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Abstract. We investigate the problem of determining how many monochromatic trees
are necessary to cover the vertices of an edge-coloured random graph. More precisely, we
show that for p " n´1{6pln nq

1{6, in any 3-edge-colouring of the random graph Gpn, pq

we can find three monochromatic trees such that their union covers all vertices. This
improves, for three colours, a result of Bucić, Korándi and Sudakov.

§1. Introduction

Given a graph G and a positive integer r, let tcrpGq denote the minimum number k
such that in any r-edge-colouring of G, there are k monochromatic trees T1, . . . , Tk such
that the union of their vertex sets covers V pGq, i.e.,

V pGq “ V pT1q Y ¨ ¨ ¨ Y V pTkq.

We define tprpGq analogously by requiring the union above to be disjoint.
It is easy to see that tp2pKnq “ 1 for all n ě 1, and Erdős, Gyárfás and Pyber [8] proved

that tp3pKnq “ 2 for all n ě 1, and conjectured that tprpKnq “ r ´ 1 for every n and r.
Haxell and Kohayakawa [10] showed that tprpKnq ď r for all sufficiently large n ě n0prq.
We remark that it is easy to see that tcrpKnq ď r (just pick any vertex v P V pKnq and
let Ti, for i P rrs, be a maximal monochromatic tree of colour i containing v), but it is not
even known whether or not tcrpKnq ď r´ 1 for every n and r (as would be implied by the
conjecture of Erdős, Gyárfás and Pyber).

Concerning general graphs instead of complete graphs, Gyárfás [9] noted that a well-
known conjecture of Ryser on matchings and transversal sets in hypergraphs is equivalent
to the statement that for every graph G and integer r ě 2, we have tcrpGq ď pr ´ 1qαpGq.
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In particular, Ryser’s conjecture, if true, would imply that tcrpKnq ď r ´ 1, for every
n ě 1 and r ě 2. Ryser’s conjecture was proved in the case r “ 3 by Aharoni [1], but
for r ě 4 very little is known. For example, Haxell and Scott [11] proved (in the context
of Ryser’s original conjecture) that there exists ε ą 0 such that for r P t4, 5u, we have
tcrpGq ď pr ´ εqαpGq, for any graph G.

Bal and DeBiasio [2] initiated the study of covering and partitioning random graphs
by monochromatic trees. They proved that if p !

` ln n
n

˘1{r, then with high probability1

we have tcrpGpn, pqq Ñ 8. They conjectured that for any r ě 2, this was the correct
threshold for the event tprpGpn, pqq ď r. Kohayakawa, Mota and Schacht [14] proved that
this conjecture holds for r “ 2, while Ebsen, Mota and Schnitzer2 showed that it does not
hold for more than two colours.

Bucić, Korándi and Sudakov [6] proved that if p !
` ln n

n

˘

?
r{2r´2

, then w.h.p. we have
tcrpGpn, pqq ě r ` 1, which implies that the threshold for the event tcrpGq ď r is in fact
significantly larger than the one conjectured by Bal and DeBiasio when r is large. Bucić,
Korándi and Sudakov also proved that w.h.p. we have tcrpGpn, pqq ď r for p "

` ln n
n

˘1{2r

.
They were also able to roughly determine the typical behaviour of tcrpGpn, pqq in terms of
the range where p lies in (see [6, Theorem 1.3 and Theorem 1.4]).

Considering colourings with three colours, the results from [6] imply that if p "
` ln n

n

˘1{8, then w.h.p. we have tc3pGpn, pqq ď 3, and if
` ln n

n

˘1{6
! p !

` ln n
n

˘1{7, then w.h.p.
tc3pGpn, pqq ď 88. Our main result improves these bounds for three colours.

Theorem 1.1. If p “ ppnq satisfies p "
` ln n

n

˘1{6, then with high probability we have

tc3
`

Gpn, pq
˘

ď 3.

It can be easily seen that if 1´p ! n´1, then w.h.p. there is a 3-edge-colouring of Gpn, pq
for which 3 monochromatic trees are needed to cover all vertices — it suffices to consider
three non-adjacent vertices x1, x2 and x3, and colour the edges incident to xi with colour i
and colour all the remaining edges with any colour. Therefore, the bound for tc3pGpn, pqq

in Theorem 1.1 is the best possible as long as p is not too close to 1.
We remark that, from the example described in [14], we know that for p !

` ln n
n

˘1{4, we
have w.h.p. tc3pGpn, pqq ě 4. It would be very interesting to describe the behaviour of
tc3pGpn, pqq when

` ln n
n

˘1{4
! p !

` ln n
n

˘1{6.
This paper is organized as follows. In Section 2 we present some definitions and auxiliary

results that we will use in the proof of Theorem 1.1, which is outlined in Section 3. The
details of the proof of Theorem 1.1 are given in Section 4.

