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Abstract

Higher order generalizations of Lie algebras have equivalently been
conceived as Lie n-algebras, as L∞-algebras, or, dually, as quasi-free dif-
ferential graded commutative algebras.

Here we discuss morphisms and higher morphisms of Lie n-algebras,
the construction of inner derivation Lie (n+1)-algebras, and the existence
of short exact sequences of Lie (2n + 1)-algebras for every transgressive
Lie (n+ 1)-cocycle.

1



Contents

1 Introduction 3

2 Main results 3
2.1 Higher morphisms of Lie n-Algebras . . . . . . . . . . . . . 3
2.2 The functor inn(·) : nLie → (n+ 1)Lie . . . . . . . . . . . . 4
2.3 Lie n-Algebras from Cocycles and Invariant Polynomials . . 5

3 Lie n-algebras in terms of graded differential algebra and
coalgebra 7
3.1 L∞-algebras and their duals. . . . . . . . . . . . . . . . . . 7

3.1.1 Lie n-algebra Morphisms . . . . . . . . . . . . . . . 11
3.1.2 Higher Morphisms . . . . . . . . . . . . . . . . . . . 12
3.1.3 The ∞-Category ωLie . . . . . . . . . . . . . . . . . 15
3.1.4 Trivializable Lie n-Algebras . . . . . . . . . . . . . . 17
3.1.5 Equivalence with Baez-Crans definition of 2Lie . . . 18

3.2 Derivation Lie (n+ 1)-algebras DER(g(n)) and innk(g(n)) . 19
3.2.1 Lie n-group analog . . . . . . . . . . . . . . . . . . . 19
3.2.2 General derivations . . . . . . . . . . . . . . . . . . . 22
3.2.3 Action of a Lie n-algebra on itself . . . . . . . . . . 22
3.2.4 The generalized inner derivation Lie (n+1)-algebra

innk(g(n)) . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 The inner derivation Lie (n+ 1)-algebra inn(g(n)) . . 24

4 Characteristic classes in terms of inn(g)∗ cohomology 28
4.1 Formulation in terms of the cohomlogy of EG . . . . . . . . 28
4.2 Formulation in terms of cohomology of inn(g)∗ . . . . . . . 29

4.2.1 Cocycles, invariant polynomials and Chern-Simons
elements . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Transgression and the trivializability of inn(g) . . . . 30
4.3 Formulation in terms of components . . . . . . . . . . . . . 31

5 Lie n-algebras from cocycles and from invariant polyno-
mials 32
5.1 Baez-Crans Lie n-algebras gµ from (n+ 1)-cocycles µ . . . 32
5.2 Chern Lie (2n+1)-algebra csk(g) from invariant polynomi-

als k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Chern-Simons Lie (2n + 1)-algebras csk(g) from invariant

polynomials k . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Higher abelian Chern-Simons Lie (2n+1)-algebras csk(Σnu(1)) 34
5.5 Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.1 Higher Chern-Simons forms . . . . . . . . . . . . . . 35
5.5.2 The isomorphism inn(gµk ) ' csk(g) . . . . . . . . . . 36
5.5.3 The exact sequence 0 → gµk → csk(g) → chk(g) → 0 36

6 Remaining Proofs 37
6.1 Relation of Baez-Crans 2-morphisms to derivation homo-

topies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



1 Introduction

Higher Lie algebras have been conceived as, equivalently, Lie n-algebras,
L∞-algebras, or, dually, quasi-free differential graded commutative alge-
bras (quasi-“FDA”s, of “qfDGCA”s).

As Lie n-algebras, they arise through a process of categorification, as
pioneered by Baez and his school. From their point of view, a Lie group
is a Lie groupoid with a single object. Accordingly, a Lie n-group is a Lie
n-groupoid with a single object.

Just as Lie groups have Lie algebras, Lie n-groups have Lie n-algebras,
but in both cases, the algebra can be studied without recourse to the
groups. Baez and Crans [2] have discussed how semistrict Lie n-algebras
are the same as L∞-algebras that are concentrated in the first n degrees.

An L∞-algebra L can be described (see Definition 3) as a graded co-
commutative coassociative coalgebra ScsL with a coderivationD of degree
-1 that squares to 0.

Dually, on the space
V•(sL)∗, an L∞-algebra L induces a differential

graded commutative algebra which is free as a graded commutative alge-
bras (we say “quasi-free DGCA” for short, but notice that in the physics
literature these are known as “free differential algebras” or “FDA”s),
whose derivation differential of degree 1 is given by

dω = −ω(D(·)) .

All these descriptions of higher Lie algebras have their advantages:

• the coalgebra picture is the most convenient one for many compu-
tations;

• the DCGA picture is most directly related to connections, curvatures
and Bianchi identities with values in the given Lie n-algebra;

• the Lie n-algebra picture is conceptually the most powerful one.

We hope this work will be of interest to somewhat disparate read-
ers: applied n-category theorists, homotopy theorists and cohomological
physicists. Hopefully the table of contents will help each to find the parts
most appealing to their individual tastes.

2 Main results

2.1 Higher morphisms of Lie n-Algebras

WARNING: what we currently actually do describe are higher morphisms
on qfDGCAs which are free as differential algebras (inner derivation Lie
n-algebras). The generalization to arbitary qfDGCAs requires certain
transformations on the generators.

Lie n-algebras, being linear catgories, L, equipped with a bracket n-
functor

[·, ·] : L× L→ L ,

are in particular monoidal n-categories. As such, they are naturally ob-
jects in an (n+ 1)-category.
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The same should then hold for the equivalent L∞-algebras and qfDG-
CAs concentrated in the first n-degree. But the right notion of higher
morphisms for these objects has not been clear.

In principle, one would simply have to work out the god-given notion
of morphism of Lie n-algebras in terms of the corresponding L∞-data.
While straightforward, this appears like a very tedious task in general.
Baez and Crans [2] went through this for n = 2 and thus found the right
notion of 2-morphisms of 2-term L∞-algebras.

Here we propose that the right notion of higher morphisms of L∞-
algebas and quasi-free DGCAs are derivation homotopies, for which we
give explicit formulas.

We prove that, for n = 2, algebra homomorphism chain maps and
derivation homotopies of 2-term qfDGCAs are in bijection with the Baez-
Crans notion of 1- and 2-morphisms of 2-term L∞-algebras.

For n = 2 this proves that qfDGCAs, chain maps between these that
respect the algebra structure, and derivation homotopies between those,
form a 2-category.

We also give a general proof that qfDGCAs concentrated in the first
n-degrees form an n-category

nLie

and that qfDGCAs without restriction on the degree form an (∞, 1)-
category

ωLie

with derivation homotopies being the higher morphisms.
We also check in our concrete examples that derivation homotopies

of qfDGCA morphisms from a Lie n-algebra to the deRham complex of
some space induce the right notion of gauge transformations and higher
gauge transformations for n-connections, see ??.

2.2 The functor inn(·) : nLie → (n + 1)Lie

Given any n-group G(n), we write ΣG(n) for the corresponding n-groupoid
with a single object.

There is canonically associated an (n + 1)-group with any n-group
G(n), the automorphism (n+ 1)-group

AUT(G(n)) := AutnCat(ΣG(n)) .

Its objects are (weakly) invertible n-functors ΣG(n) → ΣG(n), morphisms
are (weakly) invertible transformations of these, and so on.

Inside AUT(G(n)) there is the sub (n+ 1)-group

INN(G(n)) ⊂ AUT(G(n))

determined by restricting to those n-functors ΣG(n) → ΣG(n) which come
from conjugation by morphisms in ΣG(n).

When everything is Lie, there should be Lie (n+ 1)-algbras

DER(g(n)) := Lie(AUT(G(n)))
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and
inn(g(n)) := Lie(INN(G(n))) ,

where
g(n) := Lie(G(n))

is the Lie n-algebra corresponding to the Lie n-group G(n).
For reasons discussed in ??, we shall be interested in particular in

the inner derivation Lie (n + 1)-algebra inn(g(n)) associated with a Lie
n-algebra g(n).

While we fall short of deriving inn(g(n)) in general, we do construct a
functor

inn(·) : nLie → (n+ 1)Lie

which we check to reproduce the above definition for Lie 1-algebra and
strict Lie-2-algebras.

For example for the special case that g(n) = g(1) = g is an ordinary
Lie algebra, the Lie 2-algebra inn(g) turns out to be an old friend: it is
Cartan’s conception of the Weil algebra (described in detail in ??).

It turns out – and this is actually its raison d’être – that inn(gn) is
trivializable (but not trivial):

inn(g(n))

##G
GGGGGGGG

id // inn(g(n))

0

;;wwwwwwwww

∼��

.

Far from implying that inn(g(n)) is uninteresting, this allows many inter-
esting constructions.

