
On nonabelian differential cohomology

Urs

June 11, 2008

Abstract

Nonabelian differential n-cocycles provide the data for an assignment
of “quantities” to n-dimensional “spaces” which is

• locally controlled by a given “typical quantity”;

• globally compatible with all possible gluings of volumes.

For n = 1 this encompasses the notion of parallel transport in fiber
bundles with connection. In general we think of it as parallel n-transport.

For low n and/or “sufficiently abelian quantities” this has been mod-
eled by differential characters, (n − 1)-gerbes, (n − 1)-bundle gerbes and
n-bundles with connection. We give a general definition for all n in terms
of descent data for transport n-functors along the lines of [7, 57, 58, 59].
Concrete realizations, notably Chern-Simons n-cocycles, are obtained by
integrating L∞-algebras and their higher Cartan-Ehresmann connections
[52].

Here we assume all gluing to happen through equivalences. If one
instead allows gluing by special adjunctions, one finds “quantm cocycles”
which encode the propagators and correlators of extended quantum field
theories. This will concern another time.
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These notes evolved as expanded notes for a series of talks I gave in April
2008 at Notre Dame and at UPenn and in May 2008 at the Hausdorff institute
in Bonn and at Stanford. I am grateful to Stephan Stolz, Jim Stasheff and Soren
Galatius for the kind invitations and the very pleasant stays.

The investigation of parallel transport n-functors goes back to joint work
with John Baez [7], elaborated on in joint work with Konrad Waldorf [57, 58, 59].
The study of the structure n-group EG := INN0(G) crucial for the non-flat
case is joint work with David Roberts [51]. The L∞-algebraic description of
differential cocycles is joint work with Hisham Sati and Jim Stasheff [52], as is
the application to higher string lifts such as the FiveBrane lift [53].

I profited greatly from extensive discussion with Todd Trimble about much
of the higher abstract nonsense involved here, and from discussion with Todd
and Andrew Stacey [60] about smooth spaces.

I am indebted to Stephan Stolz for interrogating me at length about all the
following issues, and to Jim Stasheff for lots of discussion and plenty of editorial
and other remarks on these notes.

Many of the L∞-algebraic aspects here build on work by Ezra Getzler [33],
André Henriques [36] and Pavol Ševera [54], with all of whom I had the helpful
pleasure of discussing aspects of this in person. A more detailed discussion of
∞-Lie theory along the lines employed here is in [55].

I very much profited from discussion at the n-Category Café about various
issues involved here, in particular with Bruce Bartlett, Timothy Porter, Mike
Shulman and many others.

1 Motivation: connections, parallel transport and
amplitudes

The theory of fiber bundles with connection is closely related to the development
of theoretical physics (as Jim Stasheff recalls: Dirac describes the magnetic
monopole [26] in the same year – 1931 – that Hopf describes his fibration [37] –
that both concepts coincide, as line bundles over S2, is mentioned in publication
only decades later [34]).

Why does physics need bundles with connection?
It is not so much the bundles that are needed (Dirac did not know about

those), but the parallel transport tra∇ obtained from the connection ∇, which
assigns a “phase” to each path:
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In physics, this parallel transport exhibits the background field which a par-
ticle couples to.

The historically first example is the the electromagnetic field, which is repre-
sented by a connection on a line bundle. With the advent of Yang-Mills theory
and the standard model of particle physics in the middle of the last century,
also higher rank vector bundles with connection appeared as background fields
for the particles that have been detected in accelerator experiments.

Nonabelian differential cohomology is all about such “background fields”
and their generalizations which couple to higher-dimensional particles (called
branes).

Σ

Φ

))
X ?

parameter
space

field configuration
++ target

space
background

field

The background field assigns “quantities” called “phases” to field configura-
tions

Φ : Σ→ X

in a way that

• locally takes values in a space T of “typical quantities” (often just elements
in U(1));

• is globally compatible with all possible gluings of parameter spaces.

We can interpret this as a locally trivializable transport n-functor from glob-
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Hence the above picture is completed as

Πω(Σ)

Φ
**
Πω(X) ∇ // T

parameter
space

field configuration
++ target

space
background field // phases

2 Plan

2.1 Nonabelian differential cohomology,

Higher connections. We shall be interested in higher (as in “higher dimen-
sional”) connections on bundles.

An ordinary connection is something that allows to transport things along

paths x
γ // y . A higher connection allows to do the same along surfaces,

volumes, etc.

“quantities” T Px

tra∇(γ)

$$

tra∇(γ′)

:: Py

(higher) paths
in X

Πω(X)
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γ
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tra∇(Σ)
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Motivation. The two main motivations for us to consider such higher con-
nections are
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• math: to get geometric cocycles for nonabelian differential cohomology.

If X 7→ Γ•(X) is a cohomology theory (such as singular cohomology
Γ•(X) = H•(X,Z) or K-theory Γ•(X) = K•(X)) it comes with a map to
real cohomology

Γ•(X)→ H•(X,Γ•(pt)) .

A differential refinement Γ̄•(X) of Γ•(X) is given by differential form data
that represents this real cohomology class:

Γ̄•(X) //

��

H•dR(X,Γ•(pt))

��
Γ•(X) // H•(X,Γ•(pt))

.

In practice one wants cocycles representing the classes in Γ̄•(X). If the
cocycles for Γ•(X) are higher bundles, then those of Γ̄•(X) should be
higher bundles with higher connections.

For instance:

– cocycles for Hn+1(X,Z) are line n-bundles, aka abelian (n − 1)-
gerbes. Cocycles of H̄n+1(X,Z) are line n-bundles with connection,
aka abelian (n − 1)-gerbes with connection, aka Deline n-cocycles,
aka Cheeger-Simons differential n-characters.

– Cocycles for K0(X) are vector bundles. Cocycles for K̄0(X) are
vector bundles with connection.

– Important motivating open question: if Γ•(X) is elliptic cohomol-
ogy (tmf), then cocycles for Γ̄•(X) should be 2-vector bundles with
connection. Things like that is what we want to describe.

• physics: to understand extended quantum field theories that are “Σ-
models”.

Σ-models are quantum field theories which are encoded in an n-bundle
with connection (P,∇) on some target space X.

∫
Σ

ev∗(P,∇)

((RRRRRRRRRRRRR
Σ×Maps(Σ, X)

ev

''OOOOOOOOOOOOO∫
Σ

vvnnnnnnnnnnnn
(P,∇)

vvnnnnnnnnnnnnnn

Maps(Σ, X) X

transgressed
(n− dimΣ)-bundle

with connection

mapping space,
space of fields

extended
space of fields target space

background field
n-bundle with

connection
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The quantum field theory should assign to any space Σ the “space of
sections” of the transgressed background field

∫
Σ

ev∗(P,∇).

The goal is to make sense of this and understand this for all n-bundles
with connection (P,∇). In particular for Chern-Simons n-bundles CS(∇)
coming from L∞-algebra n-cocycles [52], and for the non-abelian String-;
Fivebrane- Ninebrane-(n− 1)-bundles obstructed by them [53].

Main central observation. Our describtion of n-bundles with connection
becomes immediately obvious once we change the perspective on ordinary bun-
dles P on X from that of the bundle being a fibration

P

��
X

to the fiber-assigning functor

GSpaces Px

Π0(X)

OO

x
_

OO .

Here Π0(X) is just the space X regarded as a category with only identity mor-
phisms.