1We will write shortly w.h.p. for with high probability.
2A description of this construction can be found in [14].
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§2. Preliminaries

Most of our notation is standard (see [3, 5, 7] and [4, 13]). However, we will mention
in the following few definitions regarding hypergraphs that will play a major role in our
proofs just for completeness.

We say that a set A of vertices in a hypergraph H is a vertex cover if every hyperedge of
H contains at least one element of A. The covering number of H, denoted by τpHq, is the
smallest size of a vertex cover in H. A matching in H is a collection of disjoint hyperedges
in H. The matching number of H, denoted by νpHq, is the largest size of a matching in
H. An immediate relationship between τpHq and νpHq is the inequality νpHq ď τpHq.
If additionally H is r-uniform, then we have τpHq ď rνpHq. A conjecture due to Ryser
(which first appeared in the thesis of his Ph.D. student, Henderson [12]) states that for
every r-uniform r-partite hypergraph H, we have τpHq ď pr ´ 1qνpHq. Note that König-
Egerváry theorem corresponds to Ryser’s conjecture for r “ 2. Aharoni [1] proved that
Ryser’s conjecture holds for r “ 3, but the conjecture remains open for r ě 4.

Given a vertex v in a 3-uniform hypergraph H, the link graph of H with respect to v is
the graph Lv “ pV,Eq with vertex set V “ V pHq and edge set E “ txy : tx, y, vu Ď Hu.

We will use the following theorem due to Erdős, Gyárfás and Pyber [8] in the proof of
our main result.

Theorem 2.1 (Erdős, Gyárfás and Pyber). For any 3-edge-colouring of a complete graph
Kn, there exists a partition of V pKnq into 2 monochromatic trees.

We will also use the following lemma, which is a simple application of Chernoff’s
inequality. For a proof of the first item see [15, Lemma 3.8]. The second item is an
immediate corollary of [15, Lemma 3.10].

Lemma 2.2. Let ε ą 0. If p “ ppnq "
` ln n

n

˘1{6, then w.h.p. G P Gpn, pq has the following
properties.

(i ) For any disjoint sets X, Y Ď V pGq with |X|, |Y | " ln n
p
, we have

|EGpX, Y q| “ p1˘ εqp|X||Y |.

(ii ) Every vertex v P V pGq has degree dGpvq “ p1˘ εqpn and every set of i ď 6 vertices
has p1˘ εqpin common neighbours.

§3. A sketch of the proof

In this section we will give an overview of the proof of Theorem 1.1. Let G “ Gpn, pq,
with p "

` ln n
n

˘1{6, and let ϕ : EpGq Ñ tred, green, blueu be any 3-edge-colouring of G.
We consider an auxiliary graph F , with V pF q “ V pGq and ij P EpF q if and only if there
is, in the colouring ϕ, a monochromatic path in G connecting i and j. Then we define
a 3-edge-colouring ϕ1 of F with ϕ1pijq being the color of any monochromatic path in G
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connecting i and j. Note that any covering of F with monochromatic trees with respect
to the colouring ϕ1 corresponds to a covering of G with monochromatic trees with respect
to the colouring ϕ with the same number of trees.

Next, we consider different cases depending on the value of αpF q. If αpF q “ 1, then F
is a complete 3-edge-coloured graph and by a theorem of Erdős, Gyárfás and Pyber
(see Theorem 2.1), there exists a partition of V pF q into 2 monochromatic trees. The
remaining proof now is divided into the cases αpF q ě 3 and αpF q “ 2.

Case αpF q ě 3. From the condition on the independence number of G, there exist three
vertices r, b, g P V pGq that pairwise do not have any monochromatic path connecting them.
With high probability, they have a common neighbourhood in G of size at least np3{2.
Let Xrbg be the largest subset of this common neighbourhood such that for each i P tr, b, gu,
the edges from i to Xrbg in G are all coloured with one colour. Then, since there are no
monochromatic paths between any two of r, b, g, we have |Xrbg| ě np3{12 and moreover
we may assume that all edges between r and Xrbg are red, all between b and Xrbg are
blue and those between g and Xrbg are green. Now we notice that all vertices that have a
neighbour in Xrbg are covered by the union of the spanning trees of the red component
of r, the blue component of b and the green component of g.

We are done in the case where every vertex has a neighbour in Xrbg, as the vertices
in Xrbg Y NGpXrbgq are covered by the red, blue and green component containing r, b
and g, respectively. Otherwise, w.h.p. any vertex y P V r pXrbg YNGpXrbgqq has many
common neighbours with r, g and b in G that are also neighbours of some vertex in
Xrbg. An analysis of the possible colourings of the edges between Xrbg and the common
neighbourhood of the vertices r, b, g and y yields the following: for some i P tr, g, bu,
let us say i “ r, every vertex y P Xrbg can be connected to r by a monochromatic path
in colour red or either to g or b by a monochromatic path in the colour blue or green,
respectively.

This already gives us that all vertices in G can be covered by 5 monochromatic trees,
since all the vertices in NGpXrbgq lie in the red component of r, or the green component
of g, or in the blue component of b and every vertex in V r NGpXrbgq lies in the red
component of r, in the blue component of g or in the green component of b. By analysing
the colours of edges to the common neighbourhood of carefully chosen vertices, we are
able to show that actually three of those five trees already cover all the vertices of G.

Case αpF q “ 2. Let us consider a 3-uniform hypergraph H defined as follows (this definition
is inspired by a construction of Gyárfás [9]). The vertices of H are the monochromatic
components of F and three vertices form a hyperedge if the corresponding three components
have a vertex in common (in particular, those three monochromatic components must be
of different colours). Hence H is an 3-uniform 3-partite hypergraph.
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We observe that if A is a vertex cover of H, then the monochromatic components
associated with the vertices inA cover all the vertices ofG. This implies that tc3pGq ď τpHq.
Also, it is easy to see that νpHq ď αpF q “ 2. Now, recall that Aharoni’s result [1] (which
corresponds to Ryser’s conjecture for r “ 3) states that for every 3-uniform 3-partite
hypergraph H we have τpHq ď 2νpHq. Together with the previous observation, this
implies tc3pGq ď 4. But our goal is to prove that tc3pGq ď 3. To this aim, we analyze
the hypergraph H more carefully, reducing the situation to a few possible settings of
components covering all vertices. In each of those cases, we can again analyse the possible
colouring of edges of common neighbours of specific vertices, inferring that indeed there
are 3 monochromatic components cover all vertices.

§4. Proof of Theorem 1.1

Instead of analysing the colouring of the graph G “ Gpn, pq, it will be helpful to analyse
the following auxiliary graph.

Definition 4.1 (Shortcut graph). Let G be a graph and ϕ be a 3-edge-colouring of G.
The shortcut graph of G (with respect to ϕ) is the graph F “ F pG,ϕq that has V pGq as
the vertex set and the following edge set:

tuv : u, v P V pGq and u and v are connected in G by a path monochromatic under ϕu.

We can consider a natural edge colouring ϕ1 of F pG,ϕq by assigning to an edge uv P
EpF pG,ϕqq the colour of any monochromatic path connecting u and v in G under the
colouring ϕ. We will say that ϕ1 is an inherited colouring of F pG,ϕq. Let tcpF, ϕ1q be the
minimum number of monochromatic components (under the colouring ϕ1) covering all
the vertices of F . Note that any covering of F pG,ϕq with monochromatic trees under ϕ1

corresponds to a covering of G with monochromatic trees under the colouring ϕ. In
particular, if we show that for every 3-edge-colouring ϕ of G, we have tcpF, ϕ1q ď 3, for
every ineherited colouring ϕ1, then we have shown that tc3pGq ď 3. Therefore, Theorem 1.1
follows from the following lemma.

Lemma 4.2. Let p "
` ln n

n

˘1{6 and let G “ Gpn, pq. The following holds with high
probability. For any 3-edge-colouring ϕ of G and any inherited colouring ϕ1 of the shortcut
graph F “ F pG,ϕq, we have tcpF, ϕ1q ď 3.

The proof of Lemma 4.2 is divided into two different cases, depending on the independence
number of F . Subsections 4.1 and 4.2 are devoted, respectively, to the proof of Lemma 4.2
when αpF q ě 3 and αpF q ď 2.

From now on, we fix ε ą 0 and assume that p "
` ln n

n

˘1{6 and n is sufficiently large.
Then, by Lemma 2.2, we may assume that the following holds w.h.p.:

(1) There is an edge between any two sets of size ω pplnnq{pq.
(2) Every vertex v P V pGq has degree dGpvq “ p1˘ εqpn.
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(3) Every set of i ď 6 vertices has p1˘ εqpin common neighbours.

4.1. Shortcut graphs with independence number at least three.

Proof of Lemma 4.2 for αpF q ě 3. Since αpF q ě 3, there exist three vertices r, b, g P V pGq
that pairwise do not have any monochromatic path connecting them in G. In particular,
if v is a common neighbour of r, b and g in G, then the edges vr, vb and vg have all
different colours. The common neighbourhood of r, b and g in G has size at least np3{2.
Let Xrbg be the largest subset of this common neighbourhood such that for each i P tr, b, gu,
the edges between i and the vertices of Xrbg are all coloured with the same colour in G.
Then |Xrbg| ě np3{12. Without loss of generality, assume that all edges between r and the
vertices of Xrbg are red, between b and the vertices of Xrbg are blue and those between g
and the vertices of Xrbg are green. Let Credprq, Cbluepbq and Cgreenpgq be respectively the
red, blue and green components in G containing r, g and b.

Notice that all vertices of F that have a neighbour in Xrbg are covered by Credprq, Cbluepbq

or Cgreenpgq. Therefore, the proof would be finished if every vertex had a neighbour in Xrbg.
If this is not the case, we fix an arbitrary vertex y P V r pXrbg YNGpXrbgqq. By our choice
of p, there are at least np4{2 common neighbours of y, r, b and g. Let Xyrbg be the largest
subset of the common neighbourhood of y, r, b and g such that for each i P tr, b, gu, the
edges between i and Xyrbg are all coloured the same. Then |Xyrbg| ě np4{12. Note that
since y R NGpXrbgq, the setsXyrbg andXrbg are disjoint. Furthermore, since |Xyrbg|, |Xrbg| "

ln n
p
, we have

|EGpXyrbg, Xrbgq| ě 1.

We now analyse the colours between r, b, g and the set Xyrbg. Again, since there is no
monochromatic path connecting any two of r, b and g, all i P tr, b, gu have to connect
to Xyrbg in different colours. Since Xyrbg is disjoint of Xrbg, we cannot have r, b and g being
simultaneously connected to Xyrbg by red, blue and green edges, respectively. Assume first
that for each i P tr, b, gu, the edges between i and Xyrbg have different colours from the
edges between i and Xrbg. Then let uv be an edge between Xyrbg and Xrbg and notice that
whatever the colour of uv is, we will have a monochromatic path connecting two of the
vertices in tr, g, bu. Therefore, we can assume that for some i P tr, g, bu, we have that all
the edges between i and Xrbg and all the edges between i and Xyrbg coloured the same.
Without loss of generality, we may say that such i is r. In this case, the edges between b
and Xyrbg are green and the edges between g and Xyrbg are blue. Finally, all the edges
between Xyrbg and Xrbg are red, otherwise we would be able to connect b and g by some
monochromatic path. Figure 4.1 shows the colouring of the edges that we have analysed
so far.

Let us now consider any further vertex x P V r pXrbg YNGpXrbgqq with x ‰ y, if such a
vertex exists. We define Xxrbg analogously to Xyrbg and observe that the colour pattern
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r

b

g

y

Xrbg

Xyrbg

Figure 4.1. Analysis of the colouring of the edges incident on Xrbg and
on Xyrbg.

r

b

g

y

x

Xrbg

Xyrbg

Xxrbg

Figure 4.2. Analysis of the color of the edges incident on Xyrbg and on Xxrbg.

from r, b, g to Xxrbg must be the same as the one to Xyrbg. Indeed, if this is not the
case, then a similar analysis of the colours of the edges between tr, b, gu and Xxrbg yields
that for some i P tb, gu, we know that the edges connecting i to Xxrbg are of the same
colour as the edges connecting i to Xrbg. Without loss of generality, let us say that i is g.
Then the edges between b and Xxrbg are red and the edges between r and Xxrbg are green,
otherwise Xxrbg and Xrbg would not be disjoints sets. Figure 4.2 shows the colouring of
the edges incident to Xyrbg and Xxrbg. Since |Xyrbg|, |Xxrbg| "

ln n
p
, we have that there is

some edge uv between Xyrbg and Xxrbg. But then however we colour uv, we will get an
monochromatic path connecting two vertices in tr, b, gu, which is a contradiction. Thus,
the colour pattern of edges between tr, b, gu and Xxrbg is the same as the colour pattern of
the edges between tr, b, gu and Xyrbg.

Therefore, we have that each vertex in Xrbg YNGpXrbgq belongs to one of the monochro-
matic components Credprq, Cbluepbq or Cgreenpgq, while a vertex in V pGqrpXrbg YNGpXrbgqq

belongs to one of the monochromatic components Credprq, Cgreenpbq or Cbluepgq where the
latter two are the green component containing b and the blue component containing g,
respectively. This gives a covering of G with five monochromatic trees. Next we will show
that actually three of those trees already cover all the vertices.
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Suppose that at least 4 among the components Credprq, Cbluepbq, Cgreenpbq, Cgreenpgq,
and Cbluepgq are needed to cover all vertices. Since there does not exist any monochromatic
path between any two of r, b, g, we know that for each i P tr, b, gu, any monochromatic
component containing i does not intersect tr, g, bur tiu. Hence, among those at least 4
components, we have for each i P tr, b, gu one component containing it and, without loss
of generality, two containing b. That is, three components of those at least 4 components
needed to cover all the vertices are Credprq, Cbluepbq and Cgreenpbq. Now there are two
cases regarding the fourth component: we need Cgreenpgq as the fourth component or we
need Cbluepgq (those two cases might intersect).

We begin with the first case, where we need the components Credprq, Cbluepbq, Cgreenpbq

and Cgreenpgq to cover all the vertices of G. Let

b̃ P Cbluepbqr pCredprq Y Cgreenpbq Y Cgreenpgqq

and let
g̃ P Cgreenpbqr pCredprq Y Cbluepbq Y Cgreenpgqq .

Then let Xb̃g̃rbg be the maximum set of common neighbours of b̃, g̃, r, g, b such that for
each i P tb̃, g̃, r, b, gu, the edges from i to Xb̃g̃rbg are all coloured the same. Since |Xb̃g̃rbg| ě

np5{240 " ln n
p
, we have

|EGpXb̃g̃rbg, Xyrbgq| ě 1 and |EGpXb̃g̃rbg, Xrbgq| ě 1.

We will analyse the possible colours of the edges between the specified vertices and Xb̃g̃rbg.
If for each of r, b, g, the colour it sends to Xb̃g̃rbg is different from the colour it sends
to Xrbg, then any edge between Xb̃g̃rbg and Xrbg ensures a monochromatic path between
two of r, b, g (in the colour of that edge). Similarly, it cannot happen that for each of r, b, g,
the colour it sends to Xb̃g̃rbg is different from the colour it sends to Xyrbg. Thus, since r
sends red to both Xrbg and Xyrbg while the colours from b (and g) to Xrbg and Xyrbg are
switched, the colour of the edges between r and Xb̃g̃rbg is red.

Now note that, by the choice of b̃ and g̃, the edges between each of them and Xb̃g̃rbg

can not be red. Further, the choice implies that an edge between b̃ and Xb̃g̃rbg can not
be of the same colour (green or blue) as an edge between g̃ and Xb̃g̃rbg. If g would send
blue (and hence b would send green) edges to Xb̃g̃rbg, there would either be a blue path
between b and g (if the edges between b̃ and Xb̃g̃rbg are blue) or b̃ would lie in Cgreenpbq

(if the edges between b̃ and Xb̃g̃rbg are green). Since both those situations would mean a
contradiction, we may assume that each of r, b, g sends edges with that colour to Xb̃g̃rbg

as it does to Xrbg. But then Xb̃g̃rbg is actually a subset of Xrbg and therefore g̃, having an
edge to Xrbg, lies in one of Credprq, Cbluepbq, or Cgreenpgq, a contradiction.

In the case where the forth component that we need is Cbluepgq, we repeat the construction
of Xb̃g̃rbg similarly as before by letting

b̃ P Cbluepbqr pCredprq Y Cgreenpbq Y Cbluepgqq
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and
g̃ P Cgreenpbqr pCredprq Y Cbluepbq Y Cbluepgqq.

Also as before, we end up with Xb̃g̃rbg being part of Xrbg. From the choice of g̃, the edges
it sends to Xb̃g̃rbg have to be green, since otherwise it would be in Credprq or Cbluepbq. But
that gives a green path between b and g, a contradiction.

Summarising, we infer that three components among Credprq, Cbluepbq, Cgreenpbq, Cgreenpgq

and Cbluepgq cover the vertex set of G. �

4.2. Shortcut graphs with independence number at most two.

Proof of Lemma 4.2 for αpF q ď 2. We start by noticing that if αpF q “ 1, then the graph F
together with the colouring ϕ1 is a complete 3-coloured graph and therefore, by Theorem 2.1,
there exists a partition of V pF q into 2 monochromatic trees. Thus, we may assume
that αpF q “ 2.

Let H be the 3-uniform hypergraph with V pHq being the collection of all the monochro-
matic components of F under the colouring ϕ1 and three monochromatic components
form a hyperedge in H if they share a vertex. Notice that H is 3-partite, since distinct
monochromatic components of the same colour do not have a common vertex and therefore
they can not belong to the same hyperedge. In other words, the colour of each component
give us a 3-partition of the vertex set of H. We denote by Vred,Vblue and Vgreen the set of
vertices of V pHq that correspond to, respectively, red, blue and green components. Such
construction was inspired by a construction due to Gyárfás [9].

Note that every vertex v of F is contained in a monochromatic component for each one
of the colours (a monochromatic component could consist only of v). Therefore, any vertex
cover of H corresponds to a covering of the vertices of F with monochromatic trees. Indeed,
if A is a vertex cover of H, then consider the monochromatic components corresponding
to each vertex in A. If any vertex v of F is not covered by those components, then the
vertices in H corresponding to the red, green and blue components in F containing v do
not belong to A and they form an hyperedge. But this contradicts the fact that A is a
vertex cover of H. Therefore,

tcpF, ϕ1q ď τpHq. (4.1)

Let L “
Ť

sPVred
Ls be the union of the link graphs Ls of all vertices s P Vred. Any

vertex cover of this bipartite graph L corresponds to a vertex cover of H of the same size.
Therefore,

τpHq ď τpLq. (4.2)

Furthermore, by König’s theorem we know that τpLq “ νpLq. Thus, if νpLq ď 3, then
by (4.1) and (4.2), we have

tcpF, ϕ1q ď τpHq ď τpLq “ νpLq ď 3.
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Therefore, we may assume that νpLq ě 4, and fix a matching ML of size at least 4
in L. Let us say that ML consists of the edges G1B1, G2B2, G3B3, and G4B4, where
tG1, G2, G3, G4u Ď Vgreen and tB1, B2, B3, B4u Ď Vblue.

Now we give an upper bound for νpHq. Note that any matching MH in H gives us an
independent set I in F . Indeed, for each hyperedge e PMH, let ve P V pF q be any vertex
in the intersection of those monochromatic components associated to the vertices in e and
let I “ tve : e P MHu. We claim that I is an independent set in F . Indeed, if ve and vf

were adjacent vertices in I, then e and f intersect, as the edge connecting ve to vf in F
will connect the monochromatic components containing ve and vf of that colour that is
given to the edge vevf . Therefore, since αpF q “ 2, we have

νpHq ď αpF q “ 2. (4.3)

Now, if there are three different edges in ML that are edges in the link graphs of three
different vertices of Vred, then there would be a matching of size 3 in H, contradicting (4.3).
Therefore, we may assume that ML is contained in the union of at most two link graphs,
say LR1 and LR2 , of vertices R1, R2 P Vred. Now we are left with three cases: (Case 1) two
edges of ML belong to LR1 and two belong to LR2 ; (Case 2) three edges of ML belong
to LR1 and one to LR2 ; (Case 3) the four edges of ML belong to LR1 . Without loss of
generality, we can describe each of those three cases as follows (see Figures 4.3, 4.4 and 4.5):

Case 1: The edges G1B1 and G2B2 belong to LR1 and the edges G3B3 and G4B4 belong
to LR2 . That means that all the following four sets are non-empty:

J1 :“ R1 XG1 XB1,

J2 :“ R1 XG2 XB2,

J3 :“ R2 XG3 XB3,

J4 :“ R2 XG4 XB4.

Case 2: The edges G1B1, G2B2 and G3B3 belong to LR1 and the edge G4B4 belongs to LR2 .
That means that all the following four sets are non-empty:

J1 :“ R1 XG1 XB1,

J2 :“ R1 XG2 XB2,

J3 :“ R1 XG3 XB3,

J4 :“ R2 XG4 XB4.
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Figure 4.3. Case 1

Case 3: The edges G1B1, G2B2, G3B3 and G4B4 belong to LR1 . That means that all the
following four sets are non-empty:

J1 :“ R1 XG1 XB1,

J2 :“ R1 XG2 XB2,

J3 :“ R1 XG3 XB3,

J4 :“ R1 XG4 XB4.

In this case, let R2 be any other red component different from R1 and let B and G

be, respectively, a blue and a green component with R2 X B X G ‰ ∅. Suppose that
G R tG1, G2, G3, G4u. Then the three of the edges G1, B1, G2, B2, G3, B3 and G4, B4 are
not incident to GB (because B must be different of at least three of the sets B1, B2, B3 and
B4) and those three edges together with GB may be analysed just as in Case 2. Therefore,
we may suppose that G P tG1, G2, G3, G4u. Let us say, without loss of generality, that
G “ G4. If B R tB1, B2, B3u, then the edges G1B1, G2B2 and G3B3 belong to LR1 , the
edge GB belongs to LR2 and this case may be analysed, again, just as in Case 2. Therefore,
we may assume that B P tB1, B2, B3u. Let us say, without loss of generality that B “ B3.
Then let J5 be the following non-empty set:

J5 :“ R2 XG4 XB3. (4.4)

Let us further remark that, since νpHq ď 2, in each of the three cases above, we have

V pF q “ R1 YR2 YG1 YG2 YG3 YG4 YB1 YB2 YB3 YB4.

Otherwise, for any uncovered vertex v P V pF q, the hyperedge given by the red, blue and
green components containing v together with the hyperedges R1B1G1 and R2B3G3 (in
Cases 1 and 2) or R2B3G4 (in Case 3) give a matching of size 3 in H.

Let us start with Case 1.

Proof in Case 1: We will prove that R1 and R2 together with possibly one further
monochromatic component cover V pF q. For each i P t1, 2, 3, 4u, let B̃i “ Bi r pR1 YR2q

and G̃i “ Gi r pR1 YR2q.
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Pick vertices ji P Ji, with i P t1, 2, 3, 4u, arbitrarily. Consider a vertex o P B̃1 (if such a
vertex exists). Since αpF q “ 2, there is an edge connecting two of o, j2, j3. Because j2

and j3 belong to different components of each colour, such an edge must be incident to
o. So let us say that such edge is oji, for some i P t2, 3u. Since o R R1 YR2, the edge oji

cannot be red. And since o P B1, oji cannot be blue either, otherwise we would connect
the blue components B1 and Bi. Now assume that o and j2 are not adjacent. Then oj3 is
a green edge in F . By analogously analysing the edge between o, j2 and j4 together with
the supposition that oj2 is not an edge in F , we get that oj4 must be a green edge in F .
But then we have a green path j3oj4 connecting j3 to j4, a contradiction. Therefore oj2 is
an edge in F and it is green. That implies that o P G2. Therefore B̃1 Ď G2. Analogously,
we can conclude the following:

B̃1 Ď G2, G̃1 Ď B2,

B̃2 Ď G1, G̃2 Ď B1,

B̃3 Ď G4, G̃3 Ď B4,

B̃4 Ď G3, G̃4 Ď B3.

(4.5)

Claim 4.3. We have B̃1 Y G̃1 Y B̃2 Y G̃2 “ ∅ or B̃3 Y G̃3 Y B̃4 Y G̃4 “ ∅.

Proof. Suppose for a contradiction that there exist o1 P B̃1 Y G̃1 Y B̃2 Y G̃2 and o2 P

B̃3YG̃3YB̃4YG̃4. Recall that from our choice of p, there is some z P Npj1, j2, j3, j4, o1, o2q.
Two of the edges zji,for i P t1, 2, 3, 4u, have the same colour. Since each ji belongs to
different green and blue components, those two edges are red. Since tj1, j2u P R1 and
tj3, j4u P R2, those two red edges are either zj1 and zj2 or zj3 and zj4. Let us say that zj1

and zj2 are red (the other case is similar). Then one of the edges zj3 and zj4 has to be
green and the other blue. Now, since o1 R R1, the edge zo1 is either green or blue. Then
one of the paths o1zj3 or o1zj4 is green or blue. This implies that o1 P B3 YG3 YB4 YG4.
On the other hand, (4.5) implies that o1 P pB1 YB2q X pG1 YG2q. But then we reached a
contradiction, since that would mean that o1 belongs to two different components of the
same colour. l

We may assume without loss of generality that B̃3 Y G̃3 Y B̃4 Y G̃4 is empty. Then,
recalling that νpHq ď 2 and in view of (4.5), the union of the components R1, B1, G1 and
R2 covers every vertex of F . If we show that B1 Ď G1YR1YR2 or that G1 Ď B1YR1YR2,
then we get three monochromatic components covering the vertices of F . Our next claim
states precisely that.

Claim 4.4. We have B̃1 rG1 “ ∅ or G̃1 rB1 “ ∅.

Proof. Suppose that there exist two distinct vertices b P B̃1 r G1 and g P G̃1 r B1.
Let z P Npj1, j2, j3, j4, b, gq. As before, either zj1 and zj2 or zj3 and zj4 are red edges.
First assume that zj1 and zj2 are red. Then one of the edges zj3 and zj4 has to be green
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Figure 4.4. Case 2

and the other blue. Now, since b R R1, the edge zb is either green or blue. Then one of
the paths bzj3 or bzj4 is green or blue. This implies that b P B3 YG3 YB4 YG4. On the
other hand, (4.5) implies that b P B1 XG2. Then we reached a contradiction, since that
would mean that b belongs to two different components of the same colour.

Therefore, the edges zj3 and zj4 are red and one of the edges zj1 and zj2 is green and
the other is blue. First let us say that zj1 is green and zj2 is blue. Since b R pR1 Y R2q,
the edge zb cannot be red. Also the edge zb cannot be blue otherwise the path bzj2

would connect the components B1 and B2. Finally, zb cannot be green, otherwise the
path bzj1 would gives us that b P G1. Therefore zj1 is blue and zj2 is green. But this case
analogously leads to a contradiction (with g and Gi instead of b and Bi and green and
blue switched). l

We proceed to the proof of Case 2.

Proof in Case 2: As in Case 1, pick vertices ji P Ji, with i P t1, 2, 3, 4u arbitrarily. We claim
that V pF q Ď R1YR2YB4YG4. Indeed, let o P V pF qrpR1YR2q. Notice that since αpF q “
2, there is an edge in each of the following sets of three vertices: to, j4, j1u, to, j4, j2u,
and to, j4, j3u. We claim that oj4 is an edge of F . Indeed, if this was not the case,
then since there cannot be an edge between j4 and ji for i “ 1, 2, 3, we would have the
edges oj1, oj2 and oj3 and all of them would be coloured green or blue. Thus, two of
them would be coloured the same, connecting two distinct components of one colour in
this colour, a contradiction. So oj4 P EpF q and since oj4 cannot be red, we conclude
that o P pB4 YG4q. Therefore, R1, R2, B4 and G4 cover all vertices of F .

If B4rpR1YR2YG4q “ ∅ or G4rpR1YR2YB4q “ ∅, then we get three monochromatic
components covering V pF q. So let us assume that there exist b P B4 r pR1 Y R2 Y G4q

and g P G4rpR1YR2YB4q. If b and g are not adjacent, then since each of the sets tb, g, jiu,
for i “ 1, 2, 3, has to induce at least one edge, there are two edges between b and tj1, j2, j3u

or two edges between g and tj1, j2, j3u. However, from the choice of b, we know that all
the edges between b and tj1, j2, j3u are green, and therefore two of such edges would give
us a green connection between two different green components, a contradiction. Similarly,
from the choice of g, we know that all the edges between b and tj1, j2, j3u are blue, and
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Figure 4.5. Case 3

two of such edges would give us a blue connection between two different blue components,
again a contradiction.

Hence, we conclude that bg P F for any b P B4 r pR1 Y R2 Y G4q and any g P

G4 r pR1 YR2 YB4q and any such edge bg is red. Therefore, there is a red component R3

covering pB44G4qr pR1 YR2q, where B44G4 denotes the symmetric difference. If pB4 X

G4qrpR1YR2q “ ∅, then R1, R2 and R3 cover V pF q and we are done. Therefore, suppose
there is a vertex x P pB4 X G4q r pR1 Y R2q. If R2 r pB4 Y G4q “ ∅, then R1, B4, G4

cover V pF q and we are done. Therefore, suppose there is a vertex y P R2rpB4YG4q. Note
that xy R EpF q, since x and y belong to different components in each of the colours. Also,
xji R EpF q, for i P t1, 2, 3u, since otherwise two different components of the same colour
would be connected in that colour by the edge xji. Now αpF q “ 2 implies that yji P EpF q,
for i P t1, 2, 3u (otherwise, tx, y, jiu would be an independent set). But these edges must
all be green or blue, hence two of them are of the same colour, connecting two different
components of one colour in that colour, a contradiction.

We arrived at the last case, Case 3.

Proof in Case 3: Similarly to the previous cases, let us pick vertices ji P Ji, with i P

t1, 2, 3, 4, 5u arbitrarily. We will show first that we can cover all vertices of F with 4
monochromatic components. Let o1, o2 P V pF qrpR1YB3YG4q and let z P Npj1, j2, j3, o1, o2, j5q.
At least one of the edges zj1, zj2 and zj3 is red, as otherwise we would connect two distinct
components of one colour in that colour. Therefore z P R1. Since o1, o2, j5 R R1, the
edges zo1, zo2 and zj5 cannot be red. Furthermore, o1z and o2z are coloured with a colour
different from the colour of the edge j5z, as otherwise they would belong to B3 or G4.
Thus, o1 and o2 are connected by a monochromatic path in green or blue. Hence, we
showed that any two vertices of V pF q r pR1 Y B3 Y G4q are connected by a monochro-
matic path in green or blue. We infer that there is a green or blue component cov-
ering V pF q r pR1 Y B3 Y G4q. Therefore, R1, B3, G4 and one further blue or green
component C cover all vertices of G. Let us assume that C is a green component; the case
where C is a blue component is analogous.

We claim that R1 Y B3 Y C, or R1 Y G4 Y C, or R1 Y B3 Y G4 covers V pF q. Indeed,
suppose for the sake of contradiction that there exist vertices g P G4 r pR1 YB3 YCq, b P
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B3 r pR1YG4YCq and c P C r pR1YB3YG4q. Let z P Npj1, j2, j3, g, b, cq and note that
one of zj1, zj2 and zj3 is red. Consequently gz, cz and bz are not red. Notice, however,
that gz and bz can not be both green and neither both blue. Now let us say cz is green.
Since c R G4 and g P G4, we would have gz blue in this case. But then bz must be green
and since c P C and C is a green component, we have b P C, which is a contradiction.
Therefore cz must be blue. Then, since c R B3 and b P B3, the edge bz should be green.
Thus the edge gz is blue. Since this argument holds for any g P G4 r pR1 Y B3 Y Cq

and c P C r pR1 YB3 YG4q, we conclude that V pF qr pR1 YB3q can be covered by one
blue tree. Hence, G can be covered by the three monochromatic trees. This finishes the
last case and thereby the proof of Lemma 4.2. �
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