In particular, we show that, generally, morphisms

Vect(X) → g(n)

correspond to n-connection forms with values in g(n) which are flat in all
degrees, while morphisms

Vect(X) → inn(g(n))

correspond to general n-connection forms with values in g(n).
One can see that this passage from g(n) to inn(g(n)) corresponds pre-

cisely to the procedure which is known as “softening of the Cartan Inte-
grable System”, or “passage to the soft group manifold” in parts of the
physics literature [1, 12]. More on that in ??.

2.3 Lie n-Algebras from Cocycles and Invariant
Polynomials

The situation described in ?? turns out to be just a special case of a
general phenomenon.

Baez-Crans had pointed out [2] that for every Lie algebra (n + 1)-
cocycle µ there is Lie n-algebra

gµ
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which is concentrated in degree 1 and n. The above Lie 2-algebra gk is
obatined by setting

µ = k〈·, [·, ·]〉 ,
which is a cocycle when g is semisimple.

We observe that, moreover, for every invariant polynomial k of degree
(n+ 1) on g, there is a Lie (2n+ 1)-algebra

chk(g)

which is concentrated in degree 1,2, and 2n+ 1.
We call this the Chern Lie (2n+ 1)-algebra since its connections have

a curvature (2n+ 2)-form given by the Chern class defined by k:

chk(g)

Vect(X)

(A,C)

dC=k((FA)n+1)

OO

,

where
(A,C) ∈ Ω1(X, g)× Ω2n+2(X) .

In some case the invariant polynomial k gives rise to an associated
(2n+1)-cocycle µk, such that k is dinn(g)−exact (this is described in 5.3).
If so, this is witnessed by the existence of a Lie (2n+ 1)-algebra

csk(g) .

We call this the Chern-Simons Lie (2n + 1)-algebra associated with k,
since its connections explicitly know about the Chern-Simons potential
(2n+ 1)-form k((FA)n+1) = dCSk(A) of the Chern class of k:

csk(g)

Vect(X)

(A,B,C)

C=dB+CSk(A)

OO

,

(A,B,C) ∈ Ω1(X, g)× Ω2(X)× Ω2n+2(X) .

Moreover, this Chern-Simons Lie (2n + 1)-algebra is isomorphic to the
inner derivations Lie (2n + 1)-algebra coming from the Baez-Crans Lie
2n-algebra which is defined by the cocycle µk defined by k:

inn(gµk ) ' csk(g) .

Since inn(gµk ) is trivializable (as described in 2.2), this implies, in partic-
ular, that also csk(g) is trivializable.
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In summary, the situation we find is

Baez-Crans Chern-Simons Chern

1 2n 2n+ 1 2n+ 1

g gµk
oooo � � // csk(g) // // chk(g)

Vect(X)

(A)

FA=0

OO

Vect(X)

(A,B)

FA=0
dB+CSk(A)=0

OO

Vect(X)

(A,B,C)

C=dB+CSk(A)

OO

Vect(X)

(A,C)

dC=k((FA)n+1)

OO

.

In fact, we have an exact sequence of Lie (2n+ 1)-algebras

0 → gµk → csk(g) → chk(g) → 0

whenever a Lie algebra (2n+ 1)-cocycle µk is related by transgression to
a characteristic class k.

3 Lie n-algebras in terms of graded dif-
ferential algebra and coalgebra

An L∞ algebra is essentially a free graded commutative coalgebra with
nilpotent codifferential, D2 = 0, of degree -1. The dual of that is a free
graded commutative algebra with differential, d2 = 0, of degree +1.

The (co)differential itself encodes the higher generalizations of the Lie
bracket, while d2 = 0 (D2 = 0) encodes the higher i generalization of the
Jacobi identity.

3.1 L∞-algebras and their duals.

Definition 1 Given a graded vector space V , the tensor space T •(V ) :=L
n=0 V

⊗n with V 0 being the ground field. We will denote by T a(V ) the
tensor algebra with the concatenation product on T •(V ):

x1 ⊗ x2 ⊗ · · · ⊗ xp

O
xp+1 ⊗ · · · ⊗ xn 7→ x1 ⊗ x2 ⊗ · · · ⊗ xn

and by T c(V ) the tensor coalgebra with the deconcatenation product on
T •(V ):

x1 ⊗ x2 ⊗ · · · ⊗ xn 7→
X

p+q=n

x1 ⊗ x2 ⊗ · · · ⊗ xp

O
xp+1 ⊗ · · · ⊗ xn.

The graded symmetric algebra Sa(V ) is the quotient of the tensor
algebra T a(V ) by the graded action of the symmetric groups Sn on the
components V ⊗n.
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The graded symmetric coalgebra Sc(V ) is the sub-coalgebra of the ten-
sor coalgebra T c(V ) fixed by the graded action of the symmetric groups Sn

on the components V ⊗n.

Remark. Sc(V ) is spanned by graded symmetric tensors

x1 ∨ x2 ∨ · · · ∨ xp

for xi ∈ V and p ≥ 0, where we use ∨ rather than ∧ to emphasize the
coalgebra aspect, e.g.

x ∨ y = x⊗ y ± y ⊗ x.

Notice: no factor of 1/2 is needed.
In characteristic zero, the graded symmetric algebra can be identified

with a sub-algebra of T a(V ) but that is unnatural and we will try to avoid
doing so.

The coproduct on Sc(V ) is given by

∆(x1∨x2 · · ·∨xn) =
X

p+q=n

X
σ∈Sh(p,q)

ε(σ)(xσ(1)∨xσ(2) · · ·xσ(p))⊗(xσ(p+1)∨· · ·xσ(n)) .

Here

• Sh(p, q) is the subset of all those bijections (the “unshuffles”) of
{1, 2, · · · , p+q} that have the property that σ(i) < σ(i+1) whenever
i 6= p;

• ε(σ), which is shorthand for ε(σ, x1 ∨ x2, · · ·xp+q), the Koszul sign,
defined by

x1 ∨ · · · ∨ xn = ε(σ)xσ(1) ∨ · · ·xσ(n) .

For a graded vector space L, we denote by sL the suspended or shifted
space: (sL)i+1 = Li.

Definition 2 (L∞-algebra) An L∞-algebra is a non-negatively graded
vector space L with the associated structure of the free graded commutative
coalgebra ScsL with a coderivation

D : ScsL→ ScsL

of degree −1, restricting to 0 on the ground field and such that

D2 = 0 .

Proposition 1 Given a coderivation

D : ScsL→ ScsL

of degree -1 and satisfying D2 = 0, there are linear maps (“higher brack-
ets”)

ln : L⊗i → L

for n = 1, 2 · · · such that with

dn : ScsL→ ScsL

8



given on ∨n(sL) by

dn(x1 ∨ · · · ∨ xn) = ε̃(σ)ln(x1 ∨ · · · ∨ xn)

and extended as coderivations to Sc(sL) we have

D = d1 + d2 + · · · .

Here ε̃(σ), which is shorthand for ε̃(σ, x1 ∨ · · · ∨ xi), is a sign given by the
formula

ε̃(σ, x1 ∨ · · · ∨ xn) =

8>><
>>:

(−1)

n/2P

k=1
|x2k−1|

n even

(−1)

(n−1)/2P

k=1
|x2k|

n odd

.

Remark. The collection of the higher brackets {li} together with the
“higher Jacobi relation” D2 = 0 expressed in terms of these is what was
historically first addressed as an L∞-algebra or a strongly homotopy Lie
algebra (sh-Lie algebra).

That the original definition of L∞-algebra in terms of the {ln} pro-
duces a differential D as above was shown in [22]. That every such differ-
ential comes from a collection of {ln} this way is due to [21].

Remark. Notice that the extension of the dn as coderivations means
explicitly that

dn(x1 ∨ · · ·xr) =
X

σ∈Sh(n,r−n)

ε(σ)dn(xσ(1) ∨ · · ·xσ(n))∨xσ(n+1) ∨ · · ·xσ(r) .

Remark. The full formulas obtained by expressing D2 = 0 in terms of
the {li} are not very enlightening, but recognizing the first few relations
may provide some insight.

First it follows that
l1l1 = 0 ,

so l1 is a differential. Then we have

l1l2 − l2(l1 ⊗ 1 + 1⊗ l1) = 0 ,

so l2 is a chain map.
If we write Jac[ , ](x, y, z) = 0 for the standard Jacobi relation (with

appropriate signs in the graded case), then Jacl2 is not zero, but rather

Jacl2 = l1l3 + l3(l1 ⊗ 1⊗ 1 + 1⊗ l1 ⊗ 1 + 1⊗ 1⊗ l1).

Definition 3 (qfDGCA dual to L∞-algebra) For any L∞-algebra L
of finite dimension the dual spaceV•(sL)∗

naturally has the structure of a differential graded commutative algebra
(DGCA). It is free as a graded commutative algebra, with the product
given by

ω1 ∧ ω2(x1 ∨ x2 ∨ · · · ∨ xn) := ω1 ⊗ ω2(∆(x1 ∨ · · · ∨ xn))
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=
X

p+q=n

X
σ∈Sh(p,q)

ε(σ)ω1(xσ(1) ∨ · · ·xσ(p))ω2(xσ(p+1) ∨ · · ·xσ(n))

for all ω1, ω2 ∈ (sL)∗. Here we agree that ω(v) = 0 unless |ω| = |v|.
The differential

d :
V•(sL)∗ →

V•(sL)∗

is defined by

dω := −ω(D(·)) (1)

for all ω ∈ (sL)∗.

Remark. The sign in (1) is purely conventional. We include it here
since, as demonstrated below, this way DGCA morphisms to the deR-
ham complex reproduce common formulas for connections, curvatures and
Bianchi identities in their natural form.

Remark. That d2 = 0 follows directly from D2 = 0. That d is a
graded derivation of degree 1 follows similarly from the fact that D is a
coderivation of degree -1:

d(ω1 ∧ ω2)(v) = −ω1 ∧ ω2(D(v))

= −ω1 ⊗ ω2(∆(D(v)))

= −ω1 ⊗ ω2((D ⊗ 1 + 1⊗D)∆(v)))

= (dω1) ∧ ω2 + (−1)pω1 ∧ (dω2)

for all ω1, ω2 ∈ (sL)∗ of degree p and q, respectively. In the third line this
uses the graded coderivation property. Notice that this involves

(1⊗D)(v ⊗ w) := (−1)|v|v ⊗Dw

for all v, w ∈ sL.

Remark. In concrete examples we make use of the fact that for check-
ing d2 = 0 it suffices to check this on generators. Dually, for checking
D2 = 0 it suffices to check this for terms v ∈ ScsL such that D2v ∈ sL.

Remark. When L is infinite dimensional the above construction has
to be modified.

For our purposes here, we shall agree on the following terminology.

Definition 4 (semistrict Lie n-algebra) A semistrict Lie n-algebra is
an L∞ algebra (Sc(sL), D) where L is concentrated in the first n degrees.

Equivalently, this is a quasi-free DGCA (
V•(sL)∗, d) with L concen-

trated in the first n degrees, by convention starting with 0.
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Remark. More precisely, a semistrict Lie n-algebra is an n-category L
internal to vector spaces and equipped with a linear skew-symmetric n-
functor [·, ·] : L×L→ L which satisfies a Jacobi identity up to higher order
coherent equivalences. Baez-Crans in [2] discuss how these are equivalent
to n-term L∞-algebras.

Here we find it convenient to calculate entirely in the world of L∞-
algebras and qfDGCAs, but to keep their interpretation as Lie n-algebras
in mind for being able to naturally interpret the structures that we en-
counter.

3.1.1 Lie n-algebra Morphisms

Ordinary (1-)morphisms of L∞-algebras and of DGCAs have an obvious
definition.

Definition 5 (1-morphisms of Lie n-algebras) A morphism

f : L1 → L2

between two L∞-algebras is a coalgebra homomorphism (in particular of
degree 0)

f : ScsL1 → ScsL2

of the corresponding coalgebras, which commutes with the corresponding
codifferentials

f ◦D1 = D2 ◦ f .
Dually, it is an algebra morphism (in particular of degree 0)

f∗ :
V•(sL2)

∗ →
V•(sL1)

•

that is at the same time a chain map

f ◦ d1 = d1 ◦ f .

The interpretation of L∞-algebras and DGCA as Lie n-algebras am-
plifies the fact that n-term L∞-algebras and DGCAs should live in an
n-category instead of in a 1-category.

This means that there are 2-morphisms between 1-morphisms, 3-morphisms
between 2-morphisms, and so on, up to n-morphisms between (n − 1)-
morphisms.

It crucially matters what these higher morphisms are like, because
their nature determines the notion of equivalence of Lie n-algebras.

For quasi-free DGCAs, the natural notion of higher morphisms are
chain homotopies of the special kind known as derivation homotopies.

We show in proposition 4 that the Baez-Crans notion of 2-morphism of
Lie 2-algebras is equivalent to derivation homotopies of the corresponding
morphisms of the corresponding DGCAs.
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3.1.2 Higher Morphisms

WARNING: THE FOLLOWING defintion of higher morphisms in terms
of their action on products of generators so far works, as stated, only
for DGCAs which are free as graded commutative algebras as well as
as differential algebras. For the more general case one has to replace
generators by appropiate combinations of generators.

Definition 6 (2-morphisms of Lie n-algebras) Given quasi-free DG-
CAs (

V•(sV )∗, d) and (
V•(sW )∗, d) and two DGCA morphisms

f∗1,2 : (
V•(sW )∗) → (

V•(sV )∗)

a derivation homotopy
τ : f∗1 → f∗2

is a chain homotopy, hence in particular a degree -1 map

τ :
V•(sW )∗ →

V•−1(sV )∗ ,

whose action on products of n generators is determined by its action on
single generators by

τ : x1 ∧ · · · ∧ xn 7→

1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

f1(xσ(1)∧· · ·∧xσ(k−1))∧τ(xσ(k))∧f2(xσ(k+1)∧· · ·∧xσ(n)) ,

for all xi ∈ (sW )∗.

Remark. Recall that, by our conventions, we have

V = V0 ⊕ · · · ⊕ Vn−1 .

Remark. The graded symmetrization 1
n!

P
σ

ε(σ) over all permutata-

tions makes this well defined on
V•(sW )∗. Moreover, one checks that

this does indeed satisfy the chain homotopy condition

f∗2 − f∗1 = [d, τ ] ,

where
[d, τ ] := dV ◦ τ + τ ◦ dW ,

by explicit computation:

[d, τ ](x1 ∧ · · · ∧ xn) (2)

=
1

n!

X
σ

ε(σ)

nX
k=1

f1(xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ [d, τ ](xσ(k)) ∧ f2(xσ(k+1) ∧ · · · ∧ xσ(n)) (3)

=
1

n!

X
σ

ε(σ)

nX
k=1

f1(xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ (f∗2 − f∗1 )(xσ(k)) ∧ f2(xσ(k+1) ∧ · · · ∧ xσ(n))(4)

=
1

n!

X
σ

ε(σ)

 
nX

k=1

f1(xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ f2(xσ(k) ∧ · · · ∧ xσ(n)) (5)

−
nX

k=1

f1(xσ(1) ∧ · · · ∧ xσ(k)) ∧ f2(xσ(k+1) ∧ · · · ∧ xσ(n))

!
(6)

= (f∗2 − f∗1 )(x1 ∧ . . . ∧ xn) . (7)
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Example. For our examples of Lie n-algebras of low n here, we mainly
need this formula only on products of two generators, where it becomes

τ : a ∧ b 7→ 1

2

�
τ(a) ∧ (f∗1 + f∗2 )(b) + (−1)|a|(f∗1 + f∗2 )(a) ∧ τ(b)

�
(8)

for all a, b ∈ (sW )∗. Proof. By applying the general formula to this
special case, one gets

τ(a ∧ b) =
1

2

�
τ(a) ∧ f∗2 (b) + (−1)|a|f∗1 (a) ∧ τ(b)

�
+

1

2
(−1)|a||b|

�
τ(b) ∧ f∗2 (a) + (−1)|b|f∗1 (a) ∧ τ(a)

�
=

1

2

�
τ(a) ∧ f∗2 (b) + (−1)|a|f∗1 (a) ∧ τ(b)

�
+

1

2

�
(−1)|a|f∗2 (a) ∧ τ(b) + τ(a) ∧ f∗1 (a)

�
�

Remark. Derivation homotopies f∗1 → f∗2 are very similar to the “f∗1 -
Leibniz”-morphisms considered in [10]. The difference is that derivation
homotopies do in fact constitute chain homotopies between algebra mor-
phisms. For “f∗1 -Leibniz”-morphisms this is true only up to terms of
higher order in the images of the generators. As a result, “f∗1 -Leibniz”
morphisms yield for instance the right linearized gauge transformation
formulas (discussed in ?? and ??) when applied for low n and when eval-
uating everything only on generators. This was discussed in [24]. The
symmetrization in f∗1 and f∗2 involved in derivation homotopies is cru-
cial for the equivalence with Baez-Crans 2-morphisms of Lie 2-algebras
(proposition 4).

Definition 7 (higher morphisms of Lie n-algebras) A j-morphism
of Lie n-algebras is a quasi-free DGCA homotopy

h : τ1 → τ2

between (j − 1)-morphisms τ1,2 of Lie n-algebras as above, hence in par-
ticular a map of degree −(j − 1)

h :
V•(sW )∗ →

V•−(j−1)(sV )∗

such that
τ2 − τ1 = [d, h] ,

where
[d, h] := dv ◦ h+ (−1)jh ◦ dW ,

which acts on products of generators as

h : x1 ∧ · · · ∧ xn 7→

1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
(j−1)|xσ(i)|

f∗1 (xσ(1)∧· · ·∧xσ(k−1))∧h(xσ(k))∧f∗2 (xσ(k+1)∧· · ·∧xσ(n)) .
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Remark. It is noteworthy that for the definition of (higher) derivation
homotopies to make good sense, in fact only the source DGCA needs to
be free as a graded commutative algebra. This means in particular that
it makes sense to consider (higher) derivation homotopies of morphisms
from some quasi-free DGCA to the deRham complex of any manifold X:

f∗ : (
V•(sW )∗, d) → (Ω•(X), d) .

We discuss in several examples how such morphisms encode local connec-
tion data with values in the Lie n-algebra corresponding to (

V•(sW )∗, d),
and how (higher) derivation homotopies of these correspond to (higher)
gauge transformation operations on these.

Proposition 2 The sum of (the component maps of) two derivation ho-
motopies

τ1 : f∗1 → f∗2

and
τ2 : f∗2 → f∗3

is not in general itself (the component map of) a derivation homotopy,
but is homotopic to the derivation homotopy

τ2 ◦ τ1 : f∗1 → f∗3

which is defined on generators by the sum of τ1 and τ2 and then uniquely
extended as a derivation homotopy with respect to f∗1 and f∗3 .

Proof. The socond order homotopy

δτ1,τ2 : τ2 ◦ τ1 → τ1 + τ2

is that coming from the degree -2 map

δτ1,τ2 :
V•(sW )∗ →

V•(sV )∗

defined by
δτ1,τ : (x1 ∧ · · · ∧ xn) 7→

1

n!

X
σ

ε(σ, x1, · · · , xn)
X

1≤k1<k2≤n

(−1)

k2−1P

i=k1
|xσ(i)|

f∗1 (xσ(1)∧· · ·∧xσ(k1−1))∧τ1(xσ(k1))∧f∗2 (xσ(k1+1)∧· · ·∧xσ(k2−1))∧τ2(xσ(k2))∧f∗3 (xσ(k2+1)∧· · ·∧xσ(n)) .

This follows from direct computation, which makes use of (2):

(τ1 + τ2)(x1 ∧ · · · ∧ xn)

=
1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ τ1(xσ(k)) ∧ f∗2 (xσ(k+1) ∧ · · · ∧ xσ(n))

+
1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

f∗2 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ τ2(xσ(k)) ∧ f∗3 (xσ(k+1) ∧ · · · ∧ xσ(n))

=
1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ (τ1 + τ2)(xσ(k)) ∧ f∗3 (xσ(k+1) ∧ · · · ∧ xσ(n))
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− 1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ τ1(xσ(k)) ∧ [d, τ2](xσ(k+1) ∧ · · · ∧ xσ(n))

+
1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

[d, τ1](xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ τ2(xσ(k)) ∧ f∗3 (xσ(k+1) ∧ · · · ∧ xσ(n))

=
1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ (τ1 + τ2)(xσ(k)) ∧ f∗3 (xσ(k+1) ∧ · · · ∧ xσ(n))

− 1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

nX
j=k+1

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ τ1(xσ(k)) ∧ f∗2 (xσ(k+1) ∧ · · · ∧ xσ(j−1))[d, τ2](xσ(j)) ∧ f∗3 (xσ(j+1) ∧ · · · ∧ xσ(n))

+
1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

k−1X
j=1

f∗1 (xσ(1) ∧ · · · ∧ xσ(j−1)) ∧ [d, τ1](xσ(j)) ∧ f∗2 (xσ(j+1) ∧ · · · ∧ xσ(k−1)) ∧ τ2(xσ(k)) ∧ f∗3 (xσ(k+1) ∧ · · · ∧ xσ(n))

=
1

n!

X
σ

ε(σ)

nX
k=1

(−1)

k−1P

i=1
|xσ(i)|

f∗1 (xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ (τ1 + τ2)(xσ(k)) ∧ f∗3 (xσ(k+1) ∧ · · · ∧ xσ(n))

+[d, δτ1,τ2 ](x1 ∧ · · · ∧ xn) .

�

Remark. Notice that this in particular shows that the derivation ho-
motopy

τ2 ◦ τ1
(defined as a sum on generators and then extended to a full derivation
homotopy) is indeed a homotopy from f∗1 to f∗3 , since, by the above proof,
we have

[d, τ2 ◦ τ1] = [d, τ1 + τ2]− [d, [d, δτ1,τ2 ]] = [d, τ1] + [d, τ2] = f∗3 − f∗1 .

3.1.3 The ∞-Category ωLie

This fact motivates the following definition.

Definition 8 (composition of j-morphisms) 1-morphisms are com-
posed with j-morphisms by pre- or postcomposing the component maps.
All other compositions are by given by acting on generators with the sums
of the respective maps and then uniquely extending to derivation homo-
topies.

URS: Hope that’s right. The computations are a little unwieldy.

Examples. Given derivations (1-morphisms)

(
V•(sV )∗, d)

L1 // (
V•(sV )∗, d)

L2 // (
V•(sV )∗, d)

15



the component map of their composite is L2 ◦ f∗1 . Given 2-morphisms

(
V•(sW )∗)

f∗1

��
f∗2

//

f∗3

CC(
V•(sV )∗)

τ��

τ ′��

the component map of their composite restricted to generators is τ + τ ′.
The component map of

(
V•(sW )∗, d)

f∗1 // (
V•(sV )∗, d)

f∗2

""

f ′2
∗

<<(
V•(sU)∗, d)

f∗3 // (
V•(sT )∗, d)τ

��

on generators is f∗3 ◦ τ ◦ f∗1 .
The component map of the vertical composition of

(
V•(sW )∗, d)

f∗1

""

f ′1
∗

<<(
V•(sV )∗, d)

f∗2

""
(
V•(sU)∗, d)

(
V•(sW )∗, d)

f ′1
∗

<<(
V•(sV )∗, d)

f∗2

""

f ′2
∗

<<(
V•(sU)∗, d)

τ1
��

τ2
��

on generators is f∗2 ◦ τ1 + τ2 ◦f ′1
∗
. On the other hand, the component map

of the vertical composition of

(
V•(sW )∗, d)

f∗1

""
(
V•(sV )∗, d)

f∗2

""

f ′2
∗

<<(
V•(sU)∗, d)

(
V•(sW )∗, d)

f∗1

""

f ′1
∗

<<(
V•(sV )∗, d)

f ′2
∗

<<(
V•(sU)∗, d)τ1

��

τ2
��

16



on generators is τ2 ◦ f∗1 + f ′2
∗ ◦ τ1. Notice that these two composites differ

by an exact term

(τ2 ◦f∗1 +f ′2
∗ ◦τ1)−(f∗2 ◦τ1 +τ2 ◦f ′1

∗
) = [d, τ2]◦τ1−τ2 ◦ [d, τ1] = [d, τ2 ◦τ1] ,

which means that they are homotopic, which in turn means that the two
ways to compose two 2-morphisms horizontally are connected by a 3-
isomorphism, hence a 3-equivalence (in ωLie all higher morphisms are in
fact already strictly invertible).

Definition 9 Denote by
nLie

the n-category whose objects are qfDGCAs concentrated in the lowesr n-
degrees and whose morphisms are as above.

Denote by
ωLie

the ∞-category whose objects are qfDGCAs concentrated in arbitrary de-
gree and whose morphisms are as above.

URS: We need to spell this out in more detail and check if everything
goes through as expected.

3.1.4 Trivializable Lie n-Algebras

Proposition 3 Every qfDGCA which is free also as a differential algebra
is equivalent, in ωLie, to the trivial qfDGCA.

Proof. Let g(n) be any qfDGCA which is free also as a differential algebra.
This means that there is a graded vector space (sV )∗ such that g(n) is the
free differential graded algebraV•((sV )∗ ⊕ d(sV )∗) .

We need to show that there is a derivation homotopy

g(n)

  B
BB

BB
BB

B
id // g(n)

0

>>||||||||

∼��

.

More concretely, this means that we need to find a derivation homotopy
τ such that its component map of degree -1 satisfies

[dg(n) , τ ] = Idg(n) .

By defining τ on generators by

τ : a 7→ 0

τ : da 7→ a

for all a ∈ (sV )∗ we get
[dg(n) , τ ] : a 7→ a

[dg(n) , τ ] : da 7→ da .

Then τ is uniquely extended as a derivation homotopy. �

17



Remark. This is a very important special case of the general result that
if (W,d) and (W ′, d′) are abelian DG Lie algebras, then if they are equiv-
alent as DG Lie algebras, then the corresponding

V•(sW ) and
V•(sW ′)

are equivalent as DGCAs.
URS: How do I see that it’s just a special case of that?

3.1.5 Equivalence with Baez-Crans definition of 2Lie

Lie 2-algebras, due to their category-theoretic nature, have a rather ob-
vious notion of 1- and 2-morphisms between them, as explained by Baez-
Crans. Here we show how the definition of higher morphisms of Lie n-
algebras above reproduces the Baez-Crans definition for n = 2.

In order to set up the discussion of Baez-Crans 2-morphisms of 2-term
L∞-algebras, recall their notation for 1-morphisms of 2-term L∞-algebras
(which is of course just a special case of the general notion of 1-morphisms
of L∞-algebras).

Definition 10 A morphism

ϕ : V →W

of 2-term L∞-algebras V and W is a pair of maps

φ0 : V0 →W0

φ1 : V1 →W1

together with a skew-symmetric map

φ2 : V0 ⊗ V0 →W1

satisfying
φ0(d(h)) = d(φ1(h))

as well as
d(φ2(x, y)) = φ0(l2(x, y))− l2(φ0(x), φ0(y))

φ2(x, dh) = φ1(l2(x, h))− l2(φ0(x), φ1(h))

and finally

l3(φ0(x), φ0(y), φ0(z))− φ1(l3(x, y, z)) =

φ2(x, l2(y, z)) + φ2(y, l2(z, x)) + φ2(z, l2(x, y)) +

l2(φ0(x), φ2(y, z)) + l2(φ0(y), φ2(z, x)) + l2(φ0(z), φ2(x, y)) .

for all x, y, z ∈ V0 and h ∈ V1.

For later reference, we spell out the dual DGCA formulation of this in
the appendix ??.

Definition 11 (Baez-Crans) A 2-morphism

τ : φ⇒ ψ

of 1-morphisms of 2-term L∞-algebras is a linear map

τ : V0 →W1

18



such that

ψ0 − φ0 = tW ◦ τ (9)

ψ1 − φ1 = τ ◦ tv (10)

and

φ2(x, y)− ψ2(x, y) = l2(φ0(x), τ(y)) + l2(τ(x), ψ0(y))− τ(l2(x, y)) (11)

Note that [d, τ ] = dW τ + τdV and that it restricts to dW τ on V0 and
to τdV on V1.

Proposition 4 The above conditions on 2-morphisms of L∞-algebras are
equivalent to that on derivation homotopy of the corresponding DGCAs
morphisms.

Proof. The straightforward computation is spelled out in the appendix
6.1.

3.2 Derivation Lie (n + 1)-algebras DER(g(n)) and
innk(g(n))

3.2.1 Lie n-group analog

Given any Lie n-group G(n), regarded as an n-groupoid ΣG(n) with a
single object, we naturally obtain an (n+ 1)-group

AUT(G(n)) := AutnCat(ΣG(n)) ,

the automorphism (n + 1)-group. For each k ∈ N this has a sub-(n + 1)-
group

INNk(G(n)) ⊂ AUT(G(n))

obtained by restricting the 1-morphism to be those coming from conjuga-
tion of n-morphisms of ΣG(n) with j-morphisms of ΣG(n) for

1 ≤ j ≤ k .

See figure 1 for a description of

INN2(G(2))

for G(2) a strict 2-group. We have a chain of canonical inclusions

INN0(G(n)) ⊂ INN1(G(n)) ⊂ · · · ⊂ INNn(G(n)) ⊂ AUT(G(n)) .

We shall frequently write

INN(G(n)) := INN1(G(n)) .

This is motivated by the fact that only the 1-morphisms of INN(G(n)) are
truly inner automorphisms with respect to the monoidal structure on the
n-group G(n).
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Of particular interest for us are the three parts

INN(G(n)) ⊂ INNn(G(n)) ⊂ AUT(G(n)) .

These (inner) automorphism (n + 1)-groups ought to have an ana-
logue at the level of Lie n-algebras, where (inner) automorphisms become
(inner) derivations. By differentiating the above, we should obtain Lie
(n+ 1)-algebras

inn(g(n)) ⊂ innn(g(n)) ⊂ DER(g(n))

for each Lie n-algebra g(n).
We discuss first general derivations of Lie n-algebras, then describe

the action of a Lie n-algebra on itself by derivations concretely and then
present the corresponding functor

inn(·) : nLie → (n+ 1)Lie

in general.
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• horizontal conjugation by any q ∈ G

Adq ∈ Aut2Cat(G(2))

(true conjugation in the sense of the 2-group) acts as

Adq : •

g

��

g′

AA •h
��

7→ • q // •

g

��

g′

AA •
q−1
// •h

��

• vertical conjugation

vAdf ∈ Aut2Cat(G(2))

by any map f : G → H which extends to a homomorphism

Id× f : G → G n H ,

acts as

vAdf : •

g

��

g′

AA •h
��

7→ •
g

##

g′

;;

t(f(g)−1)g

��

t(f(g′))g′

GG•h��

f(g′)��

f(g)−1��

Figure 1: The two notions of conjugation in a 2-group, for the special case
of a strict 2-group G(2), coming from a crossed module (H t→ G

α→ Aut(H)) of
groups.
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3.2.2 General derivations

Remark. This discussion here is greatly motivated from discussion
with Danny Stevenson [29].

Definition 12 (derivations of DGCAs) A derivation of a differential
graded commutative algebra (

V•(sV )∗, d) is a linear degree 0 map

L :
V•(sV )∗ →

V•(sV )∗

which is both a chain map as well as a derivation of the underlying graded
commutative algebra.

Remark. A derivation τ of degree k is defined such that for any two
homogeneous elements ω1, ω2 ∈ sV ∗ we have

L(ω1 ∧ ω2) = (Lω1) ∧ ω2 + (−1)k|ω1|ω1 ∧ (Lω2) .

Remark. One checks that for an ordinary Lie algebra derivations of
the corresponding qfDGCA coincide with ordinary derivations of the Lie
algebra.

Definition 13 An n-morphism between derivations of Lie n-algebras is
a higher chain homotopy whose component map is a derivation (necessar-
ily of degree n− 1).

Remark. Derivations L naturally form a Lie algebra under the ordi-
nary commutator

[L1, L2] := L1 ◦ L2 − L2 ◦ L1 .

There should in fact be a Lie (n+1)-algebra structure on the space of
all derivations and their higher morphisms on a given Lie n-algebra.

3.2.3 Action of a Lie n-algebra on itself

Definition 14 (interior product) For any homogenous element

v ∈ (sV )

of degree k + 1 we write
ιv

for the derivation of degree −(k + 1) of the graded commutative algebraV•(sV )∗ which acts on generators ω ∈ (sV )∗ as

ιv : ω 7→ ω(v) .

22



Remark. Notice that the interior product is, by definition, a derivation
of the graded commutative algebra, but not in general a derivation of
the differential algebra (

V•(sV )∗, d), since it may not commute with the
differential.

Proposition 5 Under composition of maps ιv :
V•(sV )∗ →

V•(sV )∗,
the interior product derivations ιv for v ∈ (sV ) form a free graded com-
mutative algebra isomorphic to Ss(sV ):

ιv ◦ ιw = (−1)|v||w|ιw ◦ ιv .

Definition 15 (Lie derivative and inner derivations) For any deriva-
tion τ of degree −(k + 1) we call the derivation

Lτ : (
V•(sV )∗, d) → (

V•(sV )∗, d)

of degree −1 given by
Lτ := [d, τ ]

the Lie derivative corresponding to τ .
For any homogeneous element v ∈ sV of degree −(k + 1), the Lie

derivative
Lv := [d, ιv]

we call an inner derivation.

Remark. We have [d, Lv] = 0 due to d2 = 0. Hence the Lie derivative
is really a derivation on differential graded algebras.

Remark. It follows that a Lie n-algebra g(n) = (Sc(sV ), D) most nat-
urally acts on its dual qfDGCA: by Lie derivatives.

Remark. For any homogeneous v ∈ sV of degree k + 1, we may inter-
pret the qfDGCA derivation

ιv : (
V•(sV )∗, d) → (

V•(sV )∗, d)

of degree k as a (k + 1)-morphism

ιv : [d, ιw] → [d, ιw+v] ,

for any w ∈ sV , due to the simple fact that

[d, ιw+v]− [d, ιv] = [d, ιv] .

It follows that every homogeneous element of v ∈ sV plays a double role
as

• an inner derivation ιv of (
V•(sV )∗, d)

• a morphism between such inner derivations.

This phenomenon is responsible for the fact that the inner derivation Lie
(n+1)-algebra inn(g(n)) defined below consists of two copies of the Lie n-
algebra g(n), with one of them in the original degree and the other shifted
by one.
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Definition 16 To any Lie n-algebra g(n) = (Sc(sV ), D) is canonically
associated the Lie (1-)algebra

L(g(n))

on the space of all degree −1 derivations τ on (
V•(sV )∗, d) with bracket

defined by
[τ, τ ′] := [Lτ , τ

′] .

This is indeed a Lie bracket, due to the standard computation

L[τ,τ ′] = [d, [[d, τ ], τ ′]] = [[d, τ ], [d, τ ′]] = [Lτ , Lτ ′ ] .

3.2.4 The generalized inner derivation Lie (n + 1)-algebra
innk(g(n))

Definition 17 For g(n) any Lie n-algebra and for k ∈ N, the Lie (n+1)-
algebra

innk(g(n)) ⊂ DER(g(n))

is obtained by restricting all derivations L to be of the form

L = [d, ι] ,

where ι is a degree -1 derivation which restricts to 0 on elements ω ∈ sV ∗

of degree larger than k:

|ω| > k ⇒ ι(ω) = 0 .

3.2.5 The inner derivation Lie (n + 1)-algebra inn(g(n))

Here we give a description of inn(g(n)) in terms of qfDGCA. WARNING:
At the moment we do not yet strictly derive this description from defini-
tion 17.

Definition 18 Let V be the graded vector space underlying g(n) and let

(
V•(sV )∗, d)

be the corresponding qfDGCA defined on it. Denote by

σ : (sV )∗
∼ // (ssV )∗

the canonical isomorphism of degree +1 and let

Σ :
V•((sV )∗ ⊕ (ssV )∗) →

V•((sV )∗ ⊕ (ssV )∗)

be the graded differential of degree +1 which restricts to σ on (sV )∗ and
to zero on (ssV )∗.

Then define the graded differential of degree +1

d′ :
V•((sV )∗ ⊕ (ssV )∗) →

V•((sV )∗ ⊕ (ssV )∗)

by demanding that it restricts to d′ := d+σ on (sV )∗ and to −Σ◦d◦σ−1 =
−d′ ◦ d ◦ σ−1 on (ssV )∗. Since d ◦ σ−1 : (ssV )∗ →

V•(sV )∗ this makes
sense.
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Proposition 6
d′2 = 0 .

Proof. For any a ∈ (sV )∗ we have

d′d′a = d′(da+ σ(a)) = Σ(da)− Σda = 0 .

Hence d′2 = 0 when restricted to
V•(sV )∗. Next, for any b ∈ (ssV )∗, we

have
d′d′b = −d′d′dσ−1(b) .

But dσ−1(b) ∈
V•(sV )∗, hence d′d′b = 0. �

Definition 19 (inner derivation Lie (n+ 1)-algebra) For g(n) any Lie
n-algebra given by the qfDGCA (

V•(sV )∗, d), we say that

inn(g(n))

given by the qfDGCA

(
V•((sV )∗ ⊗ (ssV )∗), d′)

with d′ as in definition 18 is the inner derivation Lie (n + 1)-algebra of
g(n).

Proposition 7 (inn(g(n)) is free and therefore trivializable ) For any
g(n) coming from the qfDGCA (

V•(sV )∗, dg(n)), the qfDGCA of inn(g(n))
is isomorphic to the free differential graded commutative algebra on (sV )∗

and therefore trivializable.

Proof. Write F (V ) for the free differential graded commutative alge-
bra over (sV )∗. Define a morphism

f : F (V ) → (inn(g(n)))
∗

by setting
f : a 7→ a

f : dF (V )a 7→ dinn(g(n))
a

for all a ∈ (sV )∗. This clearly satisfies the morphism property. One
checks that its inverse is given by

f−1 : a 7→ a

f−1 : σa 7→ dF (V )a− dg(n)a .

�

Since inn(g(n)) is isomorphic to a free qfDGCA according to prop. 7,
and since every free qfDGCA is trivializable according to proposition 3,
it follows that inn(g(n)) is trivializable.
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Remark. That inn(g(n)) is trivializable (as opposed to trivial) does
not mean that there is no useful information contained in it. We will see
various examples in which inn(g(n)) is useful.

Proposition 8 (inclusion of a Lie n-algebra into its inner derivations)
Given any Lie n-algebra g(n), we canonically get an inclusion (a monomor-
phism)

g(n) ↪→ inn(g(n)) .

Proof. Let g(n) be defined on a graded vector space V , i.e. such that it
corresponds to a qfDGCA defined on

V•(sV )∗. Then define a morphism

f : g(n) → inn(g(n))

by its dual f∗ being the identity on (sV )∗ and zero on (ssV )∗.
This is clearly a morphism of the corresponding qfDGCAs, since for

all a ∈ (sV )∗ we have

f∗(dinn(g(n))
a) = f∗((dg(n) + Σ)(a)) = f∗(dg(n)a) = dg(n)f

∗(a)

and
f∗(dinn(g(n))

Σa) = f∗(Σda) = 0 = dg(n)(f
∗Σa) .

Moreover, it is clear that f∗ is an epimorphism. Hence f is a monomor-
phism. �

Definition 20 For any 1-morphism

f∗ : (
V•(sW )∗, d) → (

V•(sV )∗, d)

of qfDGCAs, let

inn(f∗) : inn(
V•(sW )∗, d) → inn(

V•(sV )∗, d)

be the 1-morphism whose component map is given by

inn(f∗) : a 7→ f∗(a)

and
inn(f∗) : σW a 7→ σV (f∗(a))

for all a ∈ (sW )∗.

Proposition 9 The map inn(f∗) does indeed satisfy the morphism prop-
erty.

Proof. For all a ∈ (sW )∗ we have

f∗(d′W a) = f∗(dW + ΣW )(a) = (dV + ΣV )f∗(a) = d′f∗(a)

and

f∗(d′WσWa) = f∗(ΣW dW a) = ΣV dV f
∗(a) = ΣV dV σ

−1
V (σV f

∗(a)) = d′V f
∗(σWa) .

�
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Definition 21 For any (j > 1)-morphism of qfDGCAs

h :
V•(sW )∗ →

V•−(j−1)(sV )∗

let

inn(h) :
V•((sW )∗ ⊗ (ssW )∗) →

V•−(j−1)((sV )∗ ⊗ (ssV )∗)

be the j-morphism of the corresponding inner derivation qfDGCAs whose
component map is given by

inn(h) : a 7→ h(a)

and
inn(h) : σW a 7→ (−1)j−1ΣV h(a) .

To prove that this indeed satisfies the required morphism properties,
first consider the following lemma:

Lemma 1
[Σ, inn(h)]|V•

(sW )∗
= 0 .

Proof. Both operations are derivations, hence it suffices to compute the
graded commutator on generators. There it vanishes by definition of
inn(h). �

Proposition 10 Definition 21 is compatible with the required morphism
properties.

Proof. For all a ∈ (sW )∗ we have

[d′, inn(h)](a) = (dW + ΣW )h(a) + (−1)j inn(h)(dW + ΣW )(a) = [d, h](a)

and

[d′, inn(h)](σWa) = (−1)j−1d′V ΣV h(a) + (−1)j inn(h)ΣV da

= (−1)jΣV dh(a)− ΣV h(da)

= (−1)j−2ΣV [d, h](a) ,

where the second step uses lemma 1. �

This means that inn(·) respects the composition of j-morphisms with
themselves. It also respects all other compositions.

Lemma 2 The operation

inn(·) : Mor(ωLie) → Mor(ωLie)

is compatible with all compositions.

Proof. Most compositions correspond to adding the component functions
and inn(·) is clearly compatible with that. One checks that it is also com-
patible with compositions involving 1-morphisms. �

URS: this needs to be checked again once we have to definition of ωLie
completely spelled out.

In summary, we find the following:

Corollary 1 Forming inner derivations is an ω-functor

inn(·) : ωLie → ωLie .
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4 Characteristic classes in terms of inn(g)∗

cohomology

Lie algebra cohomology, invariant polynomials and Chern-Simons ele-
ments can all be conveniently conceived in terms of the quasi-free dif-
ferential graded algebra corresponding to the Lie 2-algebra

inn(g)

of inner derivations of the Lie algebra g.
The relation to the more common formulation of these phenomena in

terms of the cohomology of the universal G-bundle comes from the fact
that this universal bundle is the realization of the nerve of INN(G).

4.1 Formulation in terms of the cohomlogy of EG

Let G be a compact, simply connected simple Lie group.
The classical formulation of

• Lie algebra cocycles

• invariant polynomials

• transgression induced by Chern-Simons elements

is the following.
Consider the fibration corresponding to the universal principal G-

bundle:

G // EG
p // BG .

• A Lie algebra (2n+ 1)-cocycle µ (with values in a trivial module) is
an element

µ ∈ H2n+1(g,R) .

By compactness of G, this is the same as an element in de Rham
cohomology of G:

µ ∈ H2n+1(G,R) .

• An invariant polynomial k of degree n+ 1 represents an element in

k ∈ H2n+2(BG,R) .

• A transgression form mediating between µ and k is a cochain cs ∈
Ω2n+1(EG) such that

cs|G = µ

and
d cs = p∗k .

28



cocycle Chern-Simons inv. polynomial

G // EG
p // BG

0

0 p∗k
_

d

OO

k
�

p∗
oo

µ
_

d

OO

c�
·|G

oo _
d

OO

Figure 2: Lie algebra cocycles, invariant polynomials and transgression
forms in terms of cohomology of the universal G-bundle.

4.2 Formulation in terms of cohomology of inn(g)∗

The universal G-bundle may be obtained from the sequence of groupoids

Disc(G) → INN(G) → ΣG

by taking geometric realizations of nerves:

Disc(G) //
_
|·|

��

INN(G) //
_
|·|

��

ΣG_

|·|

��
G // EG // BG

.

Disc(G) and INN(G) are strict 2-groups, coming from the crossed mod-
ules

Disc(G) = (1 → G)

and
INN(G) = (Id : G→ G) .

On the other hand, ΣG is a 2-group only if G is abelian.

4.2.1 Cocycles, invariant polynomials and Chern-Simons
elements

Differentially, this corresponds to the sequence

Disc(G) //
_

Lie

��

INN(G)
p //

_

Lie

��

ΣG_

��V•sg∗
V•(sg∗ ⊕ ssg∗)oo V•(ssg∗)

p∗oo

.
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In terms of this, we have

• A Lie algebra (2n+ 1)-cocycle µ (with values in a trivial module) is
an element

µ ∈
V(2n+1)(sg∗)

dgµ = 0 .

• An invariant polynomial k of degree n+ 1 is an element

k ∈
Vn+1(ssg∗)

dinn(g)k = 0 .

• A transgression form cs inducing a transgession between a (2n +
1)-cocycle µ and a degree (n + 1)-invariant polynomial is a degree
(2n+ 1)-element

cs ∈
^

(sg∗ ⊕ ssg∗)

such that
cs|V•

(sg∗)
= µ

and
dinn(g)cs = p∗k .

cocycle Chern-Simons inv. polynomial

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))
i∗oooo (

∧•(ssg)∗)_?
p∗oo

0

0 p∗k
_

dinn(g)

OO

k
�

p∗
oo

µ
_

dg

OO

cs�i∗oo _
dinn(g)

OO

Figure 3: Lie algebra cocycles, invariant polynomials and transgression
elements in terms of cohomology of inn(g).

4.2.2 Transgression and the trivializability of inn(g)

It is important that
EG is contractible

⇔ INN(G) is trivializable
⇔ the cohomology of inn(g)∗ = (

V•(sg∗ ⊕ ssg∗), dinn(g)) is trivial
⇔ there is a homotopy τ : 0 → Idinn(g), i.e. [dinn(g), τ ] = Idinn(g) .
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This implies that if
cs

is to be a transgression element mediating between µ and k, then we have

cs = τ(p∗k) + dinn(g)q .

So for every invariant polynomial k

dinn(g)k = 0

a “potential” c does exist. The nontrivial condition is then that cs re-
stricted to g is a cocyle.

cocycle Chern-Simons inv. polynomial

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))
i∗oooo (

∧•(ssg)∗)? _
p∗oo

0

0 p∗k
_

dinn(g)

OO

τ

��

k
�

p∗
oo

µ
_

dg

OO

cs�i∗oo _
dinn(g)

OO

Figure 4: The homotopy operator τ exists due to the trivializability of
inn(g).

4.3 Formulation in terms of components

From the inn(g)-description it is easy to read off the properties of cocycles
and invariant polynomials in terms of components:

Fix a Lie algebra g and a basis {Xa} with dual basis {ta}, regarded
as a basis of sg∗ and {ra}, regarded as a basis of ssg∗.

• A Lie (2n+ 1)-cocylce is a completely antisymmetric tensor

µ = µ(t) = µa1···a2n+1t
a1 ∧ · · · ta2n+1

such that X
i=12n+1

(−1)iµ[a1···ai···a2n+1C
ai

bc] = 0 .

• A degree n+1 symmetric invariant polynomial is a completely sym-
metric tensor

k = k(r) = ka1···an+1r
a1 ∧ · · · ∧ ran+1
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such that X
i=12n+1

ka1···ai···an+1C
ai

bc = 0 .

By explicitly computing the homotopy operator τ (compare Chern and
Simons [?]), using the theory of derivation homotopies, we find that the
restriction

τ(k(r))|V•
(sg∗)

has components proportional to

ka1a2···an+1t
a1 ∧ (dgt

a1) ∧ · · · (dgt
an+1) .

5 Lie n-algebras from cocycles and from
invariant polynomials

We shall Lie n-algebras which come from

• Lie algebra cocycles µ – these are the Lie n-algebras gµ studied by
Baez-Crans [2]

• invariant polynomials kon g – these we identify as Chern Lie (2n+1)-
algebras chk(g)

• invariant polynomials k of degree (n+ 1) and an associated cocycle
µk of degree (2n+1) – these we identify as Chern-Simons Lie (2n+1)-
algebras.

5.1 Baez-Crans Lie n-algebras gµ from (n + 1)-
cocycles µ

Definition 22 Let µ be an (n + 1)-cocycle on g as in proposition ??.
Then the Lie n-algebra

gµ

is defined by the qfDGCA V•((sg)∗ ⊕ (snR)∗)

with the differential

dta = −1

2
Ca

bct
btc

db = −µ(t) .

We may reformulate this equivalently, in fact slightly more generally,
in L∞-language:

Baez-Crans showed [2] that Lie n-algebras which are concentrated in
top and bottom degree are all equivalent to Lie n-algebras of the following
form.
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Definition 23 For g any Lie algebra, m any g-module and

h ∈ Hn+1(g,m)

a Lie algebra (n + 1)-cocycle for g with values in m, the semistrict Lie
n-algebra

hn(g,m)

is defined to be the L∞-algebra on

Sc(sg⊕ snm)

with codifferential
D = d1 + d2 + dn+1

defined by
d2(sX ∨ sY ) = s[X,Y ]

d1(sX ∨ snB) = snX(B)

dn+1(sX1 ∨ · · · ∨ sXn+1) = snh(X1, · · · , Xn+1) ,

for all X,Y,Xi ∈ g and all B ∈ m.

We find that D2(sX ∨ sY ) = 0 is the Jacobi identity on g, as before,
and D2(sX ∨ sY ∨B) = 0 is the Lie module property of m. Finally

D2(sX1 ∨ · · · ∨ sXn+2) = D

0
@ X

σ∈Sh(1,n+1)

ε(σ)sXσ(1) ∨ snh(Xσ(2), · · · , Xσ(n+2))

+
X

σ∈Sh(2,n)

ε(σ)s[Xσ(1), Xσ(2)] ∨ sXσ(3) ∨ · · · ∨ sXσ(n+2)

1
A

= sn
X

σ∈Sh(1,n+1)

ε(σ)Xσ(1)

�
h(Xσ(2), · · · , Xσ(n+2))

�

+sn
X

σ∈Sh(2,n)

ε(σ)h([Xσ(1), Xσ(2)], Xσ(3), · · ·Xσ(n+2))

= 0

is precisely the Lie cocycle property of h.
URS: I think I have the signs right here, but should be checked again.

Remark. The Lie 2-algebra gk from ?? is a special case of this for
n = 2, m = R the trivial g-module and h(X,Y, Z) = 〈X, [Y,Z]〉.

5.2 Chern Lie (2n+1)-algebra csk(g) from invariant
polynomials k.

Definition 24 Let k be an invariant polynomial of degree (n + 1) on g

as in proposition ??. Then the Lie (2n+ 1)-algebra

chk(g)
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is defined in terms of the qfDGCA onV•((sg)∗ ⊕ (ssg)∗ ⊕ (s2n+1R)∗)

by

dta = −1

2
Ca

bct
btc + ra

dra = −Ca
bct

brc

dc = k(r) .

Here {ta}, {ra} is our basis choice for inn(g)∗ as usual and {b} is the
canonical basis of (s2n+1R)∗.

That d2 = 0 follows directly from the defining property dinn(g)k(r) of
k.

5.3 Chern-Simons Lie (2n+1)-algebras csk(g) from
invariant polynomials k

Definition 25 Let k be an invariant polynomial of degree n+1 such that
it has a Chern-Simons potential τ(k(r)) as in ?? Then the Lie (2n+ 1)-
algebra

csk(g)

is defined on V•((sg)∗ ⊕ (ssg)∗ ⊕ (s2nR)⊕ (s2n+1R)∗)

by

dta = −1

2
Ca

bct
btc + ra

dra = −Ca
bct

brc

db = −(µk(t) +Q(t, r)) + c

dc = k(r) ,

where Q(t, r) is as in (??).

That d2 = 0 here follows directly from the defining properties of k(r).

5.4 Higher abelian Chern-Simons Lie (2n+1)-algebras
csk(Σ

nu(1))

There is another notion of higher Chern-Simons Lie (2n + 1)-algebras,
coming from just the abelian Lie algebra u(1) but involving higher differ-
ential forms.

Definition 26 For odd n ∈ N and any k ∈ R, define the Lie (2n + 1)-
algebra

csk(Σnu(1))

by the qfDGCA which is defined onV•((snu(1))∗ ⊕ (sn+1u(1))∗ ⊕ (s2nu(1))∗)⊕ (s2n+1u(1))∗)
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by
da = r

dr = 0

db = −k a ∧ r + c

dc = k r ∧ r ,
for {a} a choice of basis of (snu(1))∗, {r} a choice of basis of (sn+1u(1))∗

and {c} a choice of basis of (s2n+1u(1))∗ .

That d2 = 0 is immediate.

Remark. From the point of view of n-connections, the objects studied
in [15] can be regarded as (2n+1)-connections with values in csk(Σnu(1)).
See 5.5.1.

5.5 Morphisms

5.5.1 Higher Chern-Simons forms

Proposition 11 (Chern forms) (2n + 1)-Connections with values in
the Chern Lie (2n + 1)-algebras chk(g) are in bijective correspondence
with tuples

(A,C) ∈ Ω1(X, g)× Ω2n+1(X)

such that
dC = dk(FA ∧ · · · ∧ FA) .

Proposition 12 (Chern-Simons forms) (2n+1)-Connections with val-
ues in the Chern-Simons Lie (2n+ 1)-algebras csk(g) are in bijective cor-
respondence with tuples

(A,B,C) ∈ Ω1(X, g)× Ω2n(X)× Ω2n+1(X)

such that
C = dB + kCSk(A) .

Here CSk(A) is the k-Chern-Simons form, such that

dC = k(FA ∧ · · · ∧ FA) .

Proposition 13 (2n+ 1)-Connections with values in the Chern-Simons
Lie (2n+ 1)-algebras csk(Σnu(1)) from 5.4, i.e. qfDGCA-morphisms

f∗ : (csk(Σnu(1)))∗ → Ω•(X) ,

are in bijective correspondence with p-forms

(A,B,C) ∈ Ωn(X)× Ω2n(X)× Ω(2n+1)(X)

such that
C = dB + k A ∧ dA .
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5.5.2 The isomorphism inn(gµk
) ' csk(g)

Proposition 14 We have an equivalence (even an isomorphism)

inn(gµk ) ' csk(g)

whenever the latter exists.

Proof. One checks that the assignments

ta 7→ ta

ra 7→ ra

b 7→ b

c 7→ c±Q

define morphisms between the two Lie (2n+1)-algebras. These are clearly
strict inverses of each other. �

Remark. Together with proposition 7 this implies that csk(g) is in fact
trivializable.

5.5.3 The exact sequence 0 → gµk
→ csk(g) → chk(g) → 0

Suppose that the degree n+ 1 invariant polynomial k(r) admits a Chern-
Simons potential, i.e. such that all three Lie (2n+ 1)-algebras

• gµk – 5.1

• csk(g) – 5.3

• chk(g) – 5.2 .

Then we have the following morphisms between these.

Proposition 15 We have a canonical surjection

i : csk(g) // // chk(g) .

Proof. One checks that the canonical inclusion of vector spacesV•((sg)∗⊕(ssg)∗⊕(s2n+1R)∗) ↪→
V•((sg)∗⊕(ssg)∗⊕(s2nR)∗⊕(s2n+1R)∗)

gives a monomorphic qfDGCA-morphism

(chk(g))∗ → (csk(g))∗

hence defines an epimorphic dual morphism. �

Proposition 16 We have a canonical injection

i : gµk
� � // csk(g) .

Proof. One checks that the canonical surjection of vector spacesV•((sg)∗ ⊕ (ssg)∗ ⊕ (s2nR)∗) ↪→
V•((sg)∗ ⊕ (s2n+1R)∗)

gives an epimorphic qfDGCA-morphism

(csk(g))∗ → (gµk )∗

hence defines a monomorphic dual morphism. �
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Remark. Notice that it is the algebra property of this map which cru-
cially depends on the fact (??) that in

k(r) = dinn(g)(µ(t) +Q(t, r))

the Q(t, r) vanishes when restricted to
V•(sg)∗.

Proposition 17 The composite morphism

gµk
� � // csk(g) // // chk(g)

is homotopic to the zero-morphism.

Proof. By the above, the dual morphism is the identity on the generators
of (sg)∗

f∗ : ta 7→ ta

and sends everything else to zero. This is reproduced by the derivation
homotopy which acts as

τ : ta 7→ 0

τ : ra 7→ ta

τ : c 7→ 0 .

On ta this is immediate, on ra this depends crucuially on the prefactors
obtained by extending to a derivation homotopy

[d, τ ](ra) = dgµk
ta + τ(−Ca

bct
brc)

= −1

2
Ca

bct
btc +

1

2
Ca

bct
btc

= 0 .

�

In summary this gives

Corollary 2 Whenever the (2n + 1)-cocycle µk on g and the invariant
degree (n+1)-polynomial k are related by transgression, we have an exact
sequence of Lie (2n+ 1)-algebras

0 → gµk → csk(g) → chk(g) → 0 .

6 Remaining Proofs

6.1 Relation of Baez-Crans 2-morphisms to deriva-
tion homotopies

Proof of proposition 4:
Let (

V•(V ∗
0 ⊕ V ∗

1 ), dV ) and (
V•(W ∗

0 ⊕W ∗
1 ), dW ) be DGCAs and

f∗1 , f
∗
2 : (

V•(W ∗
0 ⊕W ∗

1 ), dW ) → (
V•(V ∗

0 ⊕ V ∗
1 ), dV )

be two morphisms as in the proof of proposition ??.
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A morphism

τ : q′ → q

between these (a derivation homotopy) is a map τ :
V•(W ∗

0 ⊕ W ∗
1 ) →V•(V ∗

0 ⊕ V ∗
1 ) of degree -1 which acts on the generators as

τ : bi 7→ τ i
aa

′a

and
τ : aa 7→ 0 .

We have
[d, τ ] : aa 7→ −taiτ

i
ba
′b

and

[d, τ ] : bi 7→ −1

2
τ i

aC
′a

bca
′ba′c − τ i

at
′a

jb
′j + αi

aj(q +
1

2
[d, τ ])a

bτ
j
ca
′ba′c . (12)

Then
q − q′ = [d, τ ]

is equivalent to
(qa

b − q′ab)a
′b = −taiτ

i
ba
′b

and
(qi

j − q′ij)b
′j = −τ i

at
′a

jb
′j

and

1

2
(qi

ab − q′iab)a
′aa′b = −1

2
τ i

aC
′a

bca
′ba′c + αi

aj(q +
1

2
[d, τ ])a

bτ
j
ca
′ba′c ,

where we have used the property (8) of a derivation homotopy.
The first two equation express the fact that τ is a chain homotopy

with respect to t and t′. The last equation is equivalent to

q2(x, y)− q′2(x, y) = −τ([x, y]) + [q(x) +
1

2
t(τ(x)), τ(y)]− [q′(y)− 1

2
t(τ(y)), τ(x)]

= −τ([x, y]) + [q(x), τ(y)] + [τ(x), q′(y)]

This is exactly the Baez-Crans condition on a 2-morphism. �
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G // EG // BG top. spaces

Disc(G) � � i //
_
|·|

OO

_

Lie

��

INN(G)
p // //

_
|·|

OO

_

Lie

��

ΣG
_
|·|

OO

_

��

Lie groupoids

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))oooo (
∧•(ssg)∗)? _oo free graded comm.

algebras

g � � //

∼(·)∗

inn(g)

∼(·)∗

Lie 2-algebras

elements in
cohomology

��

cocycle
Chern-Simons

element inv. polynomial

0

0 p∗kF

τ

��

_
dinn(g)

OO

k
�p∗oo

µ
_

dg

OO

cs�i∗oo _
dinn(g)

OO

g � � // inn(g) = // inn(g)

gµ
� � //

OOOO

csk(g) // //

OOOO

chk(g)

OOOO

Lie (2n + 1)-algebras

inn(gµ)

∼

Baez-Crans Chern-Simons Chern

Figure 5: Chern Lie (2n + 1)-algebras: for each Lie algebra (n + 1) cocycle
µ which is related by transgression to an invariant polynomial k we obtain an
exact sequence of Lie (2n + 1)-algebras.
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