So we have this change of perspective, from fibrations to fiber-assigning
functors:

GBund(X) ' // H(X,BG) ' // Desc(Y •,Funct(Π0(−),BG)) ' // TransportFunctors(ΠY
0 (X), GTor)


Y ×G ' //

��

π∗P // P

��
Y

= // Y
π // X

∃=

ow hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh


'





g : Y ×X Y → G ,
∀y ∈ Y ×X Y ×X Y :

•
π∗23g

��@@@@@@@

•
π∗13g

//

π∗12g
??�������

•




'





triv : Π0(Y )→ BG ,

π∗1triv
g // π∗2triv ,

π∗2triv
π∗23g

��;;;;;;;

π∗1triv
π∗13g

//

π∗12g
AA�������

π∗3triv




'


Π0(Y ) π //

triv

��

Π0(X)

tra

��
BG � � // GTor

∃'x� yyyyyy
yyyyyy

 .

Here assume the surjective submersion Y = tiUi to be a good gover by open
subsets.

The important point is the category Desc(Y •,A) of descent data along Y
with respect to the category-valued presheaf A. Ross Street gave a general
formula for this [62] for ω-category (strict ∞-category) valued presheaves: ob-
jects are the higher dimensional simplices generalizing the triangle above in the
obvious way:

Obj(Desc(Y •,A)) = [∆, ωCat](∆,A(Y •)) ,
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where ∆ is the tautological cosimplicial ω-category which sends [n] to the free
n-category on the standard combinatorial n-simplex (Street’s “nth oriental”
[62]).

Slogan. Assign nice quantities locally that glue globally.

• differentially: L∞-algebra valued forms;

• integrally: smooth “parallel transport” n-functors from n-paths to an n-
group

local global

differentially
L∞-algebra

valued diff. forms L∞-connections

integrated
smooth ω-functors

from ω-paths
to ω-groups

parallel transport
ω-functors

Table 1: The four aspects of nonabelian differential cohomology. Here
“ω-category” is for “strict globular ∞-category”. Our restriction to strict ∞-
transport is for technical, not for conceptual reasons. We find it is not only
convenient and useful (it allows us to use Ross Street’s notion of descent with
coefficients in ω-category-valued presheaves) but also sufficient: we can integrate
all L∞-algebras to smooth ω-groups.

The obvious generalization. Therefore there is an obvious immediate gen-
eralization of the above to n-bundles with connection for all n: simply replace
Π0(X) everywhere with Πn(X) – the fundamental n-groupoid of X.{

Pn(X) thin-homotopy classes of images of the n-disk
Πn(X) homotopy classes of images of the n-disk

Definition (nonabelian differential cohomology).
For G a strict n-group, hence BG a strict one-object n-groupoid, we say that

fake-flat nonabelian differential cohomology is the n-category-valued presheaf

H̄ff(−,BG) := colimY→(−)Desc(Y •, nFunct(Pn(−),BG)) .

The non-fake-flat case can of course also be handled, but requires a bit more
work.
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Theorems – n = 1. Let G be a Lie group and g its Lie algebra.
Theorem.[7, 57]

Funct(P1(Y ),BG) ' Ω1(Y, g)

Funct(Π1(Y ),BG) ' Ω1
flat(Y, g)

GBund∇(X) '


P1(Y ) π //

triv

��

P1(X)

tra

��
BG � � // GTor

∃'x� yyyyyy
yyyyyy


P1(X)

vector bundle with connection

((PPPPPPPPPPPP

����

Vect

Π1(X)
flat vector bundle

66nnnnnn

Theorems – n = 2. Now let G(2) be a strict Lie 2-group, coming from a
crossed module

H
t // G

α // Aut(H)

of groups, with the corresponding one-object 2-groupoid being

BG2 =


•

g

��

g′=t(h)g

CC•
��

|g ∈ G, h ∈ G


.

Write
g2 := (h→ g)

for the corresponding L(ie) 2-algebra.
Theorem.[7, 58, 59]

2Func(P2(Y ),BG(2)) ' Ω•fakeflat(Y, g(2))

2Func(Π2(Y ),BG(2)) ' Ω•flat(Y, g(2))

and [51, 52]
3Func(Π3(Y ),EG(2)) ' Ω•(Y, g(2)) .

Theorem. [9]: G(2)-2-bundles have the same classification as |G(2)|-1-
bundles.

H(−,BG(2)) ' [(−), B|G(2)|]
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Important special case [8]: for G(2) = (Ω̂G → PG) we have |G(2)|-bundles are
String-bundles.

Theorem. [59]

H̄(−BAUT(H)) ' {Breen-Messing diff. cocycles [14] on fake-flat H-gerbes}

In particular

H̄(−,BBU(1)) ' { U(1)-gerbes with connection } .

Equivariance. Let H be a group acting on X. Let X//H be the correspond-
ing action groupoid and |X//H| its nerve. Then the H-equivariant version of
the cohomology H(−,A) is

HH(−,A) := Desc(|X//H|, H(−,A)) .

Theorem.
Desc(Ner(X//H), H̄(−,BG(2)))

is H-equivariant 2-bundles with connection. In particular

Desc(Ner(X//Z2), H̄(−,B(AUT(U(1)))))

is Jandl-gerbes with connection [56]: this are the orientifold B-fields in string
theory.

Transgression. We had mentioned in the introduction that transgression of
differential cocycles is important in applications. It turns out that in terms of
transport n-functors transgression is nothing but forming the inner hom

Theorem. [58] In the simplest case we have G an abelian Lie group and
consider trangression of BG-valued transport:

2Funct(P2(Y ),BBG) ' //

hom(BZ2,−)

��

Ω•(Y, bg)

∫
S1 ev∗

��
Funct(P1(LY ),BG) // Ω•(LY, g)

This generalizes accordingly to more complex situations.

Examples for n-bundles with connection. A main source of examples of
n-bundles (with or without connection) is lifts through higher central extensions
and their obstructions.
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BBn−1U(1)

��
BĜ

��

lift to
Ĝ-bundle

oo o/ o/ o/ o/ o/ o/ o/ o/ o/

ΠY
n (X) //

::u
u

u
u

u
u

BG
' // B(Bn−1U(1)→ Ĝ) // BBnU(1)

G-bundle

OO
O�
O�
O�
O�
O�

attempted lift
“twisted Ĝ-bundle”

OO
O�
O�
O�

obstruction
to lift

OO
O�
O�
O�

.

Examples:

• lifting gerbes (lifting line 2-bundles) obstructing lifts through ordinary
central extensions U(1)→ Ĝ→ G.

• Chern-Simons 3-bundles (2-gerbes) obstructing lifts ofG-bundles to String(G) =
(Ω̂G→ PG)-2-bundles.

• and higher versions of this.

L∞-connections. A powerful way to understand these lifting and obstruction
situations is by passing first to the linearized version of Lie ∞-groups – L∞-
algebras – , and then integrating, in the sense of Lie theory, afterwards.

Theorem. [52]. For g an L∞-algebra and µ an (n+ 1)-cocycle in transgres-
sion with an invariant polynomial P , there is a string-like extension

0→ bn−1u(1)→ gµ → g→ 0

and lifts of g-connections (A,FA) to gµ-connections are obstructed by bnu(1)-
connections whose curvature form is P (FA).

Applying this to µ = 〈·, [·, ·]〉 the canonical 3-cocycle on a semisimple Lie al-
gebra g, normalized such that it generated H3(G,Z) for G the simply connected
compact simple Lie group integrating g,

0→ bu(1)→ g〈·,[·,·]〉 ' string(g)→ g→ 0 ,

the integration of the above statement to higher bundles with connection yields
the familiar construction of Chern-Simons differential cocycles [19, 20] whose
connection 3-form is the Chern-Simons 3-form of the original g-connection.

The String-2-bundles which exists when the obstruction vanishes are to Spin-
bundles as superstrings (spinors on loop space) are to superparticles (spinors on
target space).
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This construction can be iterated: if the String-lift exsist we can ask for the
next lift, which is a Fivebrane lift [53]

0→ b5u(1)→ g〈·,[·,·],[·,·],[·,·]〉 ' fivebrane(g)→ string(g)→ 0 ,

The Fivebrane-6-bundles which exists when the obstruction vanishes are to
String-bundles as super fivebranes are to superstrings.

2.2 Higher Chern-Simons parallel transport

We have another look at the concept of Σ-models, field theories of maps from a
parameter space Σ to a target space X

Φ : Σ→ X .

(Notice that these include gauge theories, if things are set up suitably: the
target for those is a classifying space.)

These usually have an action functional controlled by the parallel transport
of a background field ∇ on X.

This background field is given by a possibly nonabelian differential cocycle,
an n-bundle with connection, something that assigns “phases” which

• are locally given by differential forms;

• globally satisfy some “gluing property”.

This gluing property is physically often detected as a kind of “anomaly”
obstructing the global extension of the differential forms. We described in in
terms of descent condtions on nonabelian differential cocycles in the previous
section.

Examples include:

• n = 1, electromagnetism: locally a 1-form A ∈ Ω1(Y ) with field strength
F2 = dA;

• n = 1, nonabelian gauge fields: locally a 1-form A ∈ Ω1(Y, g)

• n = 2, Kalb-Ramond field/“B-field”: locally a 2-form B ∈ Ω2(Y ) with
field strength H3 = dB;

• n = 2, Kalb-Ramond field on an orientifold : same local connection form
data, but more sophisticated gluing (technically not a BU(1)-2-bundle but
a (BU(1)→ Z2)-bundle)

• n = 2, String 2-bundle

• n = 3, supergravity C-field: locally a Chern-Simons 3-form C = CS(ω)−
CS(A) with field strength dC = p1(ω)− ch2(A)

13



Except for the gauge bundles that quarks couple to, i.e. those appearing
in Yang-Mills theory, the well known higher background fields appearing in
physics tend to be abelian differential cocycles and are as such nicely described
in terms of differential characters in [31]. But, as we shall see, they can be
understood as arising as obstructions to lifts through nonabelian differential
coycles. Another genuinely nonabelian differential cocycle appearing in string
physics is the Kalb-Ramond field on an orientifold: this comes from an (ever
so slightly, but still) nonabelian extension of the 2-group BU(1). Apart from
that, there is the expectation that the worldvolume theory of a stack of D5-
branes carries a nonabelian differential 2-cocycle [1]. The worldvolume theory
of 5-branes remains unclear, but its compactification on a torus should yield
nonabelian Yang-Mills theory.

For finding the right gluing laws for this local data, it is impoirtant to note
that all these local colleciton of differential forms can be regarded from a unified
point of view as L∞-algebra valued forms:

a (finite dimensional) L∞-algebra is a N+-graded vector space g∗ together
with agraded derivation

d : ∧•g∗ → ∧•g∗

on the graded symmetric tensor algebra of g∗ such that

deg(d) = +1

and
d2 = 0 .

We write
CE(g) := (∧•g∗, dCE(g))

for the differential graded commutative algebra (DGCA) obtained this way,
called the Chevaley-Eilenberg-algebra of g.

For every L∞-algebra we can also form the Weil algebra W(g), essentially
the Chevalley-Eilenberg algebra of the mapping cone of the identity on g.

Now we define g-valued forms on Y as

Ω•(Y, g) := HomDGCAs(W(g),Ω•(Y ))

and
Ω•flat(Y, g) := HomDGCAs(CE(g),Ω•(Y )) .

Now there are L∞-algebras like bn−1u(1) and csP (g) which have forms as
follows:

• Ω•(Y, bn−1u(1)) = Ωn(Y )

•

Ω•(Y, csP (g)) = {(A,B,C) ∈ Ω1(Y, g)×Ω2(Y )×Ω3(Y )|C = dB+CS(A)} .

14



Apart from the global gluing, there can also be a “local twist” to this situa-
tion, induced by the presence of magnetic charges (a beautiful description is in
[31]).

In 4-dimensional electromagnetism the magnetic current jmag ∈ Ω1(Y ) “twists”
the curvature 2-form such that it is no longer an exact form, but satisfies

dF2 = ?jmag =: H3 ∈ Ω3(Y ) .

This happens in particular for the “electrically charged” endpoints of the string
on a D-brane: there H3 is the Kalb-Ramond field restricted to the brane, F2

the curvature of a twisted bundle on the D-brane.
On a “stack of D-branes” there is not just a twisted line bundle with connec-

tion, but a twisted PU(H) bundle, whose twist obstructs the lift of the structure
group of a PU(H)-bundle through the central extension

1→ U(1)→ U(H)→ PU(H)→ 1

.
One finds the same mechanism in higher dimensions: the Green-Schwarz

mechanism says that for the target space theory of the heterotic string the
Kalb-Ramond field is “twisted” in the above sense by magnetic 5-brane charge
?(p1(ω)− ch2(AE8))

dH3 = p1(ω)− ch2(AE8) ,

which we recognize as the curvature of the supergravity C-field.
What lifting/obstruction problem does this come from?
The answer is: the lift of the original Spin(10) and E8-bundle to the corre-

sponding String-2-bundle.

• this was originally found by Killingback, expanded on by Witten, in terms
of a worldsheet anomaly on the superstring, which generalizes that of the
superparticle: he found that the anomaly vanishes if (disregarding the E8-
bundle now for simplicity) the Spin bundle on X lifts to a L̂Spin-bundle
on the loop space LX.

• later Stolz-Teichner [61] gave an interpretation of this in terms structures
on target space X itself: the condition is that the Spin-bundle on X may
be lifted to a principal bundle for the topological group String(10), which
is a 3-connected cover of Spin(10) with a certain property

1→ BU(1)→ Stringtop(10)→ Spin(10)→ 1 .

• Finally a differential geometric interpretation of that situation was given
in [8], which showed that the topological group Stringtop is a kind of
decategorification (namely the realization of the nerve) of a smooth strict
2-group String(10)

1→ BU(1)→ String(10)→ Spin(10)→ 1 .
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• With the result of [9] (see also [41] and [4]) we have that String-2-bundles
have the same classification as Stringtop-bundles. Hence the String-2-
bundles do form a smooth target space realization of the desired structure

• This smooth String 2-group had been found [8, 36] by integrating a certain
Lie 2-algebra (an L∞-algebra)

0→ bu(1)→ gµ → g→ 0 .

String (2-)bundles exist if the first Pontryagin class vanishes. The Green-
Schwarz mechanism says indeed that this class vanishes (rationally). Compare
with [31].

In [52] the String extesion was described as a special case of a general class
of “string like”-extensions which exist for any Lie algebra g (might even be an
L∞-algebra) given a transgressive degree (n+ 1) Lie cocycle µ on it:

0→ bn−1u(1)→ gµ → g→ 0 .

These are families of “higher central extensions” of L∞-algebras. The case of
ordinary central extensions such as u(1)→ u(m)→ pu(m) is obtained for n = 1.

String(m) comes from the (2 + 1)-cocycle on so(m).
For g = so(m) the next cocycle after n = 2 which corresponds to the first

Pontryagin form is the one of degree (n = 6) + 1, which corresponds to the
second Pontryagin form p2.

In joint with Hisham Sati and Jim Stasheff [53], this is identitfied with the
dual Green Schwarz mechanism, which regards the situation from the point of
view of switching from the “electric” string to its magentic dual: the NS 5-
brane. This has to couple to a 6-bundle with curvature 7-form H7. The dual
Green-Schwarz mechanism then says that this 7-form curvature is twisted by
electric string charge:

dH7 = p2(TX)− ch4(PE8) + decomposables .

By the general procedure, we find that this describes the vanishing (ratio-
nally) of the obstruction to lift the original Spin(n)-1-bundle to a FiveBrane(n)-
6-bundle, where FiveBrane(n) is the strict 6-group obtained from integrating
the string-like Lie 6-algebra so(n)µ3+µ7 obtained from the sum of the 3- and the
7-cocycle µ3 + µ7:

0→ bu(1)⊕ b6u(1)→ so(n)µ3+µ7 → so(n)→ 0

or equivalently from an iterated central extension which first kills the thirs, then
the 7th cocycle:

0→ b6u(1)→ (gµ3)µ7 → gµ3 → 0

We provide [52] a general formalism for describing such situations L∞-
algebraically (and then later integrate it to a full nonabelian differential co-
cycle):
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For every (n+1)-cocycle µ on g in transgression with an invariant polynomial
P we get a string-like extension

0 // bn−1u(1) // gµ // g // 0

shifted u(1)
(higher)

string-like
extension

original
Lie (or L∞)

algebra

.

The inner derivations of the middle term

inn(gµ) ' csP (gµ)

form a Lie (n + 1)-algebra called the Chern-Simons Lie (n + 1)-algebra with
respect to P . Differential forms with values in this L∞-algebra are precisely the
Chern-Simons forms

Ω•(Y, csP (gµ)) =

 A ∈ Ω1(Y, g)
B ∈ Ωn(Y )

C = CSP (A) + dB

 .

The Lie ∞-algebraic version of a nonabelian differential cocycle on a space
X is a choice of surjective submersion Y → X together with a diagram

Ω•vert(Y ) CE(g)
Avertoo ∈ Ω•flat(Y, g) integrates to nonabelian cocycle

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

∈ Ω•(Y, g) connection and curvature forms

Ω•(X)
?�

OO

inv(g)
?�

OO

{Pi(FA)}oo ∈
∏
k Ωkclosed(X) characteristic forms

.

Using an L∞-algebraic obstruction theory one finds that the obstruction
to lifting such a g-connection through a string-like extensions: is given by the
diagram:

Ω•vert(Y ) CE(g)
Avertoo CE(bu(1)→ gµ)oo CE(b2u(1))oo

µ(Avert)

jj

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

W(bu(1)→ g)oo

OOOO

W(b2u(1))oo

OOOO

(cs(A,FA),P (FA))

ii

Ω•(X)
?�

OO

inv(g)
?�

OO

{Pi(FA)}oo inv(bu(1)→ g)
?�

OO

oo inv(b2u(1))
?�

OO

oo

P (FA)

ii

.
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can integrate this by forming smooth classifying spaces and then taking path
ω-groups: reproduces construction by Brylinski-McLaughlin: tells us integral
topological Pontrjagin classes classifying the obstruction

3 The physics context

Before coming to our main discussion, we here indicate the general physics
context in which thse questions arise.

3.1 Σ-models

We are concerned with the mathematical structure which is supposed to model
the physics of charged n-particles usually known as charged (n−1)-branes or as
quantum field theories of Σ-model type.

Such a Σ-model is specified by choosing

• a “space” X, called target space;

• a “space” (or class of such) Σ, called parameter space or called the world-
volume;

• the mapping space Maps(Σ, X) called the space of fields or the configura-
tion space or sometimes the moduli space;

• on target space a differential n-cocycle ∇, i.e. a higher generalization of
a fiber bundle with connection, called the background field ;

• a presription for how to interpret the push-forward of the the pullback
ev∗∇ along the projection onto Σ in the correspondence diagram

Σ×Maps(Σ, X)
p1

xxqqqqqqqqqqqq
ev

&&NNNNNNNNNNN

Σ X

called the path integral or the quantization of the Σ-model.

When the parameter space Σ is n-dimensional, one thinks of this data as
encoding the physics of n-fold higher analogs of particles, “n-particles”, that
propagate on X. The field configuration – a map Σ→ X – is thought of as the
trajectory of such an n-particle in X. The common term for these n-particles is
“(n− 1)-branes”, which originates in the term “membrane” for n = 3.

One says that the n-particle couples to the background field ∇ or that it
is charged under the background field. The terminology is entirely motivated
from the familiar case of ordinary electromagnetically charged (1−)particles:
the electromagnetic background field ∇ which they couple to is modeled by a
vector bundle (a line bundle in this case) with connection.
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fundamental
object

background
field

n-particle n-bundle

(n− 1)-brane (n− 1)-gerbe

Table 2: The two schools of counting higher dimensional structures. Here
n is in N = {0, 1, 2, · · · }.

For n = 2 one speaks of “strings”. String theory proper is the study of those
n = 2 Σ-models with a special restriction for what the “path integral” is allowed
to be. Technically, it is required to encode a 2-dimensional superconformal field
theory of central charge 15. This condition, however, is of no real relevance
for our discussion here, which pertains to all Σ-models which generalize the
“spinning (1-)particle”.

Some of the deepest ideas concerning such Σ-models have originally been
thought by Dan Freed:

The interpretation of background fields and of charges as differential cocycles
is nicely described and worked out in [31, 39], where the mathematically inclined
reader can find rigorous interpretations, in terms of differential cohomology, of
the kinds of “background fields” and related “anomalies” in string theory which
we are concerned with here.

The interpretation of quantization and of the path integral as an operation
on higher categorical structures has first been explored in [29, 30]. Integration
as a push-forward operation plays a promint role in recent developments by St.
Stolz and P. Teichner and by M. Hopkins et al.

Taking for instance the simple toy example case where the background field
∇ is a vector bundle (without connection) and where Σ is a point, the ordinary
push-forward produces the space of sections of the original vector bundle. That
reproduces indeed the desired “quantization over the point” and can, following
[29, 30], be regarded as the codimension 1 part of the full path integral for
n = 1. St. Stolz and P. Teichner describe a variation of this which involves
push-forward of K-theory classes to the point, which then classifies connected
components of all (supersymmetric) 1-dimensional Σ-models.

This shows that, while a fully satisfactory mathematical interpretation of
Σ-models is to date still an open question, a coherent picture, revolving around
the correspondence 3.1, is beginning to emerge. The “higher spin-like struc-
tures” on target space X discussed here are believed to ensure the existence of
the quantization step in the case that the Σ-model generalizes that describing
spinning 1-particles.
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3.2 Background fields

Independently of how the “background field” ∇ is modeled, it should locally be
encoded by differential form data.

n-particle background field global model local differential form data

(1−)particle electromagnetic field
line bundle with connection/
Cheeger-Simons differential 2-character
Deligne 2-cocycle

connection 1-form A ∈ Ω1(Y )
curvature 2-form F2 := dA ∈ Ω2

closed(Y )

string
(2-particle)
(1-brane)

Kalb-Ramond field

line 2-bundle with connection/
bundle gerbe with connection (“and curving”)
Cheeger-Simons differential 3-character
Deligne 3-cocycle

connection 2-form B ∈ Ω2(Y )
curvature 3-form H3 := dB ∈ Ω3

closed(Y )

membrane
(3-particle)
(2-brane)

supergravity 3-form field

line 3-bundle with connection/
bundle 2-gerbe with connection (“and curving”)
Cheeger-Simons differential 4-character
Deligne 4-cocycle

connection 3-form C ∈ Ω3(Y )
curvature 4-form G4 := dC ∈ Ω3

closed(Y )

Table 3: Simple (abelian) examples for n-particles and the background
fields they couple to. The background fields are often addressed in terms of
the symbols used for their local form data: the Kalb-Ramond field is known as
the “B-field” with its “H3 field strength” . Similarly one speaks of the “C-field”
and its field strength “G4”, etc. This reflects the histroical development, where
the local differential form data was discovered first and its global interpretation
only much later. (See also the remark on anomalies at the beginning of ??).

All the relevant background fields that have been considered are locally
controlled by some L∞-algebra g, and the local differential form data can always
be considered as encoding differential forms A ∈ Ω•(Y, g) with values in the Lie
algebra g [?]. In the case of abelian differential cocycles, these L∞-algebras are
all of the form bn−1u(1): the higher dimensional versions of u(1).

The particular higher dimensional analogs of spin-like background fields
which we are concerned with here, however, are nonabelian, which is the reason
why we consider non-abelian differential cohomology in ??. It so happens that
the obstructions to their global existence – the (higher) Chern-Simons cocycles
– are themselves again abelian differential cocycles (with local structure L∞-
algebra being bnu(1), see [?]), which is the reason why [31, 39] can discuss these
using (ordinary) abelian differential cohomology.

For the identification of our higher spin like structures (Spin structures,
String-structures, FiveBrane structure) with the vanishing of the obstruction
for the existence of higher spin-like background fields (spin bundles, String 2-
bundles, FiveBrane 6-bundles) we need the more general notion of nonabelian
differential cohomology presented here.
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Lie ∞-algebra g g-valued forms

shifted u(1) bn−1u(1) Ω•(Y, g) = Ωn(Y )

Chern-Simons
Lie (n+ 1)-algebra csP (h) Ω•flat(Y, csP (h)) =

 A ∈ Ω1(Y, h)
B ∈ Ω2(Y )
C ∈ Ω3(Y )

|C = dB + CSP (A)


Table 4: Examples for L∞-algebra valued forms. Here h is an ordinary
Lie algebra with degree (n + 1)-cocycle µ in transgression with an invariant
polynomial P . For details see [?].

3.3 Charges

Just as an ordinary 1-bundle may be trivialized by a section, which one may
think of as a “twisted 0-bundle”, higher n-bundles may be trivialized by “higher
sections” which are addressed as “twisted (n−1)-bundles”. One says the twisted
(n− 1)-bundle is “twisted by” the corresponding n-bundle.

A beautiful description of this situation for abelian n-bundles with connec-
tion in terms of differential characters is given in [31, 39]. Twisted nonabelian 1-
bundles have been studied in detail under the term “bundle gerbe modules” [12].
Twisted non-abelian 2-bundles have first been considered in [1, 41] under the
name “twisted crossed module bundle gerbes”. In terms of the L∞-connections
considered in [?] twisted n-bundles with connections are the connections for
L∞-algebras arising as mapping cone L∞-algebra (bn−1u(1)→ ĝ).

By comparing the formalism here with the situation of ordinary electro-
magnetism, one can identify the twisting n-bundle as encoding the presence of
magnetic charge. This, too, is nicely explained at the beginning of [31].

Accordingly, where an untwisted (n− 1)-bundle has a curvature n-form Hn

which is closed, a twisted (n−1)-bundle has a curvature n-form which is “twisted
by” the curvature (n+ 1)-form G(n+1) of the twisting n-bundle

dHn = Gn+1 .

Indeed, for a twisted (n − 1)-bundle the curvature is locally no longer the dif-
ferential of the connection, dBn−1 = Hn, but receives a contribution from the
connection n-form Bn of the twisting n-bundle

Hn = dBn−1 +Bn .

The archetypical example is that of ordinary magnetic charge: as J. Maxwell
discovered in the 19th century, in the presence of magnetic charge, which in four
dimensions is modelled by a 3-form H3 = ?j1, the electric field strength 2-form
F2 is no longer closed

dF2 = H3 .
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When Dirac later discovered at the beginning of the 20th century that H3 has to
have integral periods (“quantization of magentic charge”), the first 2-categorical
structure in physics had been identified: the magnetic torsion 2-bundle / bundle-
gerbe with deRham class H3. It seems that this was first explicitly realized in
[31].

The next example of this kind received such a great amount of attention
that it came to be known as the initiation of the “first superstring revolution”:
the Green-Schwarz anomaly cancellation mechanism.

This says, as, once again, nicely explained in [31], that in the “higher gauge
theory” given by the effective supergravity target space theory of the heterotic
string, the supergravity C-field with curvature 4-form G4 had to be “trivialized”
by the Kalb-Ramond field with curvature 3-form H3, or conversely the Kalb-
Ramond field had to be “twisted” by the supergravity curvature 4-form:

dH3 = G4 .

Moreover, G4 had to be the curvature of a virtual difference of two Chern-Simons
3-bundles (Chern-Simons 2-gerbes), whence, locally,

dH3 = dCS(ω)− dCS(A)

for ω and A the local connection 1-forms of a Spin and complex vector bundle,
respectively and CS(−) denoting the corresponding Chern-Simons 3-forms. This
is also known is the Chapline-Manton [?] coupling.

This “Green-Schwarz anomaly cancellation condition” can hence be read,
equivalently, as saying that

• the supergravity C-field trivializes over the 10-dimensional target of the
heterotic string;

• G4 is the magnetic 5-brane charge which the electric heterotic string cou-
ples to;

• the Kalb-Ramond field is twisted by the supergravity C-field.

There is no particular reason to prefer “electric charge” over “magnetic
charge”: in the presence of a Riemannian structure the Hodge star dual of
an “electric” field strenght Hn+1 may have an interpretation as a field strength
itself, in which case it is addressed as the “magnetic field strenght” Hd−n−1 :=
?Hn+1. Just as the original field strength Hn coupled to an “electric” n-particle,
the dual field strength couples to a “magnetic” (d− n− 2)-particle.

Such electric-magnetic duality is at the heart of what is known as “S-duality”
for super Yang-Mills theory, which has recently been argued [?] to be the the
heart of Langlands duality.

It is only for electric 1-particles in d = 4 dimensions that their magnetic
dual is again a 1-particle. The magnetic dual of the 2-particle in 10 dimensions
is the 6-particle. In other words: the magnetic dual of the string is the 5-brane.

The magnetic dual discussion of the Green-Schwarz mechanism [?] [?] leads
one to consideration of a twisted 6-bundle with field strength H7 = ?H3, which
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is twisted by a certain 7-bundle whose field strength 8-form is a sum of two higher
Chern-Simons terms plus some mixed terms [31]: dH7 = 2π

[
ch4(A)− 1

48p1(ω)ch2(A) + 1
64p1(ω)2 − 1

48p2(ω)
]
.

This is the formula which we shall address as the dual Green-Schwarz anomaly
cancellation condition, which is the starting point of the discusssion in [53].

4 Parallel transport and functors

We describe the conception of bundles with connection in terms of their parallel
transport functors, and then derive the usual description from that.

From our point of view, for instance, a vector bundle with connection is
precisely a representation of the path groupoid P1(X) of a space. This factors
through the fundamental groupoid Π1(X) precisely if the vector bundle is flat.

Hence the description of connections in terms of parallel transport functors is
a generalization of the well known fact that flat vector bundles with connection
on a connected base space are the same as representations of the fundamental
group.

P1(X)
vector bundle with connection

((PPPPPPPPPPPP

����

Vect

Π1(X)
flat vector bundle

66nnnnnn

The point is that the description in terms of transport functors allows gener-
alization to higher dimensional connections which is both conceptually straight-
forward as well as tractable and useful in applications.

4.1 Space and quantity

Lawvere [44] has given a nice fundamental formalization of the notions of space
and quantity in mathematics:

Fix some category S of “test objects”.
A space X with respect to S is something which may be probed by S: for

each object U of S there is a set X(U) of plots from U to X. Hence a space is
a Set-valued functor:

X : Sop → Set

(a presheaf on S).
A quantity A with respect to C is something which may be coprobed by S:

for each object U of S there is a set of coplots A(U) from X to U . Hence a
quantity is a co-presheaf:

X : S → Set .

Usually one is interested in particularly nice spaces and particularly nice
quantities: sheaves, etc.
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We take the category SSpaces of “S-spaces” as being that of sheaves on S.
This is a topos. In particular it is cartesian closed: the cartesian product of
S-space X with S-space Y is

X × Y : U 7→ X(U)× Y (U)

and the space of maps from the S-space Σ to the S-space X is itself an S-space,
whose plots are

hom(Σ, X) : U 7→ SSpace(U × Σ, X) .

4.1.1 Smooth spaces

In our concrete applications here, we take the category of test objects S to have
as objects the natural numbers, and as morphism the smooth maps between
Euclidean spaces:

S(n,m) := SmoothManifolds(Rn,Rm) .

We take the category SSpace of smooth spaces to be that of sheaves on S.
A particularly important smooth space is that of differential forms

Ω• : U 7→ Ω•(U) .

This yields an adjunction between smooth spaces and differential N-graded
commutative algebras

SSpace
Ω• //

oo
Hom(−,Ω•(−))

DGCA ,

where
Ω•(X) := SSpace(X,Ω•) .

One can see that if X is an ordinary manifold, then the above notion of
differential forms on X coincides with the usual one.

4.1.2 Smooth categories

Given any category SSpace with finite pullbacks, we can define categories C
internal to S [Ehresmann]:

a smooth space of objects

Obj(C) ∈ SSpace

and of morphisms
Mor(C) ∈ SSpace

with source, target and identity maps

Obj(C) i // Mor(C)
s //
t

// Obj(C)
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and composition

Mor(C)×Obj(C) Mor(C)

wwppppppppppp

''NNNNNNNNNNN

◦

		

Mor(C)

s���

����� t
NNNNN

''NNNNN

Mor(C)

sppppp

wwppppp t
???

��???

Obj(C) Obj(C) Obj(C)

Mor(C)

sTTTTTTTT

jjTTTTTTTT
tjjjjjjjj

44jjjjjjjj

smooth maps.
We write

SCat := Cat(S)

for the 2-category of smooth categories, being categories internal to S. Notice
that

SCat ⊂ Stacks on S .

The categories internal to sheaves on S are the rectified stacks on S: those stacks
for which the pullback morphisms happen to respect composition strictly.

Every smooth space X gives rise to the following smooth groupoids

• Π0(X) = P0(X) = Disc(X) has X as its space of objects and no nontrivial
morphisms;

• P1(X) has X as its space of objects and a quotient of PX := hom(I,X)
as its space of morphisms, where two paths are identitfied if there exists
a homotopy between them on which every 2-form vanishes;

• Π1(X) as above, but dividing out homotopy.

We can further enrich in smooth categories and thereby obtain smooth n-
categories and smooth ω-categories as ω-categories internal to smooth spaces.
The ω-category of those smooth ω-categories we’ll denote

SωCat .

That will concern us later, in 5.1.

4.1.3 Smooth superspaces and smooth supercategories

It is conceptually straightforward to generalize everything we do here to the
world of supergeometry. For that we just extend our site S from Euclidean
spaces and smooth maps between them to super-Euclidean spaces and smooth
super-maps between them:

Obj(S) = N× N
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S(n|n′,m|m′) = SmoothSupermanifolds(Rn|n
′
,Rm|m

′
) .

While conceptually straightforward, we shall not further consider this here.
But doing so brings the present setup into close contact with the developments
in [61, ?, ?], which is one of the motivations for our studies.

4.2 Functors and forms

Smooth functors from paths to a group G are canonically isomorphic [57] to
g-valued differential forms

hom(P1(X),BG) ' Ω•(X, g) .

This is an isomorphism of categories: functors are in bijection to forms,
natural transformations to gauge transformations.

If the functors factor through Π1(X), they correspond to flat forms:

hom(Π1(X),BG) ' Ω•flat(X, g) .

This equivalence is established using the standard notion of parallel transport

A 7→ (γ 7→ P exp(
∫

[0,1]

γ∗A)

where
P exp(

∫
[0,a]

γ∗A)

is the unique solution to the differential equation

dF = (rF )∗ ◦ (γ∗A)

F (0) = Id .

4.3 Descent and codescent

The category
TrivBund(G)(X) := hom(Π0(X),BG)

is that of trivial G-bundles on X. There is a single object for each X and a
gauge transformation is a G-valued function on X.

Let Y → X be a good cover by open subsets.
Define the category

Desc(Y, SCat(Π0(Y ),BG))

to have objects which are tuples consisting of an object

triv ∈ hom(Π0(Y ),BG)
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and a morphism
g : π∗1triv // π∗2triv

such that
π∗2triv

π∗23

$$IIIIIIIII

π∗1triv
π∗13g //

π∗12g
::uuuuuuuuu

π∗3triv

commutes. This is a G-cocycle on X.
A morphism between two such is a morphism

h : triv→ triv′

such that
π∗1triv

g //

π∗1h

��

π∗2triv

π∗1h

��
π∗1triv′

g′ // π∗2triv′

commutes.
So in terms of component functions, objects in Desc are functions

g : Y → G

satisfying the familiar cocycle condition

π∗12gπ
∗
23g = π∗12g .

If we replace here Π0 with P1 we get a differential G-cocycle. If we use Π1

we get a flat differential G-cocycle.
We define the the nonabelian differential cohomology for G any Lie group

H̄(X,BG) := colimY Desc(Y, SCat(P1(−),BG)) .

The colimit is realized by the descent category for Y any good cover (by con-
tractible open subsets all whose finite intersections are contractible).

Theorem 1 ([57]) Differential G-cohomology is equivalent to G-bundles with
connection

H̄(−,BG) ' GBund∇(−) .
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4.4 Global transport and local trivialization

Equip the category GTor of G-spaces isomorphic to G (“G-torsors over a point”)
with the smooth structure that regards every map as smooth.

We say that a “globally defined” functor

tra : Π(X)→ GTor

is locally (i-)trivializable if there is

Πn(Y ) π //

triv

��

Πn(X)

tr

��
BG

i // GTor

t

'

v~ uuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuu

Theorem 2 ([57]) For Π = Π0, the category of pairs (tra, t) is equivalent to
that of G-bundles, i.e. local section admitting bundles P → X with a right G-
action such that the canonical morphism P ×G→ P ×X P is an isomorphism.

For Π = P1 the category of tra for which there exists a t is equivalent to that
of G-bundles with connection.

4.5 Cartan-Ehresmann connections

A particularly important case is:
let P → X be the total space of a principal G-bundle, for G any Lie group.

Then we can take Y = P and use the principality condition to get an isomor-
phism

π∗1P = P ×G P '
t // Y ×G .

This means that the local trivialization is induced from the right action r of G
on P

π∗tra
r−1

// trivi

as

Py
� p 7→r

−1(y,p) // G .

If we use Y = P in the definition of a differential G-cocycle, we obtain

• a 1-form A ∈ Ω1(P, g) on the total space

• first Cartan-Ehresmann condition: restricted to the fibers A is the canon-
ical flat 1-form;

• second Cartan-Ehresmann condition: A transforms covariantly under ver-
tical transformations

Lr∗xA = adxA .
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In 6.4 it will be crucial to observe that these two conditions make the fol-
lowing diagram commute:

Ω•vert(Y ) CE(g)
Avertoo connection form restricted to fibers (flat)

first Cartan-Ehresmann condition

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

connection form A on total space with curvature FA

second Cartan-Ehresmann condition

Ω•(X)
?�

OO

inv(g)
{Pi(FA)}oo

?�

OO

characteristic forms on base space

4.6 Outlook

• generalize to n-categories, to ω-categories

• generalize Lie algebras to Lie ∞-algebras aka L∞-algebras.

By the two desired properties of differential cocycles, we want to describe
structures which are

• locally given by differential form data;

• such that globally this data “glues” in a sensible way.

The differential form data is required to be such that it may be integrated
to transport with values in a smooth ω-group. This is achieved by L∞-algebra
valued forms.

Just as any Lie group G has a Lie algebra g, Lie ω-groups are related to Lie
∞-algebras, known as L∞-algebras.

A (finite dimensional) L∞-algebra is a N-graded vector space g∗ with nilpo-
tent degree +1 differential

d : ∧•g∗ → ∧•g∗ .

The differential graded commutative algebra thus obtained is denoted CE(g).
These fit into sequences

CE(g) W(g)oo inv(g)? _oo .

Now g-valued differential forms are morphisms from this to ordinary differ-
ential forms:

Ω•flat(Y, g) := HomDGCA(CE(g),Ω•(Y ))
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Ω•(Y, g) := HomDGCA(W(g),Ω•(Y )) .

Notice the relation to flat and non-flat local transport with values in ω-groups:
for G a strict 2-group coming from the Lie 2-algebra g (an L∞-algebra whose

generators are concentrated in the lowest two degrees), we have [58]

SωCat(Πω(Y ),BG) ' Ω•flat(Y, g)

and
SωCat(Πω(Y ),BEG) ' Ω•(Y, g) .

Examples for g-valued forms are

• ordinary differential forms:

Ω•(Y, bn−1u(1)) = Ωn(Y )

• Chern-Simons forms:

Ω•(Y, csP (g)) = {(A,B,C) ∈ Ω1(Y, g)×Ω2(Y )×Ω3(Y )|C = dB+CS(A)} .

So various local differental form data which one encounters in nature can
be interpreted as L∞-algebra valued forms. Doing so allows us to work out the
nature of the globally defined differential cocycles which control this local data.

Every L∞-algebra gives rise to a smooth space S(CE(g)), the smooth clas-
sifying space of g-valued forms:

Ω•(Y, g) ' SSpaces(Y, S(CE(g))) .

Every such space has a path ω-groupoid Πω(SCE(g)) which always has just
a single object. Hence we write it as

BG := Πω(SCE(g))

and interpret G as the ω-group integrating g (in slight variation of the integra-
tion prescription of [33]).

We will describe “Cartan-Ehresmann connections” for L∞-algebras and try
to integrate them (in the sense of integration of Lie algebras to Lie groups), by
the above procedure, to differential cocycles for ω-groups.

In doing so one finds that typically that the g-connection is integrated to a
cocycle for a quotient ω-group G/H, where H is the “vertical holonomy group”
of the g-connection.

For instance
Πω(S(CE(bn−1u(1)))) = BnR

and Bn−1U(1)-bundles are obtained from integration of bn−1u(1)-connections
only if the holonomy of the connection around cycles in the fiber lies in BnZ.
This condition gives rise to various integrabiliy conditions, as one would expect.
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5 Nonabelian differential cohomology

In other parts of the literature the kind of structure we are after here would be
referred to as an “∞-stack”. An “∞’-stack” is supposed to be a type of struc-
ture, (for instance the structure “principal G-bundle”), which exists over every
“space”, such that all structures of this type on a given “space” are obtained
from gluing such structures locally, i.e by gluing such structures over patches of
the “space”.

This “gluing” is known as descent. The term illustrates the fact that looking
at a space X locally means looking at regular epimorphisms

Y

����

local structure on Y_

descends to
��

X global structure on X

,

for instance by choosing a good cover by open subsets Ui ⊂ X and setting
Y =

⊔
i Ui.

From the point of view of this diagram, if a local structure on Y “glues” to
a global structure on X it “descends” from Y “down” to X.

For very low n, n-stacks are well understood. n-Stacks of higher n, in partic-
ular n =∞, is the topic of more recent research. There are several approaches
to “∞-stacks”; a popular one by Jardine et al. [65] involves passing to the
homotopy-category of presheaves with values in simplicial sets.

Here we instead follow Ross Street [62], who gives an explicit formula for
the descent condition for any ωCat-valued presheaf.

We find that in our situation it is not only useful and convenient to restrict
to structures which form ω-category valued presheaves – but also sufficient.

The reason for that is that we think of all the structures which we are
interested in, G-bundles with connection, in terms of their fiber-assigning- or
parallel transport n-functors. These can pulled back strictly and hence form
presheaves. Even sheaves, actually.

Moreover, we obtain the smooth parallel transport functors from integrating
L∞-algebras, and the integration procedure which we use always produces strict
n-categories.

5.1 ω-Categories

For V a monoidal category, we can consider V-enriched categories C: a set of
objects and an object Hom(a, b) ∈ V for each pair of objects, together with a
composition morphism

C(a, b)⊗ C(b, c)→ C(a, c) .

Taking V = Cat yields strict 2-categories

2Cat := Cat− Cat .
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total space
fibration

P

p

��
X

pullback by
universal property

f∗P

��

// P

p

��
Y

f // X

weak respect
for composition

of pullback

fiber-assigning
functor

GTor

X

OO pullback by
precomposition

GTor

Y
f // X

OO strict respect
for composition

Table 5: The rectification of ∞-stacks of ∞-bundles in terms of fiber-
assigning functors. The crucial method which allows us to work entirely
within ω-category valued sheaves without having to deal with “∞-prestacks” is
that we conceive all n-bundles (P,∇) with connection not as fibrations of their
total spaces p : P → X but entirely in terms of their fiber-assigning and parallel
transport-assigning functors. The equivalence of fiber-assigning functors with
the total space perspective of bundles is established in [57, 59].

Taking V = 2Cat yields strict 3-categories

3Cat := 2Cat− Cat .

And so on. As a kind of limiting case we get ω-categories: globular sets with
compatible strict composition operations in each direction.

Details are given in section 1.4 of [45].
ω-Categories have various nice properties.

• ωCat has a symmetric biclosed structure ⊗Gray which generalizes the Gray
tensor product on 2-categories [24];

• ωCat has a model category structure [43]: the weak equivalences (def. 6

in [43]) are those ω-functors C
F // D which are essentially k-surjective

([6], definition 4) for all k ∈ N:

for

−

c

��

c′

BB−∀δ:∃γ

��

7→ F (−)

F (c)

  

F (c′)

>>
F (−)δ'F (γ)

��

and two parallel k-morphisms in C, F reaches every equivalence class in
D(F (c), F (c′)).
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5.2 Cohomology with coefficients in ω-category-valued (pre)sheaves

If
A ∈ SωCatSSpaceop

is a (smooth) ω-category valued presheaf, we can consider its descent as above.
Ross Street [62] gives the general formula for Desc(Y,A).

We write
H(−,A) : SSpaceop → SωCat

for the corresponding cohomology theory (notice: itself a coefficient object).
Nonabelian differential cohomology arises from choosing as coefficent objects

ω-categories of local transport functors:

• nonabelian cohomology

H(−,BG) := H(−, SωCat(Π0(−),BG)) ;

• flat nonabelian differential cohomology

H̄flat(−,BG) := H(−, SωCat(Πω(−),BG)) ;

• fake-flat nonabelian differential cohomology

H̄fake−flat(−,BG) := H(−, SωCat(Pn(−),BG)) ;

• nonabelian differential cohomology:

H̄(−,BG) ⊂ H̄flat(−,BEG) .

The definition of BEG will concern us in 5.4.2 and 6.3. The definition of
the sub-ω-category H̄(−BG) will be given in 5.4.3.

The term “fake-flat” is adopted from [14] and arises as follows: parallel
transport with values in an n-group has, in general, curvature k-forms for k =
2, 3, · · · , (n+ 1). In the fake-flat case all except for the degree (n+ 1)-curvature
form vanish. In the flat case all of them vanish.

For abelian n-groups G = Bn−1U(1) only the top curvature form exists and
hence

H̄fake−flat(−,BnU(1)) = H̄(−,BnU(1)) .

But in general the vanishing of all the lower curvature forms places restrictions
on the remaining top curvature form.
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5.3 Nonabelian cohomology

We have already seen that for G an ordinary (1-)group we have

H(−,BG) ' GBund(−) .

As a slight variant, notice that

H(−, (BU)× Z) ' K0(−)

yields K-theory.
The abelian special case of nonabelian cohomology is obtained by considering

the structure n-groups
G = BnU(1)

this described the structures known as higher abelian bundle gerbes, higher line
bundles etc.

From ordinary sheaf cohomology it follows that

H(−,BnU(1))∼ ' Hn+1(−,Z) ,

where on the right we have the ordinary (n+ 1)st singlular cohomology.
The most familiar higher nonabelian cohomology is that modeled by non-

abelian gerbes: these are classified by the cohomology of automorphism 2-groups

G = AUT(H)

for H an ordinary (1-)group:

H(−,BAUT(H)) ' HGerbes(−) ' AUT(H)Bund(−) .

Notice that not all nonabelian 2-cocycles come from automorphism 2-groups:
there are (strict) 2-groups not equivalent to automorphism 2-groups. Notably
the String 2-group [8] String(G) for G a compact, simple and simply connected
Lie group. In general we have [9] for G(2) a “well pointed” strict topological
2-group that

H(−,BG(2)) ' [−, B|G(2)|] ,

where on the right we have homotopy classes of maps to the classifying space of
the topological 1-group |G(2)| obtained from the geometric realization of G(2).

5.4 Nonabelian differential cohomology

We shall essentially define nonabelian differential cohomology as cohomology
with coefficients in local parallel transport functor categories

A = SωCat(Πω(−),BG)

An important subtlety is, however, the role played by the (higher) curvature
of these differential cocycles. By itself, the cohomology theoryH(−, SωCat(Πω(−),BG))
is about flat G-connections.
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One way to understand this is that the non-flat differential cocycles should
be read as the obstructions to extending ordinary G-cocycles through the em-
bedding

Π0(X)� _

��
Πω(X)

finding the dashed arrow in

Π0(X)� _

��

bundle // BG

Πω(X)

flat connectionnnn

77nnn

In general this is not possible. What is always possible is a completion

Π0(X)� _

��

bundle // BG� _

��
Πω(X)

flat connectionnnn

66n
n

n

non−flat
connection

// BEG

,

where BEG is a certain trivializable ω-groupoid related to the universal G-
bundle, to be described in 5.4.2 and 6.3.

If we can form something like the cokernel “BBG” of the inclusion

BG ↪→ BEG ,

then its composition with (A,FA) would measure the failure of the dashed mor-
phism to exist

Π0(X)� _

��

bundle // BG� _

��
Πω(X)

flat connectionnnn

66nnnn

non−flat
connection

//

obstruction
to flatness

QQQQ

((QQQQQ

BEG

��
BBG

.

We will see that the morphism labeled “obstruction” encodes the character-
istic forms of the non-flat differential cocycle.

5.4.1 Codescent

Let

Π(−) =

 Pn(−)
Πn(−)
Πω(−)
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We say that an ω-category
ΠY (X)

is the differential codescent object if it co-represents differential descent in the
sense that

Desc(Y, SωCat(Π(−),BG)) ' SωCat(ΠY (X),BG) .

Forming codecent is analogous to forming the codiagonal of the bisimplicial
set |Π(Y •)| (see p. 31 [38] for a nice explicit description of the codiagonal
of bisimplicial sets): the k-morphisms in ΠY (X) are generated from the k-
morphisms in Π(Y ), the (k − 1)-morphisms in Π(Y [2]), the (k − 2)-morphisms
in Π(Y [3]), etc., modulo some relations.

An explicit description of PY1 (X) and of PY2 (X) is in [57] and [59], respec-
tively.

The corepresenting transport

ΠY (X)
(triv,g) // BG

encodes the formula for volume transport in terms of local data. If we restrict
to G = Bn−1U(1) it reproduces the familiar formulas for bundle (n − 1)-gerbe
holonomy [?].

[picture goes here]

5.4.2 Non-flat local transport

Before giving the full definition of non-flat nonabelian differential cocycles, it is
instructive to consider the local case for n = 1, 2.

Denote by

EG = G//G = { g h // hg |g, h ∈ G}
the codiscrete groupoid over G. An old theorem by Segal says that the geometric
realization of EG is the universal G-bundle:

G
� |·| //

��

G

��
EG

��

� |·| // EG

��
BG � |·| // BG

.

The point to notice here is that EG is itself actually a 2-group, hence BEG
exists.

One finds that transport functors from Π2(Y ) with values in BEG come
from non-flat forms

S2Cat(Π2(Y ),BEG) 'Set Ω1(Y, g) .
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Here it is important that this is an isomorphism at the level of sets, not as
categories. The failure of this to be an equivalence of categories is due to the
expression on the left hand now having more ismorphisms than the expected
gauge transformations: it now also contains transformations that shift the con-
nection form

A′ = gAg−1 + gdg−1 + a

for a ∈ Ω1(Y, g).
The analog for a strict 2-group G(2) is described in [51]. There is

EG(2) := INN0(G(2))

and as shown in [David Roberts, PhD thesis], [9], this again yields the universal
G(2-bundle in that

G(2)
� |·| //

��

|G(2)|

��
EG(2)

��

� |·| // EG(2)

��
BG(2)

� |·| // BG(2)

.

One subtlety is that the BEG from [51] is not, in general, an ω-groupoid,
but an (ωCat,⊗Gray)-groupoid [24]. One finds that (ωCat,⊗Gray-functors from
P2(x) to this BEG are in bijection with arbitrary (not-necessarily flat) g(2)-

valued forms, where g(2) = (h t→ g) is the Lie 2-algebra corresponding to G(2).

hom(Πω(Y ),BEG(2)) 'Set {(A,B) ∈ Ω1(Y, g)× Ω2(Y, h) .}

This is the local data obtained in [14].
There should be a way to set up all we want to say here in terms of

(ωCat,⊗Gray)-categories. But for the time being we want to stick with just
ω-categories.

To still be able to talk about BEG we give an alternative definition below
using integration of L∞-algebras. We will find that we can keep BEG a strict
ω-category at the price of replacing G with slightly more “puffed up” but weakly
equivalent incarnation.

5.4.3 Non-flat differential cocycles

Below in 6.3 we obtain ω-groupsG from integration of L∞-algebras which always
come in a sequence

BG � � // BEG // // BBG .

A simple special example is BG = BnU(1), the ω-groupoid trivial everywhere
except in degree n, where it has U(1) as its space of n-morphisms. Then
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BEBn−1U(1) has U(1) as its n- and its (n + 1)-morphisms and BBBn−1U(1)
as its space of (n+ 1)-morphisms.

For such a situation we define the nonabelian differential cohomology with
values in G to be the joint pullback

H̄(−,BG)

ttjjjjