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In this paper we address two questions: the geometrical formulation of D =11 supergravity
and the derivation of the super Lie algebra it is based on. The solutions of the two problems are
intimately related and are obtained via the introduction of the new concept of a Cartan integrable
system described in this paper. The previously developed group manifold framework can be
naturally extended to a Cartan integrable system manifold approach.

Within this scheme we obtain a geometric action for D = 11 supergravity based on a suitable
Cartan system. This latter turns out to be a compact description of a two-element class of
supergroups containing, besides Lorentz J,,, translation P, and ordinary supersymmetry Q, the

following extra generators: two- and five-index skew-symmetric tensors Z,,.Z, ..., and a

further spinorial charge Q’. Q' commutes with itself and everything else except J,,. It appears in
the commutators of Q with P,, Z,, , . Z

a2? Tay- - -ast

1. Introduction

Simple supergravity in D =11 was introduced by Cremmer, Julia and Scherk in
ref. [1] and later formulated by Cremmer and Ferrara in superspace [14]. It is the
maximally extended supertheory containing at most spin-2 particles; by dimensional
reduction [2] it yields N = 8 supergravity in 4 dimensions which is considered, with
increasing interest, a possibly viable theory for the unification of all interactions.

An up to now unsolved problem is the identification of the supergroup underlying
this theory.

This is no academic question, rather a fundamental one. Indeed, supergravity
claims to be the local theory of a suitable supergroup allowing the unification of all
truly elementary particles in a single supermultiplet; therefore a supergravity theory
whose supergroup is unknown is somehow incomplete. The need for a supergroup
was already felt by the inventors of the theory who, in their original paper [1],
proposed Osp(32/1) as the most likely candidate. This proposal is based on two
facts:

(i) Osp(32/1) is the minimal grading of Sp(32) which, on the other hand, is the
maximal bosonic group preserving the Majorana property of a Majorana spinor.
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102 R.d’Auria, P. Fré / Geomelric supergravity

(i) The generators of Osp(32/1) are, with respect to the Lorentz subgroup
SO(1,10) C Osp(32/1), the following tensors (or spinors):

Pa’ Jab’ Za,-v-as’ Qa’ (11)

where J,, and Z, .., are skew symmetric. J;,, P,, O, can be respectively interpreted
as the Lorentz, translation and supersymmetry generators. The 5-index skew-sym-
metric generator Z, .., on the other hand, can be conceived to be associated to the
physical 4,,, field appearing in D =11 supergravity in the following indirect way.
The potential associated to Z, .., is a 1-form B, ..., : multiplying B, .. , by 5
elfbeins ¥, A - -+ AV, (the gauge fields of the generator P,) we obtain a 6-form B:

B=B%"SAV, N+ AV, (1.2)
Calling B, ..., its space-time components and 9;1. .u, their curl,
Gfur“uv = a[#lBﬂz"'M]’ (1'3)

it is attractive to assume that §, ... is related to the curl of 4,,, by a duality
relation:

7% =
JM ety const X €.

Y Ce (1.4)
If this is the case, then there should be a formulation of D = 11 supergravity which
utilizes B, . . ,asa fundamental field instead of 4 patiats Nicolai, Townsend and van
Nieuwenhuizen tried to find it [3]. In this respect it must be noted that in the graded
Lie algebra of Osp(32/1) the generators Z, ..., are not abelian and mix, in a
non-trivial way, with the space-time symmetries P,, J,,. Indeed Osp(32/1) is de-

a’ Yab*
scribed by the following curvatures:

R4b = ﬁab(w) + an“/\ Vb+ a34’/'rab/\¢ + a4Bac|. . 'a/\B-bc,- ey (I.Sa)
R=QV—Ji TN+ aygr b B, AB, ., (1.5b)

Rev o= @B 4 — LT S A+ age SHOBOOB, L AB, 2P,
(1.5¢)
p= GDt[J + iaGI‘a\p AVe+ ia7l‘al, . ,ast[/ A B4 (I.Sd)

where @) denotes the Lorentz covariant derivative and R°? is defined as

%ab: dwab_ waC/\wL:b,
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where a,, a,,...,a; are numerical constants, fixed by Jacobi identities [that is
integrability conditions (dd =0) of eqs (1.5) at zero curvature]. Because of this
property of the algebra, a theory based on Osp(32/1) is bound to violate the
Coleman-Mandula theorem [4] since it will provide a non-trivial unification of
internal and external symmetries at the bosonic level [5]. Therefore, before looking
into a B, ..., formulation of D= 11 supergravity it is advisable to perform an
Indnu-Wigner contraction of Osp(32/1) by setting

@ > b Reb s Rab (1.6a)
—— RO eR?, (1.6b)
Bor-as L ggar-as. R a5 5 gRA -4 (1.6¢)
¢_)‘/;¢’ p_)‘/gp, (1.6d)

where e is a scaling parameter. In the contraction limit e >0 one obtains the
contracted Osp(32/1) supergroup:

R =R, (1.7a)
Re=QVe—Liy AT, (1.7b)
R8s =GB a5 — Ly AT 4 sy, (1.7¢)
p=Dy, (1.7d)

which is free from the Coleman-Mandula disease since now Z, ..., is abelian.
Even with these precautions, however, the result of Nicolai, Townsend and van
Nieuwenhuizen was negative. The 6-form formulation of D = 11 supergravity doesn’t
seem to exist [3]. As the reader will see, we reach the same conclusion in a totally
different set up.

This being the state of the art, the situation we had to force was the following:

(i) D=4 and D =15 simple supergravities are interpretable as local theories of a
suitable supergroup. Their lagrangians can be retrieved in a systematic way using the
group manifold approach [6] which utilizes the 1-form potential of the supergroup as
the only fundamental field and the geometric operations d (= exterior derivative),
N\ (= wedge product) as the only allowed manipulations in the construction of the
action.

(ii) The supergroup interpretation of D = 11 supergravity and, hence, its geometric
formulation within the group manifold approach is not straightforward, essentially
because of the following fact: the field 4,,, of the Cremmer-Julia-Scherk theory is a
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3-form rather than a 1-form and therefore it cannot be interpreted as the potential of
a generator in a supergroup.

The solution of the dilemma shows up almost naturally when the problem is
formulated in these terms. Since Cremmer, Julia and Scherk’s theory contains forms
of higher degree, then the physical fields are not 1-form potentials of a super Lie
algebra, rather they are p-form potentials of a generalized Cartan integrable system.
The notion of Cartan integrable system (CIS), discussed in sect. 2, is a natural
generalization to the case of p-forms of the Maurer-Cartan equations defining a
(super) Lie algebra. All the concepts advocated by the group manifold framework,
namely curvature, covariant exterior derivative, cosmo-cocycle condition for the
existence of the vacuum solution and rheonomy can be almost trivially extended to
the case of a CIS manifold. In this paper we first introduce the notion of Cartan
integrable system and then, after showing the existence of a specific CIS in D =11
we construct supergravity as a geometric theory on this CIS manifold. Later, once
the theory has been obtained, we address the question whether our CIS is equivalent
to an ordinary supergroup; namely, whether our 3-form A can be viewed as a
polynomial in a set of ordinary l-forms in such a way that, giving the exterior
derivatives of these latter, we recover the exterior derivative of the former (A).

The answer is yes and we actually get a dichotomic solution: there are two
different supergroups whose 1-form potentials can be alternatively used to pa-
rameterize the 3-form 4.

Both in establishing the integrability of our CIS and in solving the cosmo-cocycle
condition for the linear part of the lagrangian a central role is played by Fierz
identities. Because of that, in sect. 3 we study the systematics of D =11 Fierz
identities following the group theoretical technique fully explained in ref. [7]. In this
respect we want to point out that Fierz identities in D = 11 and also the specific CIS
we use were already derived by D’Adda and Regge in some unpublished notes [8]
which were very inspiring for us.

The structure of the paper is the following:

Sect. 2 describes the notion of Cartan integrable system and the related concepts
for the construction of a geometric theory on a CIS manifold.

In sect. 3 we give the systematics of Fierz identities for Majorana spinor 1-forms
in eleven dimensions and we introduce the specific CIS we shall use in the sequel.

Sect. 4 deals with the construction of the lagrangian of D =11 supergravity
utilizing the cosmo-cocycle closure equation (vacuum condition) to fix the linear part
and the 3-form gauge-invariance principle to determine the quadratic term coeffi-
cients.

Sect. 5 deals with the equations of motion and the rheonomy property.

In sect. 6 we discuss the supergroup problem, deriving the equivalence of our CIS
to two different ordinary supergroups whose 1-form potentials can be alternatively
used to parametrize the physical 3-form 4.

Sect. 7 contains our conclusions.
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2. Cartan integrable systems

It is very well known that a (super) Lie algebra can be described in two equivalent
ways. The first is provided by the familiar commutation relations among the
generators (GCR). One starts with a set of operators T, forming the basis of the
tangent space T(M) to a manifold M. If we can write a set of commutation relations

[T, T3} = Cia Ty, (2.1)
where C[;; are structure constants satisfying the Jacobi identities,
B(C+4
[L’[TB’ TC}} + (_)A(B+C)[TB! [TC’ TA}} + (_) r )[TC7 [TA’ TB}} - O’
(2.2)

then the manifold M is a (super) Lie group and (2.1) is its (super) Lie algebra. The
Jacobi identities (2.2) is all we have to check in order to be sure that (2.1) defines a
viable (super) Lie algebra. The second description of a (super) group, equally well
known but, just for historical reasons, less used in the physical literature, consists of
the Maurer-Cartan equations.

In this set up one considers a manifold M and its cotangent space CT(M): CT(M)
is the vector space of 1-forms on the manifold M. Given a basis 64 of CT(M), the
exterior derivative do“ is a 2-form and can be decomposed in the basis provided by
o8 No€,

do?=F4,.0%NoC. (2.3)
If we can find a set {6} such that F“,_ are constants,
Flge=—3Clc, (24)
consistent with the integrability condition dd = 0; namely, if we can set
do? 4308 N0°CH-=0, (2.5)
and, using, (2.5) we automatically get out
ddo?=—C4.d0BAeC=—41CA4 . CEBoRNGSNGC=0, (2.6)
then M is a (super) Lie group and (2.5) are its Maurer-Cartan equations. The (super)

Lie algebra of M is obtained via the introduction of a dual basis in the tangent space
T(M): indeed if {T,} is a set of tangent vectors such that

o4(T,) =84, (2.7)
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€q. (2.5) implies eq. (2.1) and vice versa. In the same way eq. (2.6) implies Jacobi
identities (2.2) and vice versa. Therefore, all we have to do in order to be sure that
eq. (2.5) defines a true (super) Lie group is to check whether eq. (2.6) holds. Eq. (2.6)
is the integrability condition of the Maurer-Cartan equations (2.5).

As we have already pointed out, the two ways of describing a Lie algebra are
totally equivalent, yet the first is more customary in physics. Dealing with gravity
and supergravity theories, however, the second approach is more appropriate for the
following reason. Since the ultimate goal is the construction of an action integral for
the (super) group potentials, if we start with the Maurer-Cartan equations (2.5) the
transition to the potentials is simply performed via the replacement of the 1-forms
o4 satisfying (2.5) (left-invariant 1-forms) with a set of 1-forms p4 which do not
satisfy (2.5) (soft forms or supergroup potentials). The 2-forms

RY=R[p]=dp" +3ChpP A€ (2.8)

expressing the deviation from the Maurer-Cartan equations are called the curvatures
of pA. The physical action is the integral of a polynomial (in the exterior algebra
sense) in p? and R“ with the eventual addition of some 0-forms. The rules of this
game, which goes under the name of group manifold approach, are discussed for
example in [6] or with more details in [9]: all supergravity theories so far examined
fit nicely into this framework.

The notion of Cartan integrable system appears to be a most natural generaliza-
tion of the concept of (super) Lie group if we adopt the language of the Maurer-
Cartan equations as the primary description of the group structure.

Suppose that we have a manifold M whose dimension, however, is not, at this
point, fixed. (In the case of the proper super Lie group instead the dimension of M is
just equal to the number of generators T, or, equivalently, of left-invariant 1-forms
o“.) Suppose that on M we define a set of p-forms of various degree {©4(”’} whose
exterior derivative d®4(?) can still be expressed as a polynomial in ®4(”) with
constant coefficients:

N

1

4 A B B(pn) —

de4» 4 EIECB&Q)---BA;»H)@ POA .. A@BPD =0, (2.9)
ne

The number N is equal to p,, + 1, where p,.. is the highest degree in the set
{@A(p)}.

Obviously, since all addends in eq. (2.9) have to be ( p + 1)-forms, the constants
CA®),. . .5 (,., are different from zero only if

pt--+p,=p+1. (2.10)
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Moreover, they have the proper symmetry in the exchange of any two neighbouring
indices:

A(p)
CBI(PI)BZ(PZ)' BAp)Biv(Pir1) Bu(p)

= BBy tpipivy A(p)
=(=1 Gy B0 Brar(pis VB2 - Bo(pa)" (2.11)

We say that eq. (2.9) is a generalized Maurer-Cartan equation (GMCE) and that it
describes a Cartan integrable system (CIS) if and only if the integrability condition
dde4(» =0 follows automatically from (2.9). Explicitly, the condition for (2.9) to be
a CIS is the following;:

N N
APy — By(p0)
dde~’ Z 2 ol monCONL  Doiam

n=1m=1

X2 A A@PHIM A @BAPI A L. A@BPI =, (2.12)

Eq. (2.12) is the analogue of eq. (2.6) and therefore it is just the analogue of the
Jacobi identities (2.2) of an ordinary Lie algebra.

Given a CIS all concepts advocated by the group manifold approach can be
naturally extended. Let us go through their list.

(i) Soft forms or CIS potentials. A set {@4P)} satisfying the GMCE (2.9) is
named a left-invariant set.

A new set {II4(”} which does not satisfy (2.9) will instead be a soft-set. TI4(»
may be viewed as the Yang-Mills potentials of the CIS, in the same way as p* are
the Yang-Mills potentials of the ordinary supergroup described by the ordinary
Maurer-Cartan equations (2.5)

(ii) CIS curvatures, CIS Bianchi identities and CIS covariant derivatives. Given a
soft set II4(P), its deviation from the GMCE (2.9) is named the curvature set of
{HA(p)}:

RAGP+D = 142 2 C

n=

](pl) "(p")HBu(m) Ao ATIBAPD =0, (2.13)

The integrability of the CIS, condition (2.12), yields a differential identity on the
curvatures R4?* Y which is worth the name of Bianchi identity:

TRAPTD = qRAP+Y 4 2 Ciep )RBl(P+1) ATIBAPI A ..o ATIBAP) =) .

I(Pl)

(2.14)
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In complete analogy with what one does in Chevalley cohomology theory (see [9]) we
say that the Lh.s. of eq. (2.14) defines the covariant derivative of an adjoint set.
Suppose H4?*1D is a set of ( p + 1)-forms: the combination

N
vHAPTD =q gAP+D 4 2 C;l((l;)]). B(p )HBI(P1+1) ATIB2PI A ... ATIBAPA
n=1

(2.15)

will be named the covariant adjoint derivative of HA?*V, With this definition, the
Bianchi identity (2.14) just states that the covariant adjoint derivative of the
curvature is zero as happens with ordinary supergroups. Let us now assume that we
have a multiplet »,,_,_, of forms whose degree is the complement of the degree of
HA?*D with respect to some fixed number d. We say that {v,,_,_)} is a coadjoint
set of d-form if I, obtained multiplying H*»*" with »,,_,_,, is an invariant:

I=HACO Ny (2.16)

Invariant just means the following: the covariant derivative of I coincides with its
ordinary exterior derivative:

vI= vHAP+tD A » + (__)p+1HA(p+l) A VP a(d—p—1y

—p—1)
+1
=dI=dH* "D NApyy o+ (1) HACT DA Ay y . (2.17)

Eq. (2.17) provides the definition of coadjoint covariant derivative. Indeed, in order
for (2.17) to be true, we must have

N
_ _{_rt] B p))
Vca—p—1y = Paa—p—1y = (=) ZICA(l}’)bz(ﬁz)"'ﬁn(Pn)
s

XITBAPD A -+ ATIPAPD Ay (2.18)

—p—1)?
where
pit1=p+p,+tps+---+p

n-

(iii) Contraction. The notion of contraction of a generic polynomial § in the soft
forms IT4(») coincides with the concept of functional variation. Therefore, we set

R
| Q=0 (2.19)




R. d’Auria, P. Fré / Geometric supergravity 109

(iv) Geometric actions and cosmo-cocycle equation for the vacuum condition. A
(pure) geometric theory on a CIS manifold will be characterized by an action
principle of the following type:

@= fM (A+RAPO Ay, FRAPEDARIGD Ay b ),

d

(2.20)

where M,CM is a floating hypersurface of dimension d and A, vy, , ),
V4 B(d—p—q—2 ar€ polynomials in II°™ of degree d,d—p—1,d—p —q—2, respec-
tively.

The condition to be satisfied by (2.20) in order to admit the vacuum solution is the
straightforward generalization of the cosmo-cocycle condition customary in the
group manifold approach (see [9] or [6]). It reads

A(p)IA+ V%a—p-1y=0, at RAPTD =0, (2.21)

In the sequel we shall construct D = 11 supergravity as a geometric theory on an
appropriate CIS manifold. Before coming to that we want to address another
algebraic question of some relevance. Is a Cartan integrable system reducible to an
ordinary (super)group?

This question arises naturally when we try to identify the manifold M on which
the left-invariant forms ®(? or their soft analogues IT4(? live.

Indeed, as we pointed out at the very beginning of our discussion, the dimension
of M has not been fixed, so we do not know how many independent tangent vectors
T, there are on which to project our generalized Maurer-Cartan equation (2.9). A
very natural set of questions to ask is, therefore, the following:

(i) Is there a manifold M of minimal dimension 8§ = dim M which supports the
forms @4(»)?

(i) Is there a basis of T(M) composed of left-invariant tangent vectors (left
invariant means that the components of their commutator are constants Cf%,)

[T.. T} = C2pT,, (2.22)
and such that the value of ®4(”) on a set of p tangent vectors T, is a constant,

vos T, ) —lgam (2.23)

p ay, 0, ..,

(:.)A(p)(Ta

1

If the answer to both questions is yes, the manifold M is an ordinary (super) Lie
Group G and the GMCE (2.9) are just the shadow of the ordinary Lie algebra (2.22).
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The most appropriate way to answer these questions is to go over to a dual
description of the Lie algebra (2.22) in terms of left invariant 1-forms o* The
problem can be formalized as it follows. First we set

4P = .;_K:I(f?‘apoﬂl NG A -« Ao, (2.24)

where K :.(,,1.’.),«:,, are constants. Next we put
do*+3C%,0° Ne"=0. (2.25)

Then the constants K, and C%, have to satisfy two conditions:
(A) Jacobi identities on Cf.:

dde*= —3C%,Ch,6° Na"No?=0. (2.26)
(B) Eguivalence with eq. (2.9), namely
de4») = K:,(}]-)-a,d“a' AG2ANA -+ Ag%
= —3KiP, CHOP AT Ao N - Ao

1 4
= — el (p) Bi(p)) BypIA ... B(pn)
21 'lCBl(Pu)"-Bn(p,.)@ PN @TIIA N8
e

N
1 A
N I B(p) g BAPD)
- g n CBl(Pl)' : ‘Bn(Pn)K !x i | K 22 22
n=1 B,.. B, B. . B,
1 1 n n
...Klin(p,.”) BN NGB A AGPI A - AaBen, (2.27)

8. B

Pn

Any solution of these algebraic equations on the coefficients C%, and KJ?), yields
a supergroup interpretation of the CIS and reduces a theory on a CIS manifold to a
theory on a ordinary supergroup manifold.

What is by no means guaranteed is the uniqueness of the solution of egs. (2.26)
and (2.27). For instance in the case of the D = 11 supergravity CIS we shall find a
dichotomic solution yielding two supergroups as possible substitutes of the CIS. This
means that a Cartan integrable system is a compact way of describing a collection of
(super)groups and a geometric theory on a CIS manifold is actually a class of group
manifold theories which are physically equivalent.
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3. Systematics of Fierz identities in D = 11 and identification of a Cartan
integrable system

The basic technical tool in the derivation of geometric supergravity theories both
at the on-shell and off-shell level is provided by the group theoretical decomposition
of gravitino 1-form wedge products popularly called Fierz identities. This group
theoretical technique has been described in [7] and was already applied to the
auxiliary field problem of D =5 supergravity in {7] and of D = 10 super Yang-Mills
theory in [10]. In this section we present the systematics of D = 11 Fierz identities to
be used both in the identification of the CIS and in the construction of the
lagrangian. Most of the results of this section were already obtained by D’Adda and
Regge in unpublished notes. They used different normalizations and conventions:
however, an a posteriori comparison of our numbers revealed a perfect match
providing a very important check.

We start by giving the dimensionality of the SO(1, 10) representations appearing
in the symmetric product of two, three and four gravitino 1-forms ¢ (¢ is a spin 1
Majorana 1-form). The notations of table 1 are similar to the notations of table 1 of
ref. [10] and are easily explained.

The eleven-dimensional Lorentz group SO(l, 10) has, like SO(1,9), rank 5 and
therefore its irreducible representations are labeled by 5 integer or half-integer
numbers.

In the integer case we are dealing with a bosonic representation and the 5-num-
bers Aj, A,, Aj, Ay, A labeling it can be identified with the number of boxes in each
row of a Young tableau. In this way the representation (1)(0)* corresponds, for

TABLE 1
Dimensions of SO(1, 10) irreps appearing in the symmetric products of 2,3,4 irrep (%)5

Bose irreps Fermi irreps
type dimension type dimension

©° 1 O} 32
(1)0)* 11 B0} 320
()0 55 O16) 1408
OXOE 165

(H*©0) 330 5

? 462 ) 4224
0" 65

@) 429

@%0)° 1144

@M 4290

@1’ 17160

° 32604
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instance, to the tableau B |, namely to an antisymmetric tensor T, ,,- Analogously

(2)%(0)° corresponds to the tableau [1|%| that is to the tensor Taja, while (1°) is a
5y (24 324

skew-symmetric 5-index tensor E ~T,,. . 4

In the half-integer case the representation is of the Fermi type. The corresponding
object is a spinor tensor having in its vectorial indices the symmetry of the Young
tableau A, — 3, A, — 3, A; — 1, A, — 1, A5 — 3. Moreover, it is irreducible in the sense
that whatever trace can be obtained by contracting it with I'-matrices is zero.

For instance the irrep (3)(3)* is a spinor tensor with the symmetry (1)(0)* in its
Bose indices, namely =,. The irreducibility means T“Z, = 0. Analogously (3)*(4)’ is
a spinor tensor with Bose indices of the type (1)%(0)*, namely Z4,q, (skew symmetric).
The irreducibility condition is %, , =0.

The use of numerology provides an easy tool to work out the representations
appearing in each symmetric product. We find

(1)’ ® (1)}, =(DO)* ©(1)2(0) ®(1)°,

=528= 11 + 55 +462); (3.1)

(B8 e ()], =(1)’8@)3)'®(2)'(3)’8(3),

=32+ 320 + 1408 +4224), 3.2)

32X33X34
3X2

{Bre@ye@ye()y}, .=

(0)° ©(1)°(0)> ©(1)*(0) &(1)° ®(2)(0)* ®(2)(1)(0)’ @(2)*(0)° ®(2)*(1)’ B(2)°,

32X 33X34X35
4X3%2 -

1 + 165 + 330 +462+ 65 + 429 + 1144 + 17160 +32604),
(3.3)

These decompositions are made explicit in the following way. Let ¢ be the Majorana
gravitino 1-form and v=4¢'T, o =Y¥"C be its bar conjugate. Then we can write the
Fierz decompositions given in table 2, where EG?, EGO(Tez(20 = (),
EMOI2EN® =0), =, . (THE, ,=0) are, respectively, the irreducible

aa; aa, |" Qa8

representations (1)°, (3)(2)% (3)*(3)?, (3)° listed in table 1. Similarly, X, X' (65):,
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TABLE 2

Explicit Fierz decomposition

PAT= b (TFATY T ST A+ 5T, T 5 Ay )

YAPAT,Y =™ + AT, Z6D

‘P/\IP a|az¢" :-(]408)_%I‘ =(320) + 1“ wya '—(32)

“aya; a;™as]

T _»-4224 =(1408
YAYAT, o b =E020 + 2T, 0 Eb)

=a- —asas)

+3T EQO LT, | L E®?

lay - -as=as]

ayaz

n " 65 1 (1
4//\I‘al\p/\\p/\ra2\p:Xal + 1104, 0, X
a3

aaz43

_ (429)
‘P/\ a az\l’/\\P/\ I‘,,3\P: Xlal;“z‘}' X163

(1144)
YA a.ath\W\ T, 0¥ =Xaa + X330

aja,a;a.
aza, 142434,

%SlauXazl - l8“‘“2X“)

lay a4 434

(4290)

T T — 2)
VAT W AVAT, 0= t0 iy 5, X592, + Xay- s
g
is (330)
+3 611<s[¢7|X as]
T T . 330
‘P/\Fu,-~-a5¢/\¢/\ra6a7¢‘§lea|---a7b| b4XI() )
- (4290) (17160)
_ﬁlehr'-bsﬂ]'”as[‘loxb' a---fs

agaq

_ l80 §asar X(165) — 1200 sfg]ﬁx(4§2)

[111"2 a3aaas) ay---aslay)

429 1144 4290 l7l60 .
X,E}Sji,g, X(m) X(m)a Xf(naz), X6 ), Xi %>5, A are, respectively, the

bosonic 1rredu01ble representatlons czz)a)% (2)(0)4 (3 )(0)5, (1*)(0), (1)°, (2Q)(1)0)°,
(2)%(0)%, (2)(1)*, (2)*(1)%, also listed in table 1. Moreover, we have

X4 =g

a,- - -ag a,- - -aghy- -

b X5\ gy (3.4)

As we have explained in [7] the decomposition of table 2 is a substitute for all Fierz
identities which correspond to the appearance of the same irreps in several different
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products of fermionic currents. The irreps = and X form a complete and orthonor-
mal basis for the decomposition of, respectively, 3-y and 4-y terms.

With these tools we are now ready to address the question about the Cartan
integrable system suitable for D = 11 supergravity.

We first narrow down our hunting ground by taking into account the following
remarks.

(i) Since supergravity contains ordinary gravity plus the Rarita-Schwinger field,
our CIS must be an extension of the following ordinary Maurer-Cartan equations:

dw?® — W' N w?=0, (3.5a)
dVe—w® AV, — iy ATy =0, (3.5b)
d‘P—%wabArab‘l/:O’ (350)

which correspond to the super Lie algebra of the graded Poincaré group in eleven
dimensions. The indices a, b, ¢ run from 0 to 10 and the standard minkowskian

metric

1 0
0 -1

nab = : (3‘6)
0 -1

is used in the raising and lowering operations.

The skew-symmetric w®® = —w?? is the Lorentz connection 1-form, V2 is the
elfbein 1-form and v is the Majorana gravitino 1-form. The conventions adopted for
I’-matrices are listed in the appendix.

(ii) Since in D =11 there is no internal symmetry group whose indices can be
used and since we admit only massless particles of spin smaller than 2 the only other
Bose fields which might enter the lagrangian are skew-symmetric tensors of the type
Ay These latter are nothing other than p-forms.

(iii) If we assume that supersymmetry is linearly realized, the transformation rule

of 4, .. , must be of the following type:

84, .., =constX &Ly, .., 4 . (3.7

o} Bp

Eq. (3.7) means that, in the vacuum, which is what matters for the derivation of
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GMCE, the exterior derivative of A?) has to be the following:
dA(p)zap\pAra...-ap-n¢AVal/\... /\Va,,_,, (3.8)

where a,, is some non-zero constant. Since the only non-vanishing currents are those
corresponding to symmetric I'-matrices, namely

VAT,  YATH%y  YATa o5y, (3.9)
and their duals

YAT G0y YATH "y AT asy, (3.10)

we conclude that the only a priori viable forms are 4?2, A®, A©®, 4D, 409 and 41D,
The Cartan system obtained by the addition of eq. (3.8) to eqgs. (3.5) must, however,
be integrable; namely, we must have

ddAP = D(FATD YAV, A= AV, )

=(p=Da, =g AT %Yy AGAT, YAV, A--- AV, =0.
P a az P

(3.11)

Whether eq. (3.11) holds depends on the structure of the Fierz identities listed in
table 2. Indeed, in order for (3.11) to be true we must have

J/_/\I""“""al"ztll/\\p/\rmlP:O, (3.12)
which happens only if
p—2=1, p—2=10,
p—2=2, p—2=9. (3.13)
Conditions (3.13) are easily understood recalling eq. (3.3) which states that the only
antisymmetric tensors absent in the decomposition of {(3)°® (3)°® (3)’® (3)°
are (1)(0)*, (1)*(0)* and obviously their duals (1)!°(0), (1)°(0)>.

Therefore, the viable p-forms which can be embedded together with w®?, V%, ¢ in a
CIS are those among p =2,3,6,7, 10, 11 which also satisfy eq. (3.13), namely

}sym

p=3, p=11. (3.14)
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Now since A"V is a form of maximum degree, its curl (= exterior derivative) cannot
enter the lagrangian of D = 11. Hence it is to be dismissed. Therefore, we conclude
that the CIS corresponding to a linear representation of supersymmetry in eleven
dimensions later to be called C, is described by the following generalized curvatures:
Cartan integrable system C,

R =dw®® —w*Aw?, (3.15a)
RA=6ya—Liy ATy, (3.15b)
p =Dy, (3.15¢)
RE=dA— 3 AT®YAV,AV,. (3.15d)

The GMCE obtains when w“?, V4, , A are left invariant and the curvatures are set
to zero. In the soft-case, when the curvatures are different from zero, the integra-
bility of the system shows up as Bianchi identities:

CIS Bianchi of C,

VR®=9R?* =9, (3.16a)
VR*=DR*+ RPNV, — iy AT% =0, (3.16b)
vp=Dp+ il yAR®=0, (3.16¢)

VRY=dRP —y AT p AV, AV, +yAT“%y AR, NV, =0.
(3.16d)

If {»,;, »,, n, vg} is a coadjoint set where »,,, »,, n are of degree (d — 2) and », is of
degree d — 4, and we write the invariant

I=R®Av,,+R*Ay,+pAn+RAvg, (3.17)

the procedure outlined in sect. 2 (eq. (2.16) and following ones) yields the definition
of the coadjoint covariant derivative:
Coadjoint covariant derivative of C,

VVab::GDVab-’_ V[a/\"b]-i_%‘i;/\ I1¢zbn’ (3183)
Ve, =D, — Y AT WAV Av,, (3.18b)
vn=Dn—T, yAVIAVEArg —iT Y Ave, (3.18¢)

Vrg=drg. (3.18d)



R. d’Auria, P. Fré / Geometric supergravity 117

Being through with these preliminaries, we could now start turning the crank and
constructing our geometric lagrangian based on C,. We wish, however, to anticipate
a problem we are going to have. It concerns the propagation of the 3-form A4, namely
the 4,,, field of the Cremmer-Julia-Scherk formulation [1]. In fact, since 4,,, is a
physical particle, it demands a kinetic term of the type

*RC ARC (3.19)

involving the notion of Hodge duality on the space-time submanifold. As is well
known, Hodge dualization is a meaningless operation in the geometric group
manifold approach and terms like (3.19) have to emerge in the second-order
lagrangian after the elimination of some non-propagating fields appearing in the
first-order one. So far only two mechanisms are known to get this result. One was
found in D =35 supergravity [11,12] and also in the coupling of a scalar field to
gravity [16]. In D =5 supergravity it works in the following way.

The torsion equation, obtained through the w?®® variation yields
RONVEAVS+9V, AV, AR®=0, (3.20)

sabclczc:;
where n = *1, R is the supertorsion and
R®=dB® —LitNg (3.21)

is the curvature associated to the Maxwell 1-form B = B,dx*. Eq. (3.20) implies that
the supertorsion R has space-time components proportional to the curl of B,.
Indeed the solution of (3.20) is

R®=F,V°AV?, (3.22a)
R= — e IF, V, V. (3.220)

Inserting (3.22) back into the first-order lagrangian, one realizes that the geometric,
Hodge-dual-free, term,
R® AR AV, (3:23)

becomes the kinetic term,

FrFue, VAN - AV, (3.24)

rsay- -

of the B, field. Unfortunately, this beautiful mechanism is not accessible to the 4,,,
field of D = 11 supergravity because in D = 11 the analogue of eq. (3.20) would be

Eape, . RONVEN - AV + gV AV,AR® =0, (3.25)
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where R® is the curl of a 7-form A,... . and not of a 3-form Ay, OF of a 6-form

A,,.. ., interpretable as the dual potential of the former.

The second mechanism for the geometric generation of the dual was introduced in
N =2 and N =3 supergravity by one of us [13]. It consists of the addition of the
0-form F,, as an independent dynamical field and it corresponds to a first-order
formulation of the Maxwell lagrangian. The analogue of this mechanism in D =11
supergravity would be the addition of a 0-form F, ..., . In the sequel we shall be
forced to introduce this trick, which, however, results in an impure character of the
geometric lagrangian. In fact, F, .., is not directly interpretable as the 1-form
potential of any group generator.

Because of that, before resorting to this mechanism we shall explore another
possibility suggested by conformal supergravity [15]. In that theory one has a
dilation field D and an axion field A. The equation of motion of the conformino,
namely the gauge field of the S-supersymmetry, implies that curl R(D) is the dual of
curl R(A). This relation inserted back into the lagrangian transforms the geometric
term

-ay

R(A) AR(D)

into the kinetic term of the axion. A similar thing might happen also in D=11
supergravity. If, besides 4 we also had a 6-form B, then we might hope that the
gravitino equation forces curl B to be the dual of curl 4, transforming, in this way,
the geometric term

R(A) AR(B)

into the kinetic term of 4.

This conjecture is to be taken into serious consideration because it is also
supported by a remarkable algebraic fact rooted in Fierz identities: the CIS C, can
be extended in a non-trivial way, precisely by the introduction of a 6-form B.

Indeed if we add the following equation to egs. (3.15) we still get an integrable
system, hereafter named C,:

dB—Jiy AT Sy AV, N -+ AV,
—BYATH YAV, AV, NA=0. (3.26)
The Maurer-Cartan equation (3.26) is integrable because
ddB= —3YyATa " 9mYAV, N AV, AT, Ay
+ISY AT YAV, AYAT, Yy N A

+ L}tp/\ I-‘alllz‘ll N ‘17/\ Fa3a4lll A Val Ao A Va“’ (3'27)
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and

YATa amy AYAT, =3P AT [y A Y AT%ly, (3.28a)

JAT™YAGAT, =0, (3.28b)

as may be checked by looking at table 2.

The Bianchi identities and coadjoint covariant derivative of the C, CIS are,
respectively:
C, Bianchi identities

VR =R*® =0, (3.29a)
VR®=DR*+ R*® AV, — iy AT =0, (3.29b)
vp=Dp+4iC, ¥ AR®=0, (3.29¢)

VRP =dRU =y AT AV, AV, +y ATy AR, NV, =0,
(3.294)
VR® =dR® —iy AT "9p AV, N--- NV,

as
+3YAT SYAR, AV, N - AV,
—ISY AT NANV, AV, +BYAT“2Y ARDAV, AV,
— 15y ATy NAAR, AV, =0. (3.29%)
C, coadjoint covariant derivative
V5= Dy, + I/[a/\yb]+%‘lj/\ L, (3.30a)
V1, =Dy, Y AT WAVEAVLG =i AT, g AVINA - AV Ay
—ISYAT, YA VEANA Avg, (3.30b)
vn=0n =il Ay, —T2YNV, AV, Avg
—iT BYAV, N - AV, Avg —1I5ST" YAV, AV, NAAvg,

(3.30¢)
Ve =drg, (3.30d)

Vrg=drg —BYATUYAV, AV, Avg, (3.30e)
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where R?®, R?, RU, p are given by egs. (3.15) and

® _ . T
R®=dB—}if AT® Sy AV, A--- AV,

as
—BYATHY AV, AV, NA (3.31)

is the curvature associated to the 6-form B; vg is a (d — 7)-form, v is a (d — 4)-form
and »,,, »,, n are (d — 2)-forms.

In the following sections we construct the geometric theory of the C, CIS manifold
and we show how the requirement of gauge invariance under the transformation

64 =de,

necessary for rheonomy, kills all the B-dependent terms reducing the theory to the
C, CIS manifold. This result is in full agreement with the results of ref. [3] and might
be related to the fact that eq. (3.26) introduces a non-linear representation of
supersymmetry. In any case it is a confirmation of the fact that a magnetic dual
formulation of D =11 supergravity does not exist and forces us to resort to the
0-form trick.

4. Construction of the geometric lagrangian

In this section, following the scheme outlined in eq. (2.20), we construct a
geometric action associated to the CIS C,. It will be of the following type:

@z/ {A+R®Av,+R Ay, +5An+REAvg+R® Avg +RAARE Auyp),
M

11

(4.1)

where M,, is an eleven-dimensional floating surface in the C, CIS manifold and
accordingly, all addends in the action (4.1) are 11-forms.

We shall make use of the following three building principles:

(a) The action is locally Lorentz invariant. This means that A,»,,, v, n,vo,
Ve, V.p are polynomials in ¥4y, A, B the spin-connection w*® being excluded.
Moreover, everything is an SO(1,9) good tensor.

(b) The vacuum (R°®=R*=R®=R" =p=0) is a solution. This condition is
fulfilled if the following cosmo-cocycle conditions are satisfied by the
{¥2p5 ¥4 1, Vo, vg } multiplet:

vy,,=0 (4.2a)

alA+ vy, =0 (4.2b)
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v|A+vn=0 atR®=R°=R°=R®=p=0. (4.2¢)
o0]A+vrg=0 (4.2d)
@ |A+ Vre=0 (4.2¢)

(c) The equations of motion are invariant under the scale transformation which
leaves the GMCE invariant. The last requirement needs further explanations. Let us
first note that the definitions (3.15) and (3.31) of the C, curvatures are invariant
under the following scale transformation:

Rab_) Rtab:Rab wab_) wmb: wab,
RS R = e}{a’ Ve Ve= eI/a’
p—p =ep, Yoy = ey,

RESREP=e3RD,  A-4=¢é4,

R® S R'®=e°R®, B B =¢e®B, (4.3)

where e is a real parameter. Since the equation of motions of the theory are relations
among the curvatures and the potentials, in order to be consistent, they must not
depend on the specific choice of e.

Indeed every value of e singles out an element in an equivalence class of
isomorphic CIS. The equations of motion of the dynamical theory should depend
only on the equivalence class and not on the specific element in the class. Otherwise,
it is almost evident that the theory will be trivial, admitting, at most, the vacuum
solution. In fact, if the equations of motion depend on e, they will provide relations
among the curvature components also depending on e.

Suppose that, this notwithstanding, some of the curvature components are differ-
ent from zero RI.4F1. ~F,= f;‘l, -.rf€). Giving a special value to e we could, nonethe-
less, put them to zero yet working with the same CIS as before. The only solution to
this paradox is that f#. r,=0.

This scale criterion is very powerful and easily implemented: it is just sufficient
that, under the transformation (4.3), all terms in the action (4.1) scale with the same
power of e. Since the Einstein term

ROOAVEN - AV, . 44
abe, - -cq

has to be there and it has scale dimension ° this fixes the scale of all other terms.
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The scale criterion was not clearly stated in previous work on the group manifold
approach, but it can be checked that in existing theories like D=4 and D=5
supergravity it just kills those terms which have to be suppressed in order for the
theory to be non-rigid. (For example in D = 4 the requirement of Lorentz and parity
invariance plus the vacuum condition yields the action

@=[ {R®AVAVie eyt 4P A Y10 AV +aRDYAYE W), (45)
M

which is trivial unless a = 0 (for a discussion of this point see ref. [9], p. 26). Now it
happens that the last term in (4.5) has scale dimension e while all the others have

scale dimension e2: hence it must be suppressed.)
The most general form of the polynomials A, »,;, »,, n, »4, vg, ¥,5 Which fulfills

criteria (a) and (c) is the following:
A=ay ATH2Y AYATBUYAVEN - AVSg,
+b1{7/\1‘“'“2¢/\\i/_/\ra3a‘\l//\Val/\"'/\V;/\A, (4.6a)
vab = %aabcm . .C9Vcl VANCIERVAN ch ’ (46b)
v, = i:BlVa /\47/\ Te "‘5‘]//\ VENA -+ A chec|~ e

+'3247/\ I*ab#,ﬂ/\ Vb/\B® +iﬂ3\17/\rac,~-~c4¢/\ Van... /\Vq/\AA’
(4.6¢)

n=mL,  YAVIA- - AVes+h, Ty AV AVPAB®
+ih; T, YNAVAN--- AVSAA, (4.6d)

vo =ik AT, L WAVAN - AV +hy AT WA VIAVINA,

(4.6e)
ve =k AT WAVEAVS, (4.6f)
RAANREAv =7 REARPAA+v,REAR®, (4.6g)

where a, b, 8,, B,, Bs, hy, hy, by, k', K, k, v,, Y, are numerical constants. The first
eleven, namely all except v, and vy, are determined by the vacuum conditions (4.2).
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Implementing eqs. (4.2), after extremely long but straightforward manipulations
which make essential use of the Fierz-decomposition of table 2 we arrive at the
following system of 16 algebraic equations:

(EQD)
(EQ2)
(EQ3)
(EQ4)
(EQ5)
(EQ6)
(EQ7)
(EQ8)
(EQ9)
(EQ10)
(EQI1)
(EQ12)
(EQ13)
(EQ14)
(EQ15)
(EQ16)

h =2,

14
B] —ﬁhlzos

BZ_hZZO,

k,—15 (ks +k,)+2b=0,

6B, +4b—$ 8, —k,— 15k, =0,

Ta— 3B, + 36k +1B,) +55(3k;— B;) =0,

By — Sk +5(38, + k) + 6138, =0,

— 1B — % (38, + k1) + 52 (Sks = 3) =0,
By=h,,

6B; + (4b—Lh,— 15k, — k,) =0,

128, — 45h, + (46— Y h, — 15k, — k,) =0,
~By+%hy+ (4b—$h, — 15k, — k,) =0,
—12-5W(4hy —ky) +24-51(3h, + k) +2- 615138, + 71414a =0,
—28h, — hy— 3k, —$hy + 3k + 808, — Ya=0,

— 112k, — hy — ky — 2hy + Thy — 1208, + 6722 =0. (4.7

These 16 equations are subdivided in the following way. (EQ1)—(EQ4) come from
condition (4.2a) and correspond, respectively, to the annihilation of the following
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terms:

(EQD) €aber. oW NTWAVEN oo AV,

(EQ2) VAV AYATS YAV - AVNe,

(EQ3) Vil ANV AL b AV AB,

(EQ4) Via AU AL (W AVEIN - AVHAA. (4.8)

(EQ5) comes from condition (4.2d) and corresponds to the annihilation of the term:
(EQ5) X$0, AVAN - AV, (4.9)

(EQ6)-(EQ9) come from condition (4.2b) and correspond, respectively, to the
annihilation of:

(EQ6) XPD NVAANVIAVINA, (4.10a)
(EQ7) X0 NV, A oo AV g8 o, (4.10b)
(EQ8) X NVIN - AVIAVE, (4.10¢)
(EQ9) X‘,f‘l“:‘?‘.’}s AV, Ao AV, el (4.10d)

where X%, x4, X}?zgo}s

I---4, I...s, e
the decomposition of table 2. Finally (EQ10)-(EQ16) come from condition (4.2c).
They correspond to the annihilation of the following terms:

are the irreducible representations appearing in

(EQ10) ECOAVEAB®, T,ECDAVAAB®, (4.11a)
(EQ11) Tloa = DAV AHN - AVHNA, (4.11b)
(EQ12) TlaaaE IOAVAN - AVHAA, (4.11¢c)
(EQ13) T,  ECPAVAN-- AVH4NA, 4.11d)
(EQ14) Dig 0B D AVAN - AV, 4.11¢)
(EQ15) L. o ESOAVAN - AV, 4.11)

(EQ16) L, o E®AVAN - AV, 4.11g)

a,--
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The linear system (4.7) contains more equations than unknowns: many equations,
however, are linearly dependent and because of that the system is solvable. Actually
a little bit of inspection reveals that, after use of (EQ1)-(EQ4) the remaining
equations depend only on the variables

a, b’ B]a(%ﬁ2+kl)9(ﬂ3 _5k3)9 k2'

With respect to these unknowns the system has a 1-parameter family of solutions.
The reason why 4 variables patch together in 2 fixed combinations is that there are
just two Lorentz invariant 10-forms whose scaling degree is ¢°, namely

@, =iy AT YAV, N--- AV, NA, (4.12a)

O, =y ATYAV,AV,\B®. (4.12b)

Why is this relevant to the solution of system (4.7)? The argument is the following.

Assume that we have a solution {»,,, »,, ¥4, vg, 1, A} of the cosmo-cocycle condi-
tion (4.2); we can form the following two linear lagrangians:

£ rinear = R Av,,+ REAv,+ RPEAv +R® Avg +pAn+ A, (4.13a)

B;inear:B]inear—*—al d¢1 +a2d¢2‘ (413b)

Obviously (4.13a) and (4.13b) are physically equivalent because they differ by the
total divergence

a,d¢, +a,de,. (4.14)
On the other hand, explicitly computing the derivatives d¢, and d¢, we see that:
Linear = RPNV, + REAV,+RENAvVG+R® AV +p AR + A,  (4.15)

where {»,,, v,, v, vy, n’, A} is a new solution of the cosmo-cocycle condition (4.2)
which is related to the previous one by the following transformation:

ad=a+i(a,—a,), b=b—1%a,

Bi=Bi, Bi=Bt+2a,, Bi=PB3+5a,

ki=k —a, ki;=k,, ki=k;+a,,

Ki=h,, Wy=h,+2a,, RK,=h,+2a,. (4.16)

It follows that the linear system (4.7) must be invariant under the transformation
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(4.16) and this explains why, after implementation of (EQ1)-(EQ4), the effective
variables are 6 instead of 8. Since d¢, and d¢, represent total divergences, without
any loss of generality, we can use them to set

B,=0, B,=0. (4.17)
With this choice the solution of system (4.7) is
a=%(1-%k), b=-15(14—1k),
B =%, B,=8;=0,
ky=—84+k, k,=—840(1—%k),
hy=2, hy=hy;=0, (4.18)
corresponding to the following action:
(11, Y20 k) = [Eo(v1, 72, &), (4.19)
Co(tis Yas k)= —JRABAVEA - AVog,
+HIRNAVAPAT Iy AVEA - AVPug,
+kREAYAT WA VEAVD
+i(k—84)RONAYAT, ., GAVAN oo AV
+840(Lk— 1)REAYAT, W AVEAVEAA
F2PAT,  JHAVEN - AV
+3(1— FR)FATUY AGATSUYAVEA - AV,
+15(1k — 14)y AT Y AYATHUY AV, A --- AV, NA
+y,REARPANA+v,REAR®, (4.19b)

which still depends on the 3-parameters k,v,,7v,. They are now fixed by the
requirement of gauge invariance of the action (4.19) under the transformation

A>A+84, 84=dg, (4.20)
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where ¢ is an arbitrary 2-form. The motivations of this requirement are the
following:
(a) Analogy with D =5 supergravity where the gauge invariance under

8B=do (4.21)

fixes the coefficients of the quadratic terms in such a way as to guarantee non-trivial-
ity of the theory [12].
(b) Analogy with the Cremmer-Julia-Scherk formulation where
84,,,=9,¢ (4.22)

[u® o]

is indeed an invariance of the action

(c) Actual inspection of the equations of motion which reveals the following: if
the terms with a bare 4 do not cancel identically in all equations, the only possible
solution is the vacuum (R*®=R*=RP =R® =p=0).

Performing the explicit variation of £, we obtain

84=>dp=06L,= —840(1 —£k)RCAYAT, YAVIAV?Ady

+7RIARCAde+ 15(3k— 1) Y AT, W AYAT, g AVIN - AVEAdg

3ds
— Ly, REAYAT YAV, AV, Ndg. (4.23)

An integration by part shows that 8£, is a total divergence only if the following
conditions are satisfied:

Yl = _840, 'Yz“__zk. (4.24)

When (4.24) holds, the k-dependent terms of the lagrangian sum up to a total
divergence:

K{BROAGATWAVIAVEAA+REAGAT, AAVAN - AV
+REAYAT, WA VEAVE+2R® ARD
— Y ATHY APATDUYAVSNA - AVe,

+BPATH Y AGATSUY AV, A -+ AV, NA}

=2kd(AAdB) (4.25)

and, therefore, may be dropped.
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However, the k-dependent terms are also the only ones containing the 6-form B.
Hence the A-gauge invariant lagrangian £,(y, = — 840, y, = 2k, k) does not contain
B and it is based on the C, CIS described by egs. (3.15). Although we started with a
larger CIS we end up with the minimal one containing only the 3-form A. This is a
confirmation of the component approach result of ref. [3] ruling out the B, ...,
formulation.

The sad point is that our hopes for a spontaneous generation of the Maxwell
kinetic term die simultaneously with B. The lagrangian £,(y, = —840, v, = 2k, k)
lacks the Maxwell lagrangian of 4 and is, therefore, bound to yield only the vacuum
solution. Indeed, setting k=0, y, = —840,y, =0 and performing the variation of
(4.19) in the 4 3-form, we obtain the following equation of motion:

15RZ AR + ISROAYAT LW AVEAVEHIYAT, |, pAVIN - AVH=0.
(4.26)
Projected onto 8 elfbeins, eq. (4.26) yields

RD. R g0 b et =0, (4.27)

which instead of being the Maxwell equation for the space-time components RE:, -y
of RU is an algebraic constraint on the latter implying RE.- ca, =0

Since all other possibilities have been explored we have now no other option than
resorting to the O-form trick. In complete analogy with the procedure adopted for
N =2, D= 4 supergravity [13] we introduce the following action:

éP,:fE(m, n), (4.28a)
R(m,n) =Ly, = —840,7,=0,k=0)+L£'(m, n), (4.28b)

where £4(7,, ,, k) is given by eq. (4.19b) and £'(m, n) is given below:

B'(m,n)=mF"l""“RC' AVENA - /\Va”sap--a”

+nF Fal' . .a4VC| A VAN checl- ceep? (4.29)

a)r--ds

F4 "% being a 4-index skew-symmetric 0-form and m, n two numerical parameters.
Eq. (4.29) corresponds to the 1st-order formulation of the Maxwell lagrangian.

In the next section we show that, provided m and n take specific values, the
lagrangian (4.28b) is non-trivial and describes a rheonomic theory.
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5. Equations of motion: non-triviality and rheonomy

The equations of motion of the theory (4.28) are the following ones.
Torsion equation (variation in w®?):

Carey - RIAVEN - AV=0. (5.12)

First Maxwell equation (F, .., variation):

MREAVESN o AVSe, g F20F, VAN AVg, =0,

s'ta 11
(5.1b)
Second Maxwell equation (variation in A4):
168iY AT, ,pAVAA - AV 25204 AT,y AVEAVEARS
~2520RE AR +mDF, ., AV, N AV, g
+3miF, FAT Y AV, Ao AV, e o =0, (s.1¢)
Gravitino equation (variation in /):
4T, .. (P AVAIN - AV —168iT, YAV -+ AV ARD
~mI W AVEAVENF, Vo N AV, e n =0, (5.1d)

Einstein equation (variation in V,):
— R ANVHBAN - A Va‘°£a
1

Cagor
+ IR AGAT, Gy AV, Ao AV, b b

+ LR, AVEAGAT, G AV, A AV, g bor
+ LV, AY A Ty pp AV N /\Vbneb,~~-b,,
_%i\p/\ rb]"'bsA VAR, ANV A - /\Vbnsbl---b“

—~420iRTAGATH WYAV, N -oo AV,

a4
+16BAT, . WAV AV

+11nF, ., Fo AVIN - AVeug,

‘ay s eCyof

+TmF, V. A---AV. AROgn  awr
ay ay

--aq as

—mF, . _0411:/\ CyAVEA Vo N o AV, e e =0, (5.1e)



130 R.d’Auria, P. Fré / Geometric supergravity
Considering first eq. (5.1a) we immediately obtain
R*=0. (5.2)

Therefore the supertorsion vanishes on-shell just as in N =1 and N =2 4-dimen-
sional supergravities. Eq. (5.2) can be solved for the connection w®®_ as a functional
of V7, and y,. Explicitly:

= o, —4i(§,Tad + 9L+ L — [Nyl (5.3)
where &)"b,‘ is the usual connection satisfying the space-time torsionless condition

[nV] _w[u VJb_O' (5-4)

Considering next eq. (5.1b) we obtain

2nll!

0O — a aq
RO= =S F YN AV (5.5)
Therefore, if we set
__ml4! _  m
"TTTI T 660 (56)
F, ..., can be identified with the space-time components of the curvature RE:
— pO
F;l--~a4_Ra|‘--a4’ (5.7)
which, because of eq. (5.5), has no outer spinorial components:
RE=F, VAN AV, (5.8)

The choice (5.6) amounts to nothing else than a field redefinition of F,

Using now egs. (5.2) and (5.8) in egs. (5.1c) and (5.1d) we obtain the following
result:

If the parameter m takes the value:

m=2, (5.9)

then the gravitino equation is consistent with the second Maxwell equation and we
have the solution

p:pabVa/\ Vb__%(irmazﬂslp/\ Vaali;".”a‘-i-%rm YNV, as al 4) , (510)
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TABLE 3

Summary of D = 11 supergravity

131

Cartan integrable system

Rab — dwab — WA wéb
RY=V? — iy AT

p=Dy

RO =dA — Iy AT®YAV, AV,

— 1
&_fM {_aRalal/\ VAN - A Va“elll"‘al

11

Geometric action

1

+RiREAVAGATO Y AVIN - AVPIg,

+2p AT, N VAaAA ... AV

—84ROA(iF AT,

+%J/\ T4y AYATHBOYAVISA o A Ve, . a

—210y ATy A

dVOAVAN - AV —10A NG AT, A VEA Vb)

1

YATBUYAV, A - AV, NA

—840RDARCAA ~3iF, FO VAN - AVeg,

an

+2Fa1"'a,RD/\Vas/\ AN % ea|...a“}

On-shell solution for the curvatures

R4=0

RD:Fa,_”a‘V“l/\ .. A VY

P =PV AV (iTa%BY Ayaa+ T amy AV VF,

Rab — R?I_’m"Vm/\ Vvr4+ iﬁmn(%rabcmn — %an[aab]c

+2rab[m 8"16)\1//\ Vc_%\p/\ rm"‘Panab +_25_I56,#7/\ I‘abc,~ . .q‘l"/\Fc

[
Propagation equations
() Ty, =0
(i) @mpmcwm - 2-411-7!50'62”01. . .a’Far : -ﬂ4Fas' ag T 0

(i) R%, — $85RMn, —3F9COF, 4 388F% “F, . =0

€1 ca
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where p,, and F, .., satisfy the following propagation equations:

Tabg, =0, (5.11a)
1
GDmchlczq _ meqczcaal. . -asl;;l. . ~a4E15' cay = 0. (51 lb)

On the other hand, if m+#2 we obtain F, .., =0 and the only solution is
R“b=R“=p=Fa|...,,‘=0.

The various projections of the Einstein equation (5.1e) do not pose any further

threat and, besides yielding the graviton propagation equation

RYp, —48R™, — SFUF,, 4 385FSF, =0,  (5.12)
they give rheonomic conditions which express the outer components R2,, and R‘,”;ﬁ
in terms of the inner ones p,, and F, ..., (see table 3).

Therefore when m=2 and n= —3j; the theory described by action (4.28)
becomes non-trivial and rheonomic: it goes without saying that upon transition to
space-time second-order formalism it coincides with the Cremmer-Julia-Scherk
theory [1].

We think it proper to conclude this section with a summary of the final result. It is
given in table 3.

6. Supergroup interpretation of the D = 11 Cartan integrable system

In sect. 2 we have discussed the possible equivalence of a CIS with an ordinary
supergroup.

Everything boils down to solving the system of algebraic equations (2.26) and
(2.27) relating the supergroup structure constants C%. with the components K ;“‘.‘? ).,,p
of the CIS forms ©4¢”), In the present section we solve this problem for the specific
CIS of D =11 super gravity, defined by egs. (3.15) and recalled in table 3.

Since V4, w?®, ¢ are already 1-forms and egs. (3.15) already define a supergroup,
all we have to do is to find a suitable decomposition of the 3-form A in a basis of
1-forms.

Using a little bit of ingenuity we started with an ansatz, thus reducing egs. (2.26)
and (2.27) system of ordinary quadratic equations on a set of numerical parameters.

Our ansatz is the following:

A=B*AV,AV,+aB, , NB% N\B**
+asz,a,- aq /\B-bI;Z A Bbzai a4 4 38, agp,.- -bsmBal- a5 N Bl bs A pym

+aye, Brimamip\Py A BMamsmspiP2 A BAL N5
1 ]

ceemgnyccn

+iBY AT YAV, + By AT AB,, + iy AT B, . .ay (6.1)
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where B°t, B%""*%s are two new skew-symmetric 1-forms, 7 is a new spinorial 1-form
and a;, a,, a,, a4, By, B, B; are parameters. The structure of the supergroup is
described by curvatures of the following type:

R?®=dw?® —w* N wb, (6.2a)
RO=QVe—Liy ATy, (6.2b)
p= GD‘P’ (6.20)
] —
Ral"Z:GDB”‘az—‘%\I//\ra'azlll, (62d)
a —
R“l""‘SZGDB“l'"“5—%1'\[//\1-‘“"”“5\% (6.26)

0 =9Dn+idT*y AV, +v,I,, NB*®

+iy,T, W ABY G, (6.2f)

O
When we set R?*=R?*=p=R%%=R* % =¢ =0, we obtain the Maurer-Cartan
equations which are viable only if they satisfy the integrability condition dd =0
(Jacobi identities). In our case the integrability of egs. (6.2a)—(6.2¢) is self-evident:
all we have to do is to check the integrability of eq. (6.2f). At zero curvatures we
obtain:

DDy =0=48TYAYAT Y — 3y, TPYAGAT, 0
T3 T Y AGAT, L. (6.3)
Using the Fierz decomposition of table 2 we see that eq. (6.3) is true only if
8+ 10y, —720v,=0. (6.4)
Eq. (6.4) is the specific form taken in our case by condition (2.26). The explicit form

of eq. (2.27) is now worked out in the following way. We take the ansatz (6.1) and

o
we compute d 4 at zero curvatures: R?” = R?=p = R%% = R%" " '9s=¢=0. Impos-
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ing that the result be equal to 3¢ AT?®Y AV, A V,, we get

dA=3YATPYAV, AV, —iBP ANYAT YAV, + 3a; ¢ ATy A B A B™e
+ia,y AT "asmy AB" A B

na;- - -a4

— %azalj/\ Pblbz‘l’ /\J/\ B aab /\Ba|~ ) 4a4.b2

+ia3£a,-~~a5b|---b5m‘p/\ ra|~..a5¢/\Bbl~~b5/\ ym

+ %ia:;eal. gy .bsmBa,- ras A B bs A 47/\ I‘m\l/

Fiaye,  agp,. . 5 AT WGP Py N\ BP1P26sasas \ Bb1- - bs

+liag g ATH .aS‘PAsal".aSbl".bGBb,b2b3p1p2ABb,bsbo.plpl

—iB AT i8T™Y AV, + iy, D" Y A B, +iy,T™ ™y AB, . ) AV,

+ 1B G AT AGAT Y — Byf A I‘“”(i8I"”¢ AV, +vT™yAB,,

+iy,I™ MY AB, . ,,,,S) AB,,

B AT AGAT, W+ 3B AT, . mAPATS o5y

—iB g AT (8T AV, + T, A B,y
+i,L, .y AB™ ""s) AB, ...

=WWATYAV,AV,. (6.5)

Using the Fierz decomposition of table 2, we see that eq. (6.5) holds only if the
following system of parameter equations is satisfied:

(i1) 1+28,v,—2B,8=0,

(m) - %131 — 58, + 3608, =0,
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(iv) BiY, + B30 —120a,=0,
™) 3o, — 48,7, =0,
(vi) 703~ B1, =0,
(vii) +1a, + 6008,y,=0,
(viii) _%?3Y2+%a4=0,
(ix) 1085y, + a, + 108,v, =0. (6.6)

Eqs. (6.6) are the explicit form of eq. (2.27). Combined with eq. (6.4) they have two
distinct solutions which correspond to two different supergroups:

1 1
| & - | @ 22
15 144 _W pu— ( )2
16! 272

=
[
—
—O
e
™D
[ 5]

1l
——
U= N
"
™

w
1
e —

712(_;), 722(_i), 82((1)). (6.7)

Therefore we conclude that also D = 11 supergravity is a standard group manifold
theory. The supergroup curvatures are the following:
D = 11 supergravity supergroup curvatures:

R = du — wacAwéb’ (683)
Re=6)ye— %“17/\ rey, (68b)
P=6D¢a (68C)
m} —
R“l“2=6DB“l"2—%¢/\I“"“2¢, (68d)
Ral...asZGDBal---as_%iJ;/\I‘al"'“s‘p’ (686)
1
0:5D11+i((1))FatP/\Va+ T)I‘ab\P/\B“"
)

+i

i &

)I‘all..astlz/\B“""“S. (6.8f)
/
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The action is the one given in table 3 provided the following replacement is made
everywhere:

4
A :Bab/\ Vén Vb_+_ s Balaz/\Bl;aB/\Ba .
*% 2 34
+ %)Bar"a.b,/\B.bblz/\Bbza""a‘*
1
4!6' ca .o
* 1 Ea.---asb,-~.b5mBa' s A\ BbUBs A M
416!
1
2‘722 a oo
+ 1 Ea]...asbl.'.bsBamza;Pan/\Bams 6'p|p2/\Bbl b
2-722
0\~ 13 _
+(1)\P/\Fa.n/\Va+ i ‘P/\r“”n/\Ba,,
5
L -
+i| ™ |gATa e AB, . 69)
240

Obviously the lagrangian could have been determined by a direct application of the
standard group manifold method to the supergroups (6.8), without any reference to
the CIS C,. It must be noted however that:

(a) The lagrangian written in terms of the supergroup potentials is gigantic and
the cosmo-cocycle equation would have been solvable only through the use of a
computer.

(b) The supergroups (6.8) introduce the novelty of a second abelian spinorial
generator Q/, which is associated to the 1-form #.

This very intriguing feature could not be guessed a priori.

7. Conclusions

D =11 supergravity is the local theory of one of the two supergroups (6.8). The
super Lie algebra is immediately read off from egs. (6.8) and it is given in table 4.
The A4,,, field is not elementary; rather, it is a non-linear combination of the 1-form
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TABLE 4
Super Lie algebras of D = 11 supergravity

Normalization of generators
W) =8 ValQp) =8apg  1a(Q) =84p

VAP =8¢ BY(Z,,,) =855 B (2, ) =050

-bs

Commutation relations

J,.,,,,,Z,J""'z]z —4; 8lm g2l

[m (" my]

Jml'"z’ ] =2 8['"1 ma]

[m*"mz]

Tmymy 217" = = 10§ 8010 7: 73 7]

[m,

[
[
[jm‘mz, Z"l"z] = —4 8‘"' z -ng)
[

Q 1 Q
m|mz’ Q')] 4lrmlmz( Q/)

[P"’ P”'] = [Z"'l’nz’ Z"l"z] = [Zml' coms? Z"l' . '"5] = [P"’ Z’"Imz]

=[P,,,Z,,,l...,,,5]=[ s> Zony- "5] 0
[P @1=[Zn,- o @] = [ Znimn @] =0

(0,0} =iCT?P,+iCT“92Z, , +iCT% "%Z

{@,01=0
a —1 l ’ aa —_ % aa ’
.ry =} (ozomy= 3 |ramo
2

1

{Q,Z"r““s}:(_i’)l““ Q
144

potentials
Balaz‘“ Bal-uasu’ Va‘“ \P[A’ nu' (71)

All the symmetries of the theory are generated by J,,, P,,0Q,0', Z

a,ay a1~--¢15’
associated to «*®, V%, ¢,n, B, ,, B, ..., respectively. To determme the explicit

a,a,?
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transformations of all the fields under all the generators what we have to do is the
following. Starting from eq. (6.9) and taking the derivative we obtain:

1

O
RY=R _,VAAV?—2B ,ARAV®+3

s Gl

]
) R NB,NB, ,

[

— 4
a3 a--a .
+ :% Rov b AB AR, L A+
+il ) aATAY, —i( O)gATGAY, + - (1.2)
1 p n a J 1 \P o a . .

Comparing eq. (7.2) with the on-shell curvatures given by table 3 we can determine
the structure of all the new curvatures
m)
R R

ab? a;---as? o. (7.3)
Once this is done we have the full set of rheonomic conditions and therefore we have
the complete on-shell representation of the algebra. This programme is very
straightforward but long and we postpone it to future publications.

The authors are grateful to their friends Profs. Tullio Regge and Alessandro
D’Adda for many essential and enlightening discussions and for access to their
unpublished result on 11-dimensional Fierz identities which was very useful in the
beginning of the present work.

Appendix

NOTATIONS AND CONVENTIONS

In this paper the signature of the SO(1,10) Lorentz invariant metric is
(+,—,...,—) and the indices are raised and lowered accordingly. Sometimes, for
graphical convenience, we do not write some index at the right level but whether it is
to be raised or lowered is evident from the tensorial character of the formula. This is
particularly true in table 2 where the position of the indices is already exploited to
denote the Young tableau symmetry pattern. Moreover, when we write 8,, we mean
the Lorentz metric 7,,:

8ab:7’ab: 0 -1 0 - (Al)
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The Levi-Civita tensor is fixed in such a way that

...y =2 =1, (A2)

The symmetrization and antisymmetrization symbols are respectively defined by

1
[a;---a,] :F Eap(l)‘ T apy) (A.3a)
‘P

1 ,
{a)---a,) :F 2 (“)6 ap)" " " Ap(y (A.3b)
P

where Tp means sum over permutations and dp is the parity of the said permuta-
tions.
I'-matrix conventions are the following:

rf=r, Ti=-I, i#l,
{Tas T} = 2m,, = 28,,,

e an=TlaT... T2l

CT=-Cc=C"!, crect=-(r, (A4)

and we have the following separation of symmetric and antisymmetric [-matrices:

__r—(Tar et n=1,2,5,6,9,10 (symmetric),

CTa o™ = T (AS)
SN (raan)T, n=0,3,4,7,8 (antisymmetric).
The bar operation on spinors is defined by
v=v'T,, (A.6)
and the Majorana condition is
v=y°=c(y)". (A7)

Lorentz covariant derivatives and curvature are defined as follows:
PYVe=dve — w® A Vs
GDBalaz =dB%% — 2‘00[“1 A B'aCz] s
R S =dB% %+ S5wPlAA B,“;""’S] R
Dy =dy — Jw®T,, A,

R =dw®® + Al (A.8)
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