following Lie algebras
(confer [Hel]).

gl(n,C) = Mn(C)

sl(n,C) = {X ∈Mn(C) | tr X = 0}
so(n,C) = {X ∈Mn(C) |X ′ = −X (i.e. X skew symmetric)}
su(n) = {X ∈Mn(C) | X̄ ′ = −X (i.e. X skew hermitian) ; tr X = 0}

so(p, q) = {
(
X1 X2

X2
′ X3

)
|X1 ∈Mp(R), X2 ∈Mp,q(R), X3 ∈Mq(R), X ′1 = −X1, X

′
3 = −X3}

sp(n,H) ∼= {
(
Z1 Z2

−Z̄2 Z̄1

)
| Z1, Z2 ∈Mn(C), Z ′1 = −Z1, Z̄

′
2 = Z2}

Two Lie groups are called isogenous if their Lie algebras are isomorphic. The crucial exceptional
isogeny in this thesis is

so(2, 6) ∼= sp(2,H) ( ∼= so∗(8) ).

Another exceptional isogeny that will be of importance is

su(4) ∼= so(6).
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Connectivity of Matrix Groups

The concepts of connected and path-connected are equivalent in the case of Lie groups since they
are manifolds.

Lemma 4.2. (i) The groups GL(n,C), SL(n,C), SL(n,R), U(n), SU(p, q), SO(n,C),
Sp(n,R), Sp(n,C) and Sp(n,H) are connected.

(ii) SO(p, q) is connected if and only if p or q equals 0. Otherwise, it has two connected compo-
nents.

(iii) Spin(p, q) is connected, if p or q ≥ 2.

Proof. The first two items can be found literally in [Hel], Ch. X, § 2, Lemmata 2.2 and 2.4. The
connectedness of Spin(p, q), p or q ≥ 2, can be seen as follows.
Consider any Eichler transformation 1 + uv, that is u2 = 0 and uv + vu = 0. Then 1 + tuv is
still an Eichler transformation for all t ∈ [0, 1]. Hence any product of Eichler transformations
can be connected to 1Spin by a path in the Spin group. In order to take care of the last missing
generator −1Spin, one has to find a pair of vectors x and y with 〈x, y〉 = 0 and q(x)q(y) = 1. The
existence is obvious when choosing orthonormal basis vectors of the same norm and considering
the restriction that p or q ≥ 2. For arbitrary real numbers s and t the equivalence

z = s+ txy ∈ Spin(p, q)⇔ (s+ txy)(s+ txy)∗
′

= s2 + t2 = 1

holds when using xy+yx = 0 and x2y2 = 1. The relation zvz−1 ∈ V is an easy calculation. Hence,
−1Spin corresponding to (s, t) = (−1, 0) can be continuously transformed to 1Spin corresponding
to (1, 0) without leaving the Spin group.

Corollary 4.3. The Spinorial kernel SO+(p, q) is connected if p or q ≥ 2 as continuous image of
the Spin group. Since the identity is contained in SO+(p, q), it is the connected component of the
identity of SO(p, q).

4.2 Covering Spaces and Fundamental Group

To understand the full consequences of two Lie groups being isogenous, one needs the theory of
covering spaces. The theory will be used again as the critical means in determining the maximally
compact subgroup of the Spin group.

The whole section belongs to the standard content of any lecture or book on algebraic topology
and can be found e.g. in [Hat].

Fundamental Group

A loop in a topological space X is a path with identical start and ending point, that is a continuous
map f : I → X of the unit interval I = [0, 1] into X with f(0) = f(1). The idea of deforming loops
continuously is formalized by defining a homotopy of loops as a family {ft} of loops starting at
the same base point x0 such that the associated map F : I × I → X , (s, t) 7→ ft(s) is continuous.
Homotopy of loops defines an equivalence relation. Two homotopy classes can be multiplied
by simply concatenating two representing loops. The set of classes of this equivalence relation
corresponding to a fixed base point x0 forms a group that is called the fundamental group

π1(X,x0).
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A continuous map φ : X → Y of topological spaces taking a fixed base point x0 ∈ X to another
fixed base point y0 ∈ Y induces a well-defined group homomorphism

φ∗ : π1(X,xo)→ π1(Y, y0)

of fundamental groups by defining φ∗([f ]) := [φ ◦ f ]. This makes the fundamental group a co-
variant functor. A standard implication is that homeomorphic topological spaces have isomorphic
fundamental groups.

If X is path-connected, the fundamental group is, up to isomorphism, independent of the choice of
the base point and can be abbreviated by π1(X). A topological space is called simply-connected
if it is path-connected and has trivial fundamental group.

Example 4.4. Theorems 13.5 and 13.6 in [Bump] calculate the fundamental groups of the relevant
matrix groups.

π1(SU(n)) ∼= π1(SL(n,C)) is trivial and

π1(SO(n)) ∼= π1(SL(n,R)) ∼=
{

Z if n = 2
Z/2Z if n > 2

The proofs use some non-trivial algebraic topology as the long exact homotopy sequence of a
fibration. In a very similar way it can be shown that

π1(U(n)) ∼= π1(GL(n,C)) ∼= Z.

The following useful facts about the fundamental group are standard.

Lemma 4.5. (i) Let X and Y be path-connected topological spaces. Then

π1(X × Y ) ∼= π1(X)× π1(Y ).

(ii) The fundamental group of any topological group and especially of any Lie group is abelian.

Covering Spaces

A covering space of a topological space X is a topological space X̃ together with a continuous
map p : X̃ → X satisfying the following condition: There exists an open cover {Uα} of X such
that for each α, p−1(Uα) is a disjoint union of open sets in X̃, each of which is mapped by p
homeomorphically onto Uα.

If X is path-connected, the cardinality of p−1(x) is constant over X and called the number of sheets
of the covering.

The standard example of a covering space is p : R→ S1 , x 7→ exp(ix) having a countable number
of sheets, which might be visualized as the projection of a helix onto a circle.

In the following, the main interrelations of covering spaces and the fundamental group are
listed. The most important properties of covering spaces needed to prove these propositions are
certain lifting properties which are omitted here.

Proposition 4.6. The number of sheets of a covering space p : X̃ → X with X and X̃ path-
connected equals the index of p∗(π1(X̃)) in π1(X).

The main theorem classifies all covering spaces of a given topological space. Recall that a
topological space is called locally path-connected if every neighborhood of every point contains a
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path-connected neighborhood and semilocally simply-connected if each point has a neighborhood
U such that the inclusion-induced map π1(U, x)→ π1(X,x) is trivial.

Theorem 4.7. (Classification of covering spaces) Let X be a path-connected, locally path-connected
and semilocally simply-connected topological space.

(i) For every subgroup H of π1(X,x0), there is a path connected covering space p : XH → X
such that p∗(π1(XH , x̃0)) = H for a suitably chosen base point x̃0 ∈ XH .

(ii) XH is unique up to an isomorphism of covering spaces, that is a homeomorphism preserving
the inverse images of all points of the underlying space X.

(iii) Ignoring base points there is a bijection between isomorphism classes of path-connected cov-
ering spaces p : X̃ → X and conjugacy classes of subgroups of π1(X).

This theorems implies the existence of a simply-connected covering space p : X̃ → X which is
called the universal cover of X.

4.3 More Lie Theory

Covering Spaces of Lie Groups and Isogenies

The application of the theory of covering spaces to Lie groups is rather straightforward.

As a first step, the local topological properties demanded in the main theorem are trivially fulfilled
by any manifold. Furthermore, a covering space p : G̃ → G of any smooth manifold G can be
endowed with a differentiable structure in a unique way if the covering map p is required to be
smooth. Finally, if p : G̃ → G is a covering of a Lie group and an element ẽ is chosen in the
kernel of p, there is a unique Lie group structure on G̃ such that ẽ is the identity and p is a
homomorphism of Lie groups. Then the kernel of p lies in the center of G̃. The proof of all these
statements is straightforward using the lifting properties of covering spaces (confer [War]).

When applying the main theorem of covering spaces, it follows that any Lie group G has a
simply-connected covering Lie group which is unique up to isomorphism.

Example 4.8. The homomorphism

Spin(V )→ SO+(V )

of section 3.3 is a two-sheeted covering map. This provides Spin(V ) with the structure of a Lie
group. For n ≥ 2, π1(SO(n)) ∼= Z/2Z implies that Spin(n) is the simply connected form of
SO(n) = SO+(n) because of Proposition 4.6.
It might be a common mistake to assume all Spin groups being simply connected. There is a general
theorem that the fundamental group of a connected Lie group is the same as the fundamental group
of a maximal compact subgroup. A maximal compact subgroup of SO+(2, n) is SO(2) × SO(6)
and hence π1(SO+(2, n)) ∼= Z×Z/2Z. This implies that π1(Spin(2, n)) is far from trivial because
it is isomorphic to a subgroup in Z× Z/2Z of index 2.
Nevertheless, viewed as algebraic groups, Spin groups are always simply connected in the algebraic
sense.

The construction that is inverse in a sense to finding a covering space of a Lie group is the following.
Let Γ be any discrete subgroup of the center of a Lie group G. Then there is a unique Lie group
structure on the quotient group G/Γ such that the canonical quotient map is a homomorphism of
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Lie groups. Obviously, this is a covering map by be discreteness of Γ. If the center Z(G) of G is
discrete, it is easy to show, that the quotient G/Z(G) has trivial center.

Recall that two Lie groups are called isogenous if their Lie algebras are isomorphic. This defines
obviously an equivalence relation.

Proposition 4.9. (i) A homomorphism of connected Lie groups is a covering map if and only
if its differential at the identity is an isomorphism of Lie algebras.

(ii) Let G and H be Lie groups with Lie algebras g and h respectively and with G simply connected.
Given a homomorphism ψ : g → h, there exists a unique homomorphism ϕ : G → H with
differential ψ.

(iii) If g is a Lie algebra, then there is a Lie group G with Lie algebra g.

The first two statements are proved in [War] (Prop. 3.26 and 3.27). The third statement is a deep
result due to Ado.

The proposition characterizes two Lie groups as being isogenous if and only if there is a third Lie
group covering both of them. By the third statement, any Lie algebra defines an equivalence class
of isogenous Lie groups. There is a topmost element in each class, unique up to isomorphism,
which is a covering space of all other elements of this class. This is called the simply connected
form of a Lie algebra. Therefore all elements of an isogeny equivalence class can be realized up to
isomorphism by finding the simply connected form and building quotients by all discrete subgroups
of its center. The quotient of the simply connected form by its whole center (assuming that this is
discrete) is called the adjoint form of a Lie algebra. It is an undermost element of the equivalence
class in the sense that all other members are covering the adjoint form.

The following example will be used in the final chapter.

Example 4.10. Since the Lie algebras of SU(4) and SO(6) are isomorphic, their simply connected
coverings must be the same. However, the fundamental groups given in Proposition 4.4 imply that
SU(4) is the simply connected form and is therefore isomorphic to Spin(6). The adjoint form can
be computed when the center of an arbitrary member of the equivalence class of these groups is
known, hence it is isomorphic to SO(6)/± id.
The two-sheeted covering map from SU(4) to SO(6) can be constructed explicitly as follows.
Consider the six-dimensional real vector space V of real anti-symmetric 4× 4-matrices. Provided

with the the quadratic form 1
2 tr(B

′
B) it is isomorphic to the quadratic space R6,0. Then a

matrix A ∈ SU(4) defines a linear mapping on V by sending an anti-symmetric matrix B to the
anti-symmetric matrix A′BA. This operation preserves the quadratic form as

tr(A′BA
′
A′BA) = tr(Ā′B̄′ĀA′BA) = tr(A−1B̄′BA) = tr(B̄′B).

The matrix A defines hence an orthogonal transformation which turns out to inherit the determi-
nant 1 of A after an easy calculation. The resulting homomorphism

π : SU(4)→ SO(6)

has the kernel {±E} and is onto, so it is a two-sheeted covering map. The center of SU(4) is
{±E,±iE} and ±iE are obviously mapped to the only nontrivial central element −id ∈ SO(6).

Representations of Lie groups

A complex representation of a Lie group G is a homomorphism of Lie groups from G into the
general linear (Lie) group of some complex vector space V . This implies that a representation of
real Lie groups is supposed to be smooth and a representation of a complex Lie group is supposed to
be holomorphic. Correspondingly, a complex representation of a Lie algebra g is a homomorphism
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of Lie algebras into the Lie algebra of endomorphisms of some complex vector space V . Again,
it has to be R-linear in the case of a real Lie algebra and C-linear in the case of a complex Lie
algebra.

As pointed out above, a representation of Lie groups immediately induces a representation of Lie
algebras by taking the differential. The other way round, given a representation ρ of a Lie algebra
g corresponding to a simply connected Lie group G, there is a unique representation ρ̃ of G such
that ρ is the differential of ρ̃ by Proposition 4.9. Regarding the third statement of this proposition,
the representation theory of Lie algebras and simply connected Lie groups is essentially the same.

Complexifications

As a reference for the following serve the chapters about extension of scalars and complexifications
in [Bump].

On the level of Lie algebras, a complexification of a real Lie algebra g is defined in a straightforward
way by extension of scalars, i.e.

gC := g⊗R C ∼= g⊕ ig.

The isomorphism is an isomorphism of complex Lie algebras. The complexifications of the Lie
algebras given above are easy to calculate and well-known:

u(n)C ∼= gl(n,C)

sl(n,R)C ∼= su(n)C ∼= sl(n,C)

so(p, n− p)C ∼= so(n,C)

sp(n,H)C ∼= so∗(4n)C ∼= so(4n,C)

On the level of Lie groups, a complex Lie group Ĝ is called complexification of a real Lie group
G, if ĝ = gC. However, to define a unique complexification, one has to require more.

Given a real Lie group G, define the analytic complexification as a complex Lie group GC together
with a Lie group homomorphism i : G → GC by the following universal property. Given any Lie
group homomorphism f : G → H into a complex Lie group H, there exists a unique analytic
homomorphism F : GC → H such that f = F ◦ i. Thus, the analytic complexification is unique
up to isomorphism.

The definition immediately implies that any finite-dimensional representation of a real Lie
group G extends uniquely to a finite-dimensional holomorphic representation of its analytic
complexification GC. In the case of a compact Lie group, the following theorem (Theorem 27.1
in [Bump]) guarantees the existence of an analytic complexification.

Theorem 4.11. Let K be a compact connected Lie group. Then K has an analytic complex-
ification K → KC, where KC is a complex Lie group. The induced map π1(K) → π1(KC) is
an isomorphism. The Lie algebra of KC is the complexification of the Lie algebra of K. Any
holomorphic representation of KC is completely reducible.

The analytic complexification of the compact connected group U(n) respectively SU(n) is well-
known to be GL(n,C) respectively SL(n,C). Furthermore, the analytic complexification of SO(n)
is SO(n,C), especially one has SO(2)C ∼= S1

C
∼= SO(2,C) ∼= C∗. The last isomorphism, similarly

to the well-known SO(2) ∼= S1, is given by

C∗ → SO(2,C) , ξ 7→
(

cosh ξ i sinh ξ
−i sinh ξ cosh ξ

)
.

The analytic complexification of the Spin groups Spin(p, q) is known to be Spin(p+ q,C). Recall
the isomorphism SO(4) ∼= Spin(6,R) of the previous section which implies immediately that the
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complexifications

SO(4,C) ∼= Spin(6,C)

are isomorphic.

4.4 Symmetric Spaces and Hermitian Domains

Nearly all results in this section are rather deep and can be found in the standard references about
symmetric spaces which are [Hel] and [Sat]. The reader who is interested in an introduction to
the subject to get a general picture rather than complete proofs is referred to the chapter about
symmetric spaces in [Bump]. The following survey is kept as short as possible.

Maximal Compact Subgroups

Let G denote a semisimple Lie group. A maximal compact subgroup of G is a compact subgroup
which is not contained in any other compact subgroup. If a maximal compact subgroup K exists,
all other maximal compact subgroups are conjugate to K and especially isomorphic to K. It
turns out that all matrix groups introduced above have a maximal compact subgroup. Since the
natural operation of G on the quotient G/K is transitive, the quotient is a homogeneous space by
definition.
Is is not hard to see that a covering map of Lie groups induces a covering map of maximal
compact subgroups with the same number of sheets. Thus, the isomorphy class of a homogeneous
space G/K is completely determined by the Lie algebra g of the Lie group G or, in other words,
isogeneous Lie groups define isomorphic homogeneous spaces.

Symmetric Spaces and Lie Groups

In differential geometry, a (globally) symmetric space is a Riemanian manifold in which around
every point there is an isometry reversing the direction of every geodesic. It is known that the group
G of isometries of M becomes a Lie group with the compact-open topology and the stabilizer K
of any chosen base point x0 ∈M is a maximal compact subgroup of M . Then the correspondence
g(x0) ↔ gK gives a G-equivariant diffeomorphism M ∼= G/K. Now it can be shown that any
simply connected Riemanian symmetric space can be decomposed uniquely into the direct product
of a Euclidean space M0 and a finite number of irreducible (i.e. indecomposable) symmetric spaces
Mi, that is

M = M0 ×M1 × ...×Mr.

Define a symmetric space of non-compact type as a simply connected symmetric space M, such
that the Euclidian part M0 reduces to a point and all other components Mi are non-compact. In
this case, the connected component G0 of the group of isometries is semisimple and decomposes
into the simple components G0

i of isometries of Mi. It turns out that G0 has trivial center and
hence, it is the adjoint form of a semisimple Lie algebra. Conversely, starting with a connected
simple Lie group with trivial center and a maximal compact subgroup K of G, the homogeneous
space G/K can be endowed with a Riemanian metric turning it into an symmetric space. Thus,
there is a one-to-one correspondence of simple Lie algebras and irreducible symmetric spaces of
the non-compact type which was first established by Cartan in 1919. Cartan labeled the classes
of symmetric spaces by capital Roman numbers, not to be mixed up with the Roman numbers of
Hermitian Symmetric Domains in the following section.
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Hermitian Symmetric Domains

Hermitian symmetric spaces (of non-compact type) are symmetric spaces M (of non-compact
type) that can be endowed with a an almost complex structure such that there exists a hermitian
metric on M which is invariant under the group of isometries of M. Instead of explaining the
details of this definition, their most important property shall be taken as definition.

Definition 4.12. Let G be a semisimple Lie group and K a maximal compact subgroup. The
pair (G,K) (or the symmetric space G/K) is of the hermitian type, if there is a domain H in CN
for an adequate N and a diffeomorphism G/K → H inducing a differentiable action of G on H
such that H → H, z 7→ gz is holomorphic for all g ∈ G. The domain H is called a hermitian
(symmetric) domain.

There is an important theorem due to Harish-Chandra that a pair (G,K) is of hermitian type if
and only if K is not semisimple.

The classification of irreducible hermitian symmetric spaces comprises four infinite series and two
exceptional spaces which can be found e.g. in [Hel] immediately following the table of all irre-
ducible symmetric spaces. All these spaces are of type III in Cartan’s denotation because they are
of non-compact type and belong to a non-compact real Lie algebra. Unfortunately, Siegel labeled
the four series again by capital Roman numbers as exposed in the following table (cf. [Sat], p.188).

Type G K Cartan’s class

Ip,q SU(p, q) S(U(p)× U(q)) AIII/AIV

IIn SO∗(2n) U(n) DIII

IIIn Sp(n,R) U(n) CI

q odd BI
IVq Spin(2, q)

q even
Spin(2, 0) · Spin(0, q)

DI

Table 1: Classification of Hermitian Symmetric Spaces

Recall that the even members SO+(4n) of the series II are described in this thesis by the isomorphic
groups Sp(n,H). The isogeny

so(2, 6) ∼= sp(2,H) ( ∼= so∗(8) ).

translates to an isometry of symmetric spaces

IV6
∼= II4

which will be examined in detail in the final chapter.



Chapter 5

Automorphic Forms

After establishing the definition of automorphic forms in a very general context this chapter
continues to introduce modular forms of quaternions and modular forms of orthogonal groups as
a specialization of the general theory. The aim is to provide a common ground for both types
of modular forms and prepare the special connection between them that will be described in the
next chapter.

5.1 Vector-Valued Automorphic Forms

Most of the material of this section is taken from a lecture of Prof. Freitag on automorphic forms.

Let (G,K) be a pair of semisimple Lie group G with maximal compact subgroup K of the
hermitian type. Recall that this means that the homogeneous space G/K can be realized as an
open domain H in some Cn such that G operates on H by holomorphic transformations.

Definition 5.1. A function f : G→ C is called K-finite if the span of {fk, k ∈ K} is a complex
finite-dimensional vector space where fk(g) := f(gk−1).

The rule (fk1)k2 = fk1k2 is obvious and implies that K operates linearly on V by (k̃, fk) 7→ (fk)k̃.
Thus, any K-finite f : G→ C function belongs a certain finite-dimensional complex representation
ρf : K → GL(V ).

Given a discrete subgroup Γ of G, the coset space Γ\G can be endowed with the structure of a
complex manifold.

Definition 5.2. (Vector-Valued Automorphic Form I) Let (G,K) be a pair of a semisimple Lie
group G and a maximal compact subgroup K of the hermitian type, Γ a discrete subgroup of
G with the property vol(Γ\G) < ∞ and ρ : K → GL(V ) a fixed representation of K on a
complex finite-dimensional vector space V . A vector-valued automorphic form is defined as a map
F : G→ V satisfying

(i) F (gk) = ρ(k−1)F (g) ∀k ∈ K

(ii) F (γg) = F (g) ∀γ ∈ Γ

Usually, the representation ρ is given by a K-finite function on G.

Example 5.3. The automorphic forms of the hermitian pair (Sp(n,R), U(n)) of type III are the
Siegel modular forms. The automorphic forms of the pair (Sp(n,H), U(2n)) of type II are Krieg’s

33
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quaternary modular forms. In obvious analogy to Siegel modular forms, their basic properties
are introduced in the following section. The pairs (SO+(2, n), SO(2)× SO(n)) of type IV induce
the so-called orthogonal modular forms. The final section of this chapter deals with orthogonal
modular forms.

5.2 Factors of Automorphy

When working with holomorphic automorphic forms of hermitian symmetric spaces, the introduc-
tion of holomorphic factors of automorphy proved its worth. The following material can be found
in [Mur].

For every finite-dimensional complex vector space V , the group GL(V ) can be considered as an

open submanifold of C(dimV )2 . Thus, one can speak of differentiable or holomorphic functions
with values in GL(V ).

Definition 5.4. (Holomorphic Factor of Automorphy) Let (G,K) be of the hermitian type and
H ⊂ Cn a realization of G/K as an open domain. Let V be a finite-dimensional complex vector
space V . A holomorphic factor of automorphy with values in GL(V) is a differentiable mapping
J : G×H → GL(V ) such that

(i) it satisfies the cocycle relation

J(gh, z) = J(g, h(z))J(h, z) ∀g, h ∈ G, z ∈ H

(ii) and the map J(g, .) : H → GL(V ) is holomorphic for all g ∈ G.

Two factors of automorphy J1, J2 : G × H → GL(V ) are called (holomorphically) equivalent if
there exists a holomorphic mapping f : H → GL(V ) such that

J2(g, z) = f(gz)−1J1(g, z)f(z) for all g ∈ G and z ∈ H.

Every factor of automorphy J obviously defines a representation of K by evaluating the second
component of J in the chosen base point a and restricting the first component to K. The following
result guarantees that every irreducible representation of K extends to a unique equivalence class
of holomorphic factors of automorphy. Extension means here that the restriction of this factor of
automorphy returns the given representation.

Theorem 5.5. Let H be a hermitian symmetric domain considered as a quotient G/K of a
semisimple connected Lie group by a maximal compact subgroup K, provided with a base point
a ∈ K.

(i) Every representation ρ : K → GL(V ) extends to a holomorphic factor of automorphy

Jρ : G×H → GL(V ).

(ii) If the representation ρ of K is irreducible, all holomorphic factors of automorphy on H which
restrict to this representation are equivalent.

The proof has to be omitted as it needs a profound knowledge of the structure theory of real Lie
algebras (cf. [Mur] or [Sat]). However, when trying to find a factor of automorphy in practice it
is very helpful to know that the proof initially constructs a factor of automorphy

J : G×H → KC
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with values in the analytic complexification KC of K. It satisfies both defining properties of a
factor of automorphy in the above definition when simply replacing GL(V ) by KC. Additionally,
it has the property that

J(k, a) = k for all k ∈ K.

Since every representation ρ of K uniquely extends to a holomorphic representation ρC of KC, a
factor of automorphy with values in GL(V ) is then obtained by composing J with ρC.

Example 5.6. When dealing with Siegel modular forms it is easy to show that a factor of auto-
morphy with values in KC = GL(n,C) is given by

J(

(
A B
C D

)
, Z) = CZ +D.

In the case of elliptic modular forms, this specializes to the ubiquitous “cz + d” with values in
GL(1,C) = C∗. By the second part of the theorem, at least those factors of automorphy that
reduce to irreducible representations ρ of K are equivalent to the composition of CZ+D with ρC.

After having introduced factors of automorphy, vector-valued automorphic forms can be defined
again from a different point of view.

Definition 5.7. (Vector-Valued Automorphic Form II) Let (G,K) be of the hermitian type and
H ⊂ Cn a realization of G/K as an open domain. Let Γ a discrete subgroup with the property
vol(Γ\G) < ∞, V a finite-dimensional complex vector space and J : G × H → GL(V ) a fixed
holomorphic factor of automorphy J : G×H → GL(V ).
A vector-valued automorphic form is defined as a holomorphic function f : H → V satisfying

f(γz) = J(γ, z)f(z) ∀γ ∈ Γ

Proposition 5.8. The two definitions of automorphic forms are equivalent.

Proof. Starting with definition 5.7, one can find a maximal compact subgroup of G by taking the
stabilizer K := StabG(a) of a chosen point a ∈ H in G. Then G/K is equivariant and diffeomorphic
to H by

gK 7→ g(a)

and (G,K) is obviously of the hermitian type. Define a representation ρ of K on V by evaluating
the given factor of automorphy in a and restricting to K. Then all assumptions of definition 5.2
are fulfilled and one can define

F (g) := J(g, a)−1f(ga).

Applying the cocycle relation several times, the following calculation shows that F is automorphic
in the sense of 5.2.

F (γgk) = J(γgk, a)−1f(γgka) = (J(γ, gka)J(g, ka)J(k, a))−1J(γ, gka)f(gka)

= J(k, a)−1J(g, a)−1f(ga) = ρ(k−1)F (g)

The other way round starting with definition 5.2, one chooses a realization H of the hermitian
domain G/K. The representation ρ extends to a factor of automorphy

J = Jρ : G×H → GL(V )

by Theorem 5.5. An automorphic form in the sense of 5.7 is defined by setting

f(gK) := J(g−1, gK)−1F (g).
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This definition is independent of the choice of the representative as for any k ∈ K

f(gkK) = J(k−1g−1, gK)︸ ︷︷ ︸
J(k−1,K)J(g−1,gK)

−1
F (gk)︸ ︷︷ ︸

ρ(k−1)F (g)

= J(g−1, gK)−1(J(k−1,K)︸ ︷︷ ︸
ρ(k−1)

)−1ρ(k−1)F (g)

= J(g−1, gK)−1F (g) = f(gK).

And the invariance under Γ follows from

f(γgK) = J(g−1γ−1, γgK)︸ ︷︷ ︸
J(g−1,gK)J(γ−1,γgK)

−1
F (γg)︸ ︷︷ ︸
F (g)

= J(γ−1, γgK)−1J(g−1, gK)−1F (g)

= J(γ, gK)f(gK).

To see that the last line holds observe that

J(γ−1, γgK)J(γ, gK) = J(1K , gK) = ρ(1K) = 1GL(V ).

5.3 Modular Forms on Quaternary Half-Spaces

In this section, a realization of the hermitian domains (Sp(n,H), U(2n)) of type II2n as an open
tube domain is introduced. This realization and the operation of Sp(n,H) are obviously analogous
to the theory of Siegel Modular forms. The reference for this section is [Kri].

The Quaternary Half-Space

The quaternary half-space Hn is defined as a subset of Sym(n,H⊗C) ∼= Sym(n,H)⊕ iSym(n,H)
by

Hn := Sym(n,H) + iPos(n,H)

= {Z = X + iY ∈Mn(H)⊕ iMn(C) |X = X̄ ′, Y > 0}

The half-space Hn is obviously open in the finite-dimensional complex vector space Sym(n,H⊗C),
hence holomorphic functions on the half-space can be defined in the usual way.

In the following, the action of the symplectic group on the half-space has to be defined.

Definition and Proposition 5.9. Let M =

(
A B
C D

)
∈ Sp(n,H) and Z ∈Hn. The symplectic

transformation of Hn

Z 7−→M〈Z〉 := (AZ +B)(CZ +D)−1

is well-defined and holomorphic. It defines a transitive action of Sp(n,H) on Hn. Two matrices
M and N ∈ Sp(n,H) define the same transformation if and only if M = ±N .

Proof. Confer Theorem 3.11 in [Kri]. The proof is not difficult and most calculations can be

reduced to well-known analogons for Siegel modular forms (cf. [Fr1]) by the embeddings M̂ and

Ẑ.
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Corollary 5.10. Thus, Sp(n,H)/± E can be identified with a subgroup of the group of biholo-
morphic transformations of Hn

Bih(Hn) := {f : Hn →Hn biholomorphic}.

Remark 5.11. The generators of the symplectic group (Lemma 2.9) act on the half-space as
follows

(J, Z) 7→ −Z−1

(

(
E S
0 E

)
Z) 7→ Z + S

(

(
W̄ ′ 0
0 W−1

)
, Z) 7→ Z[W ] = W̄ ′ZW

The holomorphic transformation of H2 = Sym(2,H) + iPos(2,H)

τ : X + iY 7−→ X ′ + iY ′

is well-defined because of the characterization of positivity in Lemma 2.7. However, for n ≥ 3,
Y > 0 does not imply Y ′ > 0 and τ is no longer defined as a transformation of the half-space.

Actually [Kri] proves that there are no more biholomorphic transformations of Hn than the
symplectic transformations and, in the case n = 2, the transformation τ .

Theorem 5.12.

Bih(H2) ∼=

{
Sp(2,H)/± E ∪ τ(Sp(2,H)/± E) for n = 2

Sp(n,H)/± E for n ≥ 3

The following lemma establishes an isomorphism of U(2n) and the stabilizer of the point iE
in Sp(n,H). By the transitivity of the action, Sp(n,H)/U(2n) is isomorphic to the half-space
Hn which is consequently an unbounded realization of the hermitian symmetric space of type II2n.

Lemma 5.13. The mapping

StabSp(n,H)(iE) →̃ U(2n) ,

(
A B
−B A

)
7→ Ǎ+ iB̌

is an isomorphism.

Proof. For the time being, observe that(
A B
C D

)
∈ StabSp(n,H)(iE) ⇔ (iA+B)(iC +D)−1 = iE ⇔ A = D ∧B = −C. (∗)

Using B̌
′

=
ˇ
B
′

one calculates

E = (Ǎ+ iB̌)′(Ǎ+ iB̌)

⇔ Ě = (
ˇ
A
′ − i

ˇ
B
′
)(Ǎ+ iB̌)

⇔ Ě =
ˇ
A
′
Ǎ+

ˇ
B
′
B̌ + i(

ˇ
A
′
B̌ − ˇ

B
′
Ǎ)

⇔ −A′C + C
′
A = −B′D +D

′
B = 0 ∧ A

′
D − C ′B = E by (∗).

The relations in the last line are the fundamental relations of symplectic matrices. Hence, the
mapping is well-defined and Lemma 2.11 together with (∗) implies that the mapping is bijective.
The multiplication is the same comparing the complex multiplication on the right with(

A1 B1

−B1 A1

)(
A2 B2

−B2 A2

)
=

(
A1A2 −B1B2 A1B2 +A2B1

∗ ∗

)
on the left.
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Modular Forms of Quaternions and Factors of Automorphy

The Hurwitz quaternionsO are defined as the set of all quaternions of the form a0+a1i1+a2i2+a3i3
such that all ai are integral or half integral. As a discrete subgroup Γ of Sp(n,H), one usually
chooses the intersection of Sp(n,H) with the set of matrices with entries in O. The demanded
properties of Γ are shown in [Kri]. Then vector-valued automorphic forms can be defined as in
the previous section and are called Modular Forms of Quaternions.

Once more analogously to Siegel modular forms, a holomorphic factor of automorphy with values
in KC = GL(2n,C) can be defined by

J : Sp(n,H)×Hn → GL(2n,C) , (

(
A B
C D

)
, Z) 7→ ČŽ + Ď.

The cocycle relation can be verified by a simple calculation and the term is invertible by Propo-
sition 5.9. Hence, the equivalence classes of factors of automorphy corresponding to irreducible
representations ρ of K = U(2n) are obtained by composition of their extensions ρC to the com-
plexification with this KC-valued factor of automorphy.

However, since Sp(n,H) is not simply connected, there are more factors of automorphy to be found
when replacing Sp(n,H) by its simply connected form and finding a factor of automorphy in the
larger maximal compact subgroup of this form. This will be accomplished in the final section of
this thesis.

5.4 Modular Forms of Orthogonal Groups

This section introduces a realization of the hermitian symmetric spaces of type IVn corresponding
to the group SO+(2, n) or its two-fold covering group Spin(2, n). As a reference serve the (so far
unpublished) notes [Fr2] of a lecture of Prof. Freitag.

Orthogonal modular groups

Lattices and modular groups are not needed in this thesis, but they are introduced rapidly to
write down the definition of modular forms of orthogonal groups.

Let Γ be an even lattice of signature (2, n). A lattice is a free Abelian group together with a
non-degenerate bilinear form 〈·, ·〉 with values in Q. The lattice is even if the quadratic form
q(x) := 1

2 〈x, x〉 is integral and even for all x. By the signature of the lattice one means the
signature of the corresponding quadratic space V = L⊗Z R.

O(V ) ∼= O(2, n)

denotes the orthogonal group of V and the integral orthogonal subgroup is defined as

O(L) := {g ∈ O(V ) | g(L) = L}.

Let O+(V ) denote the subgroup of index 2 of G defined in section 3.3. Then any subgroup Γ of
L⊗Z Q commensurable with

O+(L) = O(L) ∩O+(V )

is called an orthogonal modular group. Two subgroups A and B are called commensurable if their
intersection A ∩B has finite index in both A and B.
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The Orthogonal Half-Space

Let (V, q) denote the real quadratic space of signature (2, n) coming from a fixed lattice. When
n ≥ 2, the quadratic space V can be decomposed into the sum of two hyperbolic planes and a
negative definite quadratic space V0

V = H1 ⊥ H2 ⊥ V0

according to Lemma 3.7. Let f1, ..., f4, e1, ..., en−2 denote the standard basis of V corresponding
to this decomposition. The bilinear form 〈·, ·〉 of V can be extended uniquely to a C-bilinear form
on the complexification of V

V (C) := V ⊗R C ∼= V ⊕ iV.

Consider the complex projective space P(V (C)) and the projective coordinates with respect to the
given basis via the natural projection

π : V (C)− {0} → P(V (C)), z 7→ [z].

In these coordinates, an element of P(V (C)) will be written

[z1, z2, z3, z4;Z] where zi ∈ C and Z ∈ V0(C) ∼= Cn−2

It is easy to show that none of the first four coordinates of a point z ∈ K can vanish. Thus, the
orthogonal half-space Hn

Hn := {[z1, z2,−z1z2 − q(Z), 1;Z] | y1y2 + q(Y ) > 0 , y1 > 0}

is well-defined. The subgroup O+(V ) of index 2 in the orthogonal group O(V ), which has been
introduced as the image of Pin(V ) in section 3.3, acts on Hn by

O+(V )×K → K , (σ, [x+ iy]) 7→ [σ(x) + iσ(y)].

The following properties of the orthogonal half-space and the operation of the group O+(V ) are
shown in [Fr2]. RegardK := SO(2)×SO(6) as a subgroup of O(V ) by decomposing V orthogonally
in

V ∼= R2,n ∼= R2,0 ⊥ R0,n

and letting SO(2) and SO(6) operate on the respective summand.

Proposition 5.14. Both O+(V ) and its connected component SO+(V ) operate transitively on
Hn by holomorphic transformations. Let Stab+ and Stab denote the stabilizers of some point of
Hn in O+(V ) respectively in SO+(V ). Then, one has

Hn ∼= O+(V )/Stab+ ∼= SO+(V )/Stab ∼= SO+(V )/K

The group of biholomorphic transformations Bih(Hn) is isomorphic to O+(V )/± idV .

Obviously, the half-space Hn can be embedded as an open domain in Cn and is thus a hermitian
domain of type IVn.

Orthogonal Modular Forms and Factor of Automorphy

Let H̃n denote the non-projective inverse image π−1(Hn) in V (C)− {0}. An element g ∈ O+(V )
acts on H̃n by

(z1, z2, ∗, 1, Z) 7→ (z̃1, z̃2, ∗, a; Z̃).

The fourth coordinate a=a(z1, z2, Z) has to be normalized to 1 in the projective space in order to
match the given characterization of Hn and to extend the action of O+(V ) to the tube domain
in Cn.
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Lemma 5.15. The mapping

J : O(V )× H̃n → C∗ , (g, (z1, z2, ∗, 1, Z)) 7→ a(z1, z2, Z),

is a one-dimensional holomorphic factor of automorphy.

There is an alternative way to calculate this factor of automorphy considering the holomorphic
transformation of Hn ↪→ Cn induced by an element g ∈ O(V ).

Lemma 5.16. Let j(g, (z1, z2, Z)) denote the Jacobian determinant of g ∈ O(V ) as transformation
of H. Then

j(g, (z1, z2, Z)) = det (g)J(g, Z)n.

Now all prerequisites for defining one-dimensional modular forms are set up.

Definition 5.17. Let Γ be an orthogonal modular group corresponding to a lattice L. A modular
form of weight k and with respect to some character v : Γ → C∗ is a holomorphic function
f : H̃n → C with the properties

• (i) f(γ(z)) = v(γ)f(z) ∀γ ∈ Γ

• (ii) f(tz) = t−kf(z) ∀t ∈ C

In order to see that this definition given in [Fr2] is again a special case of the general definition
of an automorphic form one easily proves the following lemma where Hn is supposed to be
embedded into Cn.

Lemma 5.18. Modular forms of weight k and with respect to a character v are in one-to-one
correspondence to holomorphic functions F : Hn → C with the transformation property

F (γ(z)) = J(γ, z)−kv(γ)f(z) ∀γ ∈ Γ.

Vector-valued automorphic forms in the sense of the first definition of this chapter can be defined
when choosing a representation of the maximal compact subgroup K. In order to find all auto-
morphic forms, one had to replace O+(V ) and SO+(V ) by their (algebraically) simply connected
coverings Pin(V ) and Spin(V ). However, a description of modular forms in this context has not
been published so far. In addition, a factor of automorphy with values in KC that would charac-
terize all possible factors of automorphy of orthogonal modular forms is not known to the author.
In the special case (2, 6), a factor of automorphy has been found with the help of a new description
of the corresponding Spin group. This is one of the main results of this thesis and is presented in
detail in the following chapter.



Chapter 6

An Exceptional Homomorphism
for the Signature (2,6)

This is the crucial chapter of this thesis. A correspondence of quaternary and orthogonal modular
forms is described in detail. As the main result of this thesis, a description of Spin(2, 6) indepen-
dent of the Clifford algebra is established. A consequence is that the operation of Spin(2, 6) on
its hermitian domain of type IV6 can be described by Moebius Transformation on an isomorphic
domain of type II2. Furthermore, the possible factors of automorphy are examined rigorously in
the final section.

6.1 The Definition of the Homomorphism

Let V be an eight-dimensional real vector space provided with a non-degenerate symmetric bilinear
form of signature (2,6). As described in section 3.7, a basis f1, ..., f4, e5, ..., e8 can be chosen such
that V decomposes into two hyperbolic planes and a four-dimensional negative definite space V0,
that is

V = H1 ⊥ H2 ⊥ V0 = Rf1 ⊕ Rf2 ⊥ Rf3 ⊕ Rf4 ⊥ Re5 ⊥ Re6 ⊥ Re7 ⊥ Re8.

In these coordinates the quadratic form is

q(x) = x1x2 + x3x4 − x2
5 − x2

6 − x2
7 − x2

8

and the evaluation of the bilinear form on the basis vectors returns

〈f1, f2〉 = 1 , 〈f3, f4〉 = 1 , 〈fi, fi〉 = 0 for 1 ≤ i ≤ 4

〈ej , ej〉 = −2 for 5 ≤ j ≤ 8

and all other combinations are zero.

An orthonormal basis will be needed as well to calculate the chiral element of the Clifford algebra.
The basis

e1 := f1 + f2 , e2 := f3 + f4 , e3 := f1 − f2 , e4 := f3 − f4 , e5, e6, e7, e8

is obviously orthonormal and the quadratic form is that of the standard quadratic space R2,6

q(x) = x1
2 + x2

2 − x3
2 − ...− x2

8

41



42 CHAPTER 6. AN EXCEPTIONAL HOMOMORPHISM FOR THE SIGNATURE (2,6)

This orthonormal basis defines a chiral element

χ = e1 ... e8

of the Clifford algebra C (V ) which is always meant when referring to the chiral element in this
chapter.

The Spin Representation of the Clifford Algebra

The following two isomorphisms explicitly establish the spin representation of the even part
C +(V ) of the Clifford algebra of V .

Lemma 6.1. There is an isomorphism of algebras

C (V )→M4(C (V0))

with the following properties:

(i) By restriction one obtains an isomorphism

C +(V )→M4(C +(V0)).

(ii) The main involution of C (V ) corresponds to the involution(
a b
c d

)
7→
(
d′′ −b′′
−c′′ a′′

)
where a,b,c,d denote 2 × 2-matrices and a′′ is supposed to be the main involution of C (V0)
applied entry-wise to the transpose of a. The main automorphism ∗ of course corresponds to
applying the main automorphism of C (V0) element by element.

Proof. Define a linear mapping V →M4(C (V0)) by

f1 7−→ e5


0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 ,

f2 7−→ e5


0 0 0 0
−1 0 0 0
0 0 0 −1
0 0 0 0

 ,

f3 7−→ e5


0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0

 ,

f4 7−→ e5


0 0 0 0
0 0 0 0
0 1 0 0
−1 0 0 0

 ,

e5 7−→ e5


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 and

ei 7−→ eiE for 6 ≤ i ≤ 8
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As the defining relation of the Clifford algebra is obviously satisfied for all basis vectors x, the
universal property of the Clifford algebra guarantees a unique extension of this linear map to a
homomorphism of the whole Clifford algebra C (V ). The map is easily observed to be onto as
certain products of the fi are mapped to all matrices with only one nonzero entry, for instance

f1f3 7→ (δ13) , f2f3 7→ (δ24) , f4f1 7→ (δ42) , f4f2 7→ (δ31).

Since the dimension of both algebras is 2n the induced mapping is an isomorphism. The image
of C +(V ) is obviously contained in M4(C +(V0)) and the restricted map is one-to-one again for
reasons of dimensions. And observing that ab′′ = b′′a′′ implies that the mapping given in (ii) is
an involution. The images of the basis vectors are invariant under this involution which proves
the last property.

As V0 = span(e5, ..., e8) corresponds to the standard quadratic space R0,4, the even part of the
Clifford algebra C +(V0) ∼= C +(0, 4) ∼= C (0, 3) (by Lemma 3.16) is isomorphic to H × H by the
classification in [Law]. The isomorphism chosen here promises to be most convenient for later
computations.

Lemma 6.2. The linear mapping

C +(V0) −→ H×H

defined on generators by

e5e6 7→ (i1,−i1), e5e7 7→ (i2,−i2), e5e8 7→ (i3,−i3)

is an isomorphism of algebras. The main involution of C +(V0) corresponds to the standard
involution (a, b) 7→ (ā, b̄) on H×H.

Proof. Follows easily by calculating the images of the other basis vectors which are

1C+(V0) = e2
5e

2
6 = −(e5e6)(e5e6) 7→ −(i21, (−i1)2) = (1, 1)

e6e7 = e5e6e5e7 7→ (i1i2, (−i1)(−i2)) = (i3, i3)

e6e8 7→ (−i2,−i2)

e7e8 7→ (i1, i1)

e5e6e7e8 7→ (i1i2i3,−i1i2i3) = (−1, 1)

The linear independence of the images implies injectivity and since the dimensions are equal the
map is onto as well. The involution on the left hand side changes the sign of all two-products and
leaves 1 and the four-product invariant . This corresponds obviously to the standard involution
on the right hand side.

Concatenating the two isomorphisms delivers the spin representation of C +(V ) on the complex
vector space H4 ⊕H4 denoted by ρ. The half-spin representations ρ± are are the projections of ρ
to one of the factors.

The Spin Representation of Spin(2,6)

Let −H denote the real vector space H endowed with the quadratic form q(h) = −h̄h, The
quadratic spaces V0 will often be identified with this quadratic space via the mapping

e5 7→ 1 , e6 7→ i1 , e7 7→ i2 , e8 7→ i3.
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Proposition 6.3. The restriction of the spin representation ρ : C +(V )→M4(H)×M4(H) embeds
Spin(V ) into Sp(2,H)× Sp(2,H). The resulting faithful spin representation

ρ : Spin(V )→ Sp(2,H)× Sp(2,H)

acts on the Eichler transformations generating Spin(V ) and on the chiral element as follows. For
later calculations, the corresponding transformations of SO+(V ) have been added to the table.

Element of Image in SO+(V ) Image in Sp(2,H)× Sp(2,H)
Spin(V) z = (z1, z2, z3, z4;Z) 7→

−1 z (−E,−E)

χ −z (E,−E)

1 + f1h (z1 + 〈h, Z〉 − q(h)z2, z2, z3, z4;Z − z2h)




1 h 0 0
0 1 0 0
0 0 1 0
0 0 −h̄ 1

 ,


1 h̄ 0 0
0 1 0 0
0 0 1 0
0 0 −h 1




1 + f2h (z1, z2 + 〈h, Z〉 − q(h)z1, z3, z4;Z − z1h)




1 0 0 0
h̄ 1 0 0
0 0 1 −h
0 0 0 1

 ,


1 0 0 0
h 1 0 0
0 0 1 −h̄
0 0 0 1




1 + f3h (z1, z2, z3 + 〈h, Z〉 − q(h)z4, z4;Z − z4h)




1 0 0 h
0 1 h̄ 0
0 0 1 0
0 0 0 1

 ,


1 0 0 h̄
0 1 h 0
0 0 1 0
0 0 0 1




1 + f4h (z1, z2, z3, z4 + 〈h, Z〉 − q(h)z3;Z − z3h)




1 0 0 0
0 1 0 0
0 h 1 0
h̄ 0 0 1

 ,


1 0 0 0
0 1 0 0
0 h̄ 1 0
h 0 0 1




1 + tf1f3 (z1 + tz4, z2, z3 − tz2, z4;Z)




1 0 t 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 t 0
0 1 0 0
0 0 1 0
0 0 0 1




1 + tf2f3 (z1, z2 + tz4, z3 − tz1, z4;Z)




1 0 0 0
0 1 0 t
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 t
0 0 1 0
0 0 0 1




1 + tf4f2 (z1, z2 − tz3, z3, z4 + tz1;Z)




1 0 0 0
0 1 0 0
t 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
t 0 1 0
0 0 0 1




1 + tf4f1 (z1 − tz3, z2, z3, z4 + tz2;Z)




1 0 0 0
0 1 0 0
0 0 1 0
0 t 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 t 0 1




Remark 6.4. The generators of the form 1 + f4h are redundant. This will be proved after
Proposition 6.5.
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Proof. The image of Spin(V ) lies in the product of the symplectic groups because N(g) = gg′ = 1
implies in both components(

d̄′ −b̄′
−c̄′ ā′

)(
a b
c d

)
= E ⇔

(
ā′ c̄′

b̄′ d̄′

)
J

(
a b
c d

)
= J ⇔ M̄ ′JM = J.

Concatenating the two homomorphisms for the Eichler transformations is easy, for example

1 + f1h 7→ E + h0e
2
5


0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

+

8∑
i=6

hi−5e5ei


0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0



7→




1 h 0 0
0 1 0 0
0 0 1 0
0 0 −h̄ 1

 ,


0 h̄ 0 0
0 0 0 0
0 0 0 0
0 0 −h 0




The calculation for the chiral element is still straightforward, but slightly more laborious.

χ = (f1 + f2) (f3 + f4) (f1 − f2) (f3 − f4) e5 e6 e7 e8

7→ e5
4e5e6e7e8
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


︸ ︷︷ ︸

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


︸ ︷︷ ︸

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



= e5e6 e5e7 e5e8


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


7→ −(i1i2i3E,−i1i2i3E)

= (E,−E)

The image of the chiral element in the spinorial kernel has been calculated in section 3.3 and the
images of the Eichler transformations are easily verified recalling that 1 + fiv with 〈fi , v〉 = 0 is
mapped to

a 7→ E(fi, v)(a) = a− 〈a, fi〉v + 〈a, v〉fi − q(v)〈a, fi〉fi
in SO+(V ).

6.2 The Equivariance of the Hermitian Domains

This section constructs explicitly an equivariant isomorphism of the quaternary half-space and the
orthogonal half-space that allows the comparison of the corresponding modular forms. Whereas
the isomorphism itself is already given in [F-H], this thesis adds some details and interpretations
concerning Lie theory and spin representations.

Recall that Z(Spin(V )) = {±E,±χ} and Z(Sp(2,H)) = {±E} and both groups are connected.
Hence, the isogeny

so(2, 6) ∼= sp(2,H)
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implies by Proposition 4.9 that Spin(2, 6) must be a a two-sheeted covering of Sp(2,H). The
considerations about connected isogenous Lie groups in section 4.3 imply furthermore that the
adjoint forms

Spin(2, 6)/{±E,±χ} ∼= Sp(2,H)/{±E} ∼= SO+(2, 6)/{±id} (6.1)

have to be isomorphic.

The Half-Spin Representations of Spin(2,6)

In the following proposition, both half-spin representations of Spin(V ) are shown to be two-
sheeted covering maps from Spin(V ) to Sp(2,H) without using Lie theory.

Proposition 6.5. The half-spin representations

ρ± : Spin(V )→ Sp(2,H)

obtained by projecting the spin representation ρ to both factors are irreducible inequivalent
representations of Spin(V ). Both are two-sheeted covering maps of connected Lie groups with
kernel {1, χ} respectively {1,−χ}.

Proof. The irreducibility of both projections is an immediate consequence of the structure of C +

as shown in section 3.2. The inequivalence can be shown easily considering the images ρ+(χ) = E
and ρ−(χ) = −E of the chiral element χ. Given any C-linear isomorphism φ : H4 → H4, the
obvious relation φρ+(χ)φ−1 = E 6= ρ−(χ) prevents it from being equivariant. Furthermore, χ and
−χ are obviously contained in the kernel of ρ+ respectively ρ−.
If the differential of the mapping was shown to be an isomorphism of Lie algebras, the remaining
statement would immediately follow from Lie theory. However, an elementary proof will be given
here which does not rely on any results from Lie theory.

In the next section will be shown explicitly, that there are no more than two pairs
(A,B) ∈ ρ(Spin(V )) with the same A. Hence, the statement about the kernel of the first projec-
tion is proven because ρ is injective. Surjectivity can be seen directly, writing down the preimages
of the generators of Sp(2,H) (Lemmata 2.9 and 2.5) under ρ+. As above, V0 is identified with
−H.

e1e2 = f1f3 + f2f3 + f2f4 + f1f4 7→ J

(1 + af1f3)(1 + bf2f3)(1 + f3h) 7→
(
E S
0 E

)
with S =

(
a h
h̄ b

)
∈ Sym(2,H)

f3f4f2e5 + f3f4f1e5 − f4f3f2e5 − f4f3f1e5 7→


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



1 + f1e5 7→


1 1 0 0
0 1 0 0
0 0 1 0
0 0 −1 1



f1f2f3f4h+ f2f1f3f4 + f2f1f4f3h̄
−1 + f1f2f4f3 7→


h 0 0 0
0 1 0 0
0 0 h̄−1 0
0 0 0 1


All calculations are straightforward, the first one has been already carried out in the proof of
Lemma 6.1. The proof that all elements on the left hand side are really contained in the Spin
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group is easy.
The arguments for the second projection ρ− are completely analogous.

Corollary 6.6. The equation

J−1


1

1
h 1

h̄ 1

 J =


1 −h

1 −h̄
1

1


shows the redundancy of the generators of the form 1 + f4h regarding that the two preimages of
of J must be a combination of some ±(1 + fifj) , 1 ≤ i, j ≤ 4.

As a corollary, all quotients of the group Spin(V ) by subgroups of its center Z = {±1,±χ} are
identified.

Spin(V )

2

vvlllllllllllll
2

�� 2 ))SSSSSSSSSSSSSS

Spin(V )/± 1

π ∼
��

Spin(V )/{1, χ}

ρ+ ∼
��

Spin(V )/{1,−χ}

ρ− ∼
��

SO+(V )

2

��

Sp(2,H)

2

��

Sp(2,H)

2

uukkkkkkkkkkkkkk

SO+(V )/± id ks ∼ +3 Sp(2,H)/± E ks ∼ +3 Spin(V )/{±1,±χ}

(6.2)

The images of the Eichler transformations under the isomorphism SO+(V )/± id ∼= Sp(2,H)/±E
can be read off the table in Proposition 6.3 when projecting to one of the factors. In the following,
the first projection will always be preferred.

Orthogonal Half-Space versus Quaternary Half-Space

The isogeny so(2, 6) ∼= sp(2,H) and the general theory about symmetric spaces already imply
the isomorphism of the corresponding hermitian domains. Again, an explicit construction of the
correspondence will be achieved without using the general theory.

The conjugation on H can be extended to a C-linear conjugation

z′ = (x+ iy)′ = x̄+ iȳ

on H⊗C. Applying this denotation and the criterion for positivity in Lemma 2.7, the quaternary
tube domain of degree 2 can be written as

H2 = Sym(2,H) + iPos(2,H)

= {
(
z0 z1

z′1 z2

)
| z0, z2 ∈ C , z1 ∈ H⊗ C , y0y2 − ȳ1y1 > 0 , y0 > 0}.

The orthogonal tube domain (Proposition 5.14) is

H6 = {[z0, z2,−z0z2 − q(Z), 1;Z] ∈ P(V (C)) | y0y2 + q(Y ) > 0 , y0 > 0}.

The identification of V0 and −H

e5 7→ 1 , e6 7→ i1 , e7 7→ i2 , e8 7→ i3
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still holds when extending the R-bilinear forms to C-bilinear forms on the complexifications V0(C)
and H⊗ C. Explicitly, one easily verifies the formula (keeping in mind Lemma 2.3)

〈z1, z2〉 = 〈x1, x2〉 − 〈y1, y2〉+ i〈x1, y2〉+ i〈y1, x2〉
= −(z1z

′
2 + z2z

′
1) = −(z′1z2 + z′2z1)

for the bilinear form on H⊗ C, hence

q(z) = −zz′ = −z′z

for the quadratic form. Furthermore, a determinant on Sym(2,H⊗ C) can be introduced by

det Z := z0z2 − z′1z1 = z0z2 + q(z1).

A more general definition respectively references can be found in [Kri].

Proposition 6.7. The quaternionic half-space H2 and the orthogonal half-space H6 are biholo-
morphically equivalent via the map

Z =

(
z0 z1

z′1 z2

)
7→ [z0, z2,−det Z, 1;−z1].

where z1 ∈ H ⊗ C on the left hand side and z1 ∈ V0(C) on the right hand side. This map is
equivariant in the sense that the diagram

(Sp(2,H)/± E)×H2

��

// H2

��
(SO+(V )/± id)×H6

// H6

commutes.

Remark 6.8. This isomorphism does not lift to an equivariant isomorphism from SO+(V ) to
Sp(2,H) regarding the diagram 6.2.

Proof. The equivalence of the half-spaces is obvious by the preliminary remarks. In order to prove
the equivariance it suffices to explicitly show the commutativity of the diagram for the Eichler
transformations generating Spin(V ). One calculates for the generator 1 + f1h (obviously h′ = h̄
for a quaternion h)

(
1 h
0 1

)(
z0 z1

z′1 z2

)(
1 0
h′ 1

)
=

(
z0 + hz′1 + z1h

′ + hh′z2 z1 + hz2

(z1 + hz2)′ z2

)
7→ [z0 − 〈h, z1〉 − q(h)z2, z2,−(z0z2 + hz′1z2 + z1h

′z2 + hh′z2) + (z1 + hz2)′(z1 + hz2)︸ ︷︷ ︸
−z0z2+z′1z1=−det Z

, 1;−z1 − hz2]

which is exactly the image of [z0, z2,−det Z, 1;−z1] under the corresponding Eichler transformation
as given in Proposition 6.3.
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The calculation for the generator 1 + tf4f2 yields(
z0 z1

z′1 z2

)(
tz0 + 1 tz1

0 1

)−1

=

(
z0 z1

z′1 z2

)
1

tz0 + 1

(
1 −tz1

0 tz0 + 1

)
=

1

tz0 + 1

(
z0 z1

z′1 −tz′1z1 + z2 + tz0z2

)
7→ [

z0

tz0 + 1
,
z2 + t(z0z2 − z′1z1)

tz0 + 1
,

−1

(tz0 + 1)2
(z0z2 − tz0z

′
1z1 + tz0z2 − z′1z1)︸ ︷︷ ︸

=(1+tz0)det Z

, 1;
−z1

tz0 + 1
]

= [z0, z2 + tdet Z,−det Z, 1 + tz0;−z1]

which is again the sought-after image of [z0, z2,−det Z, 1;−z1]. The remaining calculations are
either very similar or much easier.

Lemma 5.12 and Proposition 5.14 stated that

Bih(H2) = Sp(2,H)/± E ∪ σ(Sp(2,H)/± E)
∼= Bih(H6) = O+(V )/± id ∼= O+(2, 6)/± id

where σ denoted the biholomorphic mapping Z 7→ Z ′. On the orthogonal side, Z 7→ Z ′ corresponds
to the mapping

[z0, z2, ∗, 1; z5, z6, z7, z8] 7→ [z0, z2, ∗, 1; z5,−z6,−z7,−z8]

which has obviously determinant −1. As SO+(2, 6) has index 2 in O+(2, 6), one has another proof
of

SO+(2, 6)/± id ∼= Sp(2,H)/± E
that does not use any Lie theory.

6.3 A Description of Spin(2,6) independent of the Clifford
Algebra

In this section, the image of Spin(2, 6) in the product of the symplectic groups under the spin
representation is computed. As a preparation, a certain exceptional automorphism of Sp(2,H)/±E
is needed.

An Auxiliary Automorphism of GL(2,H)

The above automorphism originates mainly in an outer automorphism of GL(2,H).

Lemma 6.9. The homomorphism φ : GL(2,H)→ GL(2,H)/± E defined on generators by(
1 1
0 1

)
7→

[(
1 1
0 1

)]
(

0 1
1 0

)
7→

[(
0 1
1 0

)]
(
a 0
0 1

)
7→

[(
a 0
0 1

)]
a ∈ R>0(

h 0
0 1

)
7→

[(
1 0
0 h

)]
h ∈ H, |h| = 1
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satisfies the following equation

(Ā′Y A)′ = ¯̃A′Y ′Ã for Ã ∈ φ(A) and for all Y ∈ Sym(2,H). (6.3)

Proof. For real matrices the equation is obvious as R is the center of H and quaternary conjugation

acts trivially on R. For the last generator let Y =

(
y0 y1

ȳ1 y2

)
∈ Sym(2,H), that is y0, y2 ∈ R

and y1 ∈ H. Then((
h̄ 0
0 1

)(
y0 y1

ȳ1 y2

)(
h 0
0 1

))′
=

(
y0 ȳ1h
h̄y1 y2

)
=

(
1 0
0 h̄

)(
y0 ȳ1

y1 y2

)(
1 0
0 h

)

With the knowledge that the only outer homomorphism of GL(4,C) is given by transposition
followed by inversion, it is possible to find a lifting of the previous homomorphism given by a
closed formula.

Lemma 6.10. The homomorphism φ : GL(2,H)→ GL(2,H)/±E of the previous lemma lifts to
an automorphism of GL(2,H) when setting(

1 1
0 1

)
7→

(
1 1
0 1

)
(

0 1
1 0

)
7→ −

(
0 1
1 0

)
(
a 0
0 1

)
7→

(
a 0
0 1

)
a ∈ R>0(

h 0
0 1

)
7→

(
1 0
0 h

)
h ∈ H, |h| = 1

After embedding GL(2,H) into GL(4,C) the automorphism is described by the closed formula

Ǎ 7→
√
det (Ǎ)B−1Ǎ′−1B ∈ Image(GL(2,H)) (6.4)

where B =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

. The determinant of Ǎ is always real and positive.

Proof. Let

(
a b
c d

)
∈
{(

1 1
1 0

)
,

(
0 1
1 0

)
,

(
a 0
0 1

)
, a ∈ R>0

}
⊂ GL(2,R), and σ denote the

sign of det

(
a b
c d

)
= ad− bc. With det

(
aE bE
cE dE

)
= (ad− bc)2 follows

(
aE bE
cE dE

)
7→

√
(ad− bc)2B−1

(
aE bE
cE dE

)′−1

B

=
|ad− bc|
(ad− bc)

B−1


d 0 −c 0
0 d 0 −c
−b 0 a 0
0 −b 0 a




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



= σ


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




0 −c 0 −d
c 0 d 0
0 a 0 b
−a 0 −b 0

 = σ

(
aE bE
cE dE

)
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For the last generator det (Ǎ) = det (ȟ) = h2
1 + h2

2 + h2
3 + h2

4 = |h|2 is 1, so one receives(
ȟ 0
0 E

)
7→ B−1

(
ȟ 0
0 E

)′−1

B

= B−1

(h1 + ih2 −h3 + ih4

h3 + ih4 h1 − ih2

)−1

0

0 E

B

= B−1


h1 − ih2 h3 − ih4 0 0
−h3 − ih4 h1 + ih2 0 0

0 0 1 0
0 0 0 1




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



=


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




0 0 h3 − ih4 −h1 + ih2

0 0 h1 + ih2 h3 + ih4

0 1 0 0
−1 0 0 0


=

E 0

0

(
h1 + ih2 h3 + ih4

−h3 + ih4 h1 − ih2

) =

(
E 0

0 ȟ

)

Det(Ǎ) is always real and positive, as it is for all the generators.

The Main Result

The key to explicitly describing the image of the Spin group under the spin representation is the
following homomorphism from Sp(2,H) to Sp(2,H)/± E.

Proposition 6.11. There is an epimorphism

ψ : Sp(2,H)→ Sp(2,H)/± E

with kernel ±E satisfying

M〈Z〉′ = M̃〈Z ′〉 for M̃ ∈ ψ(M) and for all Z ∈ H(2,H). (6.5)

This homomorphism does not lift to an automorphism of Sp(2,H) as shown after the next propo-
sition.

Proof. Defining the images of the generators by

J 7→ ±J (6.6)(
E S
0 E

)
7→ ±

(
E S′

0 E

)
(6.7)(

W̄ ′ 0
0 W−1

)
7→ ±

(
φ(W )

′
0

0 φ(W )−1

)
(6.8)

one easily proves the formula. In the last case, φ is the automorphism of Lemma 6.10. As the
images of the generators obviously form a set of generators for Sp(2,H), the map is onto. The
fact that the action of two matrices M and N ∈ Sp(n,H) define the same transformation of H2

if and only if M = ±N (Proposition 5.9) implies the statement about the kernel.

The following theorem can be viewed as the main result of this thesis and describes explicitly the
image of Spin(2, 6) in the product of the symplectic groups.
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Theorem 6.12. Let V be the real quadratic space of signature (2, 6) and Spin(V ) the correspond-
ing Spin group. The spin representation ρ of Proposition 6.3

ρ : Spin(V )→ Sp(2,H)× Sp(2,H)

induces an isomorphism

Spin(V ) ∼= Ω := { (M, M̃ ) ∈ Sp(2,H)× Sp(2,H) | M̃ ∈ ψ(M) }.

Here, ψ : Sp(2,H)→ Sp(2,H)/±E is the homomorphism of the previous lemma which is defined
by the relation

M〈Z〉′ = M̃〈Z ′〉.

Corollary 6.13. As Spin(V ) is connected by Lemma 4.2, Ω ⊂ Sp(2,H) × Sp(2,H) is also
connected.

Corollary 6.14. The homomorphism ψ does not lift to an automorphism of Sp(2,H) because
both (E,E) and (E,−E) are contained in Ω.

Proof. If the relation M〈Z〉′ = M̃〈Z ′〉 can be verified for the images of the Eichler transformations
generating the Spin group, the image of the Spin group has to be contained in Ω. By Proposition
6.5, the projection on the first factor is surjective as well as the homomorphism ψ : Sp(2,H) →
Sp(2,H)/±E. Then a possible multiplication by ρ(χ) = (E,−E) guarantees that Ω is contained
in the image of the Spin group and the proposition is proved.

In the following, the formula defining ψ is verified for the images of all generators given in Propo-

sition 6.3. For the generator 1 + f1h, it suffices to show that

(
1 h
0 1

)
is mapped to

(
1 h̄
0 1

)
by

the homomorphism φ of Lemma 6.10. This is true because of(
1 h
0 1

)
=

(
h 0
0 1

)(
1 1
0 1

)(
h−1 0

0 1

)
7→

(
|h| 0
0 h|h|−1

)(
1 1
0 1

)(
|h|−1 0

0 |h|h−1

)
=

(
1 |h|2h−1

0 1

)
=

(
1 h̄
0 1

)
.

The calculation for the generator 1 +f2h is completely analogous. The image of 1 +f3h under the

first projection operates as Z ′ 7→ Z ′ +

(
0 h
h̄ 0

)
which is obviously the transpose of the operation

of the other projection on Z. The same argument applies to 1 + f1f3 and 1 + f2f3. As shown in
corollary 6.6, the generator 1 + f4h is (fortunately) redundant. The calculations for the remaining
cases 1 + f4f1 and 1 + f4f2 are again analogous, so only the first is treated as follows. Both
projections are the same and the action has already been calculated in the proof of Proposition
6.7 as

Z 7→ 1

tz0 + 1

(
z0 z1

z′1 −tz′1z1 + z2 + tz0z2

)
which is obviously the same when interchanging z1 and z′1 before and transposing afterwards.

The Operation of Spin(V) on the Quaternary Half-Space

With the help of the new description of the Spin group, the operation on the half space H2 can
be written down explicitly as Moebius transformation. Consider the embedding

H2 ↪→H2 ×H2 , Z 7→ (Z,Z ′).
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This embedding allows to write the natural operation of Spin(V ) ⊂ Sp(2,H) × Sp(2,H) on the
Half-Space as Moebius transformation on both factors, that is

Spin(V )×H2 →H2 , ( (M, M̃) , (Z,Z ′) ) 7→ (M〈Z〉, M̃〈Z ′〉 ).

The defining relation of the Spin group given in the main theorem guarantees that this operation
is well-defined.

The given operation can be generalized similarly for all Spin groups isomorphic to some Spin(2, n)
as done by Prof. Freitag in a paper which is unfortunately not published so far. However, the
convenient description of the image of the group Spin(2, 6) involving the quaternions and the
quaternary half-space is not available in the general context.

6.4 Factors of Automorphy of Spin(2,6)

In this section, the maximal compact subgroup of the Spin group shall be examined in detail. The
resulting description of its complexification together with the explicit description of a factor of
automorphy with values in KC leads to the knowledge of all possible factors of automorphy of the
Spin group.

One-Dimensional Factors of Automorphy

To begin with, the one-dimensional factors of automorphy of the symplectic and the orthogonal
world are compared. In turns out, that the square of the orthogonal factor of automorphy “a”
(definition 5.15), corresponds to the quaternary factor of automorphy given at the end of section
5.3.

Proposition 6.15. The equivariant isomorphism

(Sp(2,H)/± E)×H2
∼= (SO+(V )/± id)×H6

induces the following relation of the quaternary factor of automorphy and the orthogonal factor of
automorphy.

J(

(
A B
C D

)
, Z) = det (ČŽ + Ď) = J(g, (z0, z2, ∗, 1,−z1))2

Proof. Using the table in Proposition 6.3, the assertion is easily verified for the Eichler transforma-

tions. Recall that the image of Z =

(
z0 z1

z′1 z2

)
∈H2 is z = (z0, z2,−det Z, 1;−z1) ∈ H6. Then the

orthogonal factor of automorphy can immediately be read off the table as the fourth coordinate
of the image of z. The matrix ČŽ + Ď is triangular in all cases except for the redundant 1 + f4h
and the relation is obvious for all generators.

Maximal Compact Subgroups of Spin(2,6)

A maximal compact subgroup of Spin(2,6) may be determined by very different means.
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Description as Stabilizer

The description of the Spin group and its operation on the half plane of the previous section
immediately yield a maximal compact subgroup as the stabilizer of the point iE, that is

K := StabSpin(V )(iE)

= {
(
M =

(
A B
−B A

)
, M̃ =

(
Ã B̃

−B̃ Ã

))
∈ Sp(2,H)× Sp(2,H) | M〈Z ′〉 = M̃〈Z〉′ }

= { (M,M̃) ∈ Sp(2,H)× Sp(2,H) | MJ = JM , M̃J = JM̃ , M〈Z ′〉 = M̃〈Z〉′ }
∼= { (N, Ñ) ∈ U(4)× U(4) | Ñ ∈ ψ̃(N) }.

The isomorphism to the last line is given by the mapping(
A B
−B A

)
7→ Ǎ+ iB̌

on both factors (confer Proposition 5.13). Since this isomorphism maps −E to −E, the following
diagram defines the mapping ψ̃.

StabSp(2,H)(iE)
ψ //

∼
��

StabSp(2,H)(iE)/± E

∼
��

U(4)
ψ̌

// U(4)/± E

Description within the Spin group

Another description within the Clifford algebra can be found in paragraph 5 in the appendix of
[Sat]. Define V + := span(e1, e2) ∼= R2,0 and V − := span(e3, ..., e8) ∼= R0,6 where {e1, ..., e8}
denotes the standard orthonormal basis of V introduced at the beginning of this chapter. Then,
one has Spin(V +) ∼= Spin(2, 0) ∼= S1 and Spin(V −) ∼= Spin(0, 6) ∼= SU(4). As Satake explicitly
calculates the Cartan involution he easily deduces a maximal compact subgroup as the set of fix
points of this involution which turns out to be

Spin(V +) · Spin(V −) ∼= K.

The spin representation ρ establishes an isomorphism to the first description within
Sp(2,H)× Sp(2,H).

Coverings of Maximal Compact Subgroups

A third description of the maximal compact subgroup can be obtained independently of the
previous descriptions by applying the theory of covering spaces of Lie groups as introduced in
section 4.3.

It has been pointed out already in that section that a covering map of a semisimple Lie group
induces a covering map of maximal compact subgroups (assuming they exist) with the same
number of sheets. As π1(U(4)) = Z, there is only one two-sheeted covering of the maximal
compact subgroup U(4) of Sp(2,H) up to isomorphism. This covering has to be a maximal compact
subgroup of Spin(V ) considering the two-sheeted covering ρ+ of the final section. Furthermore,
this subgroup has to be a two-fold covering of S1 × SO(6), the maximal compact subgroup of
SO+(V ).
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As the fundamental group of a maximal compact subgroup is the same as that of the whole
group, π1(Spin(V )) has to be a subgroup of index 2 in Z. There is only 2Z ∼= Z, hence one has

Lemma 6.16.

π1(Spin(V )) ∼= Z.

Now consider the obviously well-defined mapping

κ : S1 × SU(4)→ U(4) , (z,A) 7→ zA.

This mapping is onto (simply write B = 4
√
detB B

4√
detB

for any B ∈ U(4)) and the kernel turns

out to be {±(1, E),±(−i, iE)} as the following easy calculation shows.

(z,A) ∈ Ker(κ) ⇔ zA = E, |z| = 1, Ā′A = E, det (A) = 1

⇔ A = λE, zλ = 1, |λ| = |z| = 1, λ4 = 1

Hence, the quotient of S1 × SU(4) by the only subgroup of the kernel of order 2 must be the
sought-after two-sheeted covering of U(4), that is

K ∼= S1 × SU(4)/± (1, E).

The isomorphism to Satake’s description is obvious considering that Spin(V +) ∼= S1 and
Spin(V −) ∼= SU(4) as remarked above.

To see the whole picture the examination of the covering relations is also applied to the orthogonal
world. Recall that a two-sheeted covering π : SU(4)→ SO(6) with kernel±E has been constructed
in section 4.10. The mapping

S1 × SU(4)→ S1 × SO(6) , (z,A) 7→ (z2, π(A))

is then obviously a four-sheeted covering with kernel {±(1, E),±(1,−E)}. Summarized in a dia-
gram, the interrelations between maximal compact subgroups are as follows.

S1 × SU(4)

z·A
4:1

{{wwwwwwwwwwwwwwwwwww

2:1

��

4:1

(z2,π(A))

%%KKKKKKKKKKKKKKKKKKKK

U(4)

2:1

##HHHHHHHHHHHHHHHHHHHH K
2:1

oo
2:1

//

4:1

��

S1 × SO(6)

2:1

yyssssssssssssssssssssss

K̃

Here, K̃ denotes the maximal compact subgroup of the adjoint form, that is

K̃ ∼= U(4)/± E ∼= S1 × SO(6)/± (1, E) ∼= S1 × SU(4)/{±(1,±E),±(i,±iE)}
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Summary of Maximal Compact Subgroups of Spin(2,6)

Proposition 6.17. The following descriptions of the maximal compact subgroup K of Spin(V )
are isomorphic.

K = {
(
M =

(
A B
−B A

)
, M̃ =

(
Ã B̃

−B̃ Ã

))
∈ Sp(2,H)× Sp(2,H) | M〈Z ′〉 = M̃〈Z〉′}

∼= {(N, Ñ) ∈ U(4)× U(4) | Ñ ∈ ψ̃(N)}
∼= Spin(V +) · Spin(V −)
∼= S1 × SU(4)/± (1, E)

The Complexification of the Maximal Compact Subgroup

In the following, the analytic complexification of the maximal compact subgroup K will be deter-
mined in order to write down the factors of automorphy.

A complexification of the stabilizer of iE is

StabSp(n,H)(iE)C := {M =

(
A B
−B A

)
∈ GL(2n,H⊗ C) | M̄ ′JM = J}

when tensoring the coefficients with C.

Lemma 6.18. The mapping

StabSp(n,H)(iE)C →̃GL(2n,C) ,

(
A B
−B A

)
7→ Ǎ+ iB̌

is a well-defined isomorphism.

Proof. As calculated after Lemma 2.13, the symplectic relation after applying the isomorphism ˇ
is

M̌ ′ĨM̌ = Ĩ

⇔
(
Ǎ′ −B̌′
B̌′ Ǎ′

)(
0 J̃

−J̃ 0

)(
A B
−B A

)
=

(
0 J̃

−J̃ 0

)
⇔ B̌′J̃Ǎ− Ǎ′J̃B̌ = 0 , B̌′J̃B̌ +A′J̃Ǎ = J̃ .

with J̃ =


A

A
...

A

 and A =

(
0 1
−1 0

)
.

These two conditions guarantee that the inverse of

g := Ǎ+ iB̌

is g−1 = J̃−1Ǎ′J̃ − iJ̃−1B̌J̃ . Hence,

J̃g−1′J̃−1 = Ǎ− iB̌

and solving for A and B yields

Ǎ =
1

2
(g + J̃g−1′J̃−1) , B̌ =

1

2i
(g − J̃g−1′J̃−1).

These formulas explicitly define an inverse mapping. Together with the fact that GL(2n,H⊗C) ∼=
GL(4n,C), this implies that the mapping is one-to-one.
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Since GL(n,C) is the analytic complexification of U(n), which is unique up to isomorphism, this
lemma implies that StabSp(n,H)(iE)C is the analytic complexification of StabSp(n,H)(iE) ∼= U(n).

Now define

KC := {(M =

(
A B
−B A

)
, M̃) ∈ Sp(2,H⊗ C)× Sp(2,H⊗ C) | M̄ ′JM = J , M̃ ∈ ψC(M)}

where ψC denotes the unique extension of the map ψ : Sp(2,H) → Sp(2,H)/ ± E to the com-
plexification Sp(n,H ⊗ C). With the help of the defining relation of ψ, it is easy to show that
ψC is holomorphic and thus KC is an analytic complexification of K. Analogously to the case of
StabSp(n,H)(iE) and U(2n), the diagram

StabSp(2,H⊗C)(iE)
ψC //

∼
��

StabSp(2,H⊗C)(iE)/± E

∼
��

GL(4,C)
ψ̃C

// GL(4,C)/± E

defines a mapping characterizing the image of KC in GL(4,C)×GL(4,C).

It is not hard to extend the remaining descriptions of the maximal compact subgroup K to the
complexified case. Recall that V (C) denotes the complexification V ⊗R C of a real vector space
V .

Proposition 6.19. The following descriptions of the analytic complexification of the maximal
compact subgroup of the Spin group are isomorphic.

KC = {(M =

(
A B
−B A

)
, M̃) ∈ Sp(2,H⊗ C)× Sp(2,H⊗ C) | M̄ ′JM = J , M̃ ∈ ψC(M)}

∼= {(N, Ñ) ∈ GL(4,C)×GL(4,C) | Ñ ∈ ψ̃C(N)}
∼= Spin(V +(C)) · Spin(V −(C)) [ ⊂ Spin(8,C) ∼= Spin(2, 6)C ]
∼= C∗ × SL(4,C)/± (1, E) .

Recalling the examples of analytic complexifications in section 4.3, it is clear that
C∗ × SL(4,C)/± (1, E) is an analytic complexification of S1 × SU(4)/ ± (1, E). Furthermore,
the isomorphisms

Spin(V +(C)) ∼= Spin(2,C) ∼= SO(2,C) ∼= C∗

and
Spin(V −(C)) ∼= Spin(6,C) ∼= SL(4,C)

which are described in section 4.3 ensure that the third line is another description of the analytic
complexification.

Factors of Automorphy

With the help of the new description of the Spin group within Sp(2,H) × Sp(2,H) and its
operation on H2 as Moebius transformation, a KC-valued factor of automorphy can be found in
analogy to the well-known ”CZ+D” in the theory of Siegel modular forms.

Proposition 6.20. The mapping

J : Spin(V )×H2 → KC,

(

((
A B
C D

)
,

(
Ã B̃

C̃ D̃

))
, Z) 7→

ˇ︷ ︸︸ ︷
(C, C̃)(Z,Z ′) + (D, D̃) = (ČŽ + Ď, ˇ̃CŽ ′ + ˇ̃D ).
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defines a factor of automorphy of Spin(V ) with values in KC.

Proof. The calculation that the cocycle relation is fulfilled is easy and exactly the same as in
the case of the factor of automorphy CZ + D in the theory of Siegel modular forms. The claim
that the factor of automorphy has values in KC has to be verified for the generators of Sp(2,H).

For the generators of the form

(
E S
0 E

)
, the factor of automorphy (E,E) respectively (E,−E)

is obviously in KC. For the generators of the form

(
W̄ ′−1 0

0 W

)
with invertible W , the factor

(W̌ , ˇ̃W ) is in KC by definition of the homomorphism ψ̃C : GL(4,C) → GL(4,C)/ ± E. To cover
the generator J , it remains to show that for an invertible matrix Z ∈ Sym(2,H ⊗ C), the factor
(Ž, Ž ′) is in KC.

The preimage of Ž in Sp(2,H⊗ C) is

(
A B
−B A

)
with

A =
1

2
(Z + Z−1) and B =

1

2i
(Z − Z−1).

The inverse of Z is hermitian by Formula 2.1, so A and B are in Sym(2,H⊗ C). The symplectic
relations reduce to

AB = BA and A2 +B2 = E (6.9)

which is easily verified. Another short calculation yields

Z ′−1 = (Z−1)′

for Z ∈ Sym(2,H ⊗ C). Therefore, it has to be verified that the image of

(
A B
−B A

)
under the

homomorphism ψ is

(
A′ B′

−B′ A′

)
. The necessary calculation greatly simplifies when expressing(

A B
−B A

)
as a product of generators. Looking up the proof of Lemma 2.9 and remembering the

relations 6.9, one finds that(
A B
−B A

)
=

(
B−1 0

0 B

)(
E −BA
0 E

)
J

(
E −B−1A
0 E

)
.

The commuting hermitian 2 times 2 matrices A and B satisfy

(BA)′ = B′A′ (⇔ (B−1A)′ = (B−1)′A′ )

and
(BZB)′ = B′Z ′B′ for all Z ∈ Sym(2,H⊗ C).

Both calculations have to be carried out explicitly using several properties of quaternions and
hermitian matrices. Nevertheless, they are so easy that they have been omitted. Lastly recall
(6.6) that ψC maps

J 7→ ±J(
E S
0 E

)
7→ ±

(
E S′

0 E

)
(
B 0
0 B−1

)
7→ ±

(
F 0
0 F−1

)
with (BZB)′ = FZ ′F

for a S and B ∈ Sym(2,H ⊗ C). Then it is obvious that the product of the images of the four

generators yields

(
A′ B′

−B′ A′

)
as needed.
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As described in detail in section 5.2, this factor of automorphy can be composed with complex
finite-dimensional representations of KC to obtain factors of automorphy with values in GL(V ). In
this way, one finds a representative of each equivalence class of factors of automorphy belonging to
irreducible representation of K. Thus, to complete the analysis of possible factors of automorphy,
the well-known representation theory of KC in the form C∗×SL(4,C)/±(1, E) is explained briefly.
Details and proofs can be found in [Ful].

In the following, all representations are supposed to be complex and finite-dimensional. To begin
with, representations of quotients of a group A by a normal subgroup B are representations of A
which map all elements of B to the trivial transformation. It is enough to describe all irreducible
representations of KC, because any holomorphic representation of KC is completely reducible by
Theorem 4.11. Further on, irreducible representations of direct products of groups A and B
are tensor products of an irreducible representation of A and an irreducible representation of B.
However, irreducible representations of the abelian group C∗ are one-dimensional, more precisely,
there are only the characters z 7→ zn for all n ∈ Z. Thus, the irreducible representations of
(C∗ × SL(4,C) )/± (1, E) are of the form

[(z,A)] 7→ znτ(A)

where n ∈ Z and τ is an irreducible representation of SL(4,C) such that

τ(−E) =

{
idV if n is even,
−idV if n is odd.

Lastly, the irreducible representations of the simply connected simple Lie group SL(4,C) are in
one-to-one correspondence to irreducible representations of its simple Lie algebra sl(4,C). The
theory of weights reveals that the irreducible representations of sl(4,C) are parameterized by three
nonnegative integers a1, a2 and a3 which are the coefficients of the highest weight written as a
linear combinations of the fundamental weights. The corresponding irreducible representation
is denoted by Γ(a1,a2,a3). The trivial one-dimensional representation turns out to be Γ(0,0,0),
the four-dimensional standard representation V = C4 is Γ(1,0,0) and the 15-dimensional adjoint
representation of sl(4,C) on itself is Γ(1,0,1). Furthermore, the six-dimensional representation Λ2V
corresponds to Γ(0,1,0) and the four-dimensional dual representation V ∗ is isomorphic to Λ3V and

corresponds to Γ(0,0,1). The symmetric powers Symk(V ) of the standard representation are also
irreducible and correspond to Γ(k,0,0). There is a generalization of exterior and symmetric powers
known as Weyl’s construction or Schur functor that assigns to any partition λ of d an irreducible
representation of GL(V ) as a subrepresentation of V ⊗d when V is any complex finite-dimensional
vector space. Inserting the standard representation V = C4 and restricting to SL(4,C) delivers
an irreducible representation of SL(4,C) which defines an irreducible representation of the Lie
algebra sl(4,C) by differentiation. In this way, the irreducible representation Γ(a1,a2,a3) can be
constructed explicitly when starting with the partition λ = (a1 + a2 + a3, a2 + a3, a3, 0) and one
finds the dimension formula

dim(Γ(a1,a2,a3)) =
∏

1≤i,j≤4

ai + ...+ aj−1 + j − i
j − i

=
1

12
(a1 + 1)(a1 + a2 + 2)(a1 + a2 + a3 + 3)(a2 + 1)(a2 + a3 + 2)(a3 + 1).

The so-called “Littlewood-Richardson rule” delivers remarkable formulas describing explicitly the
decomposition of the tensor product of two arbitrary irreducible representations into irreducible
representations.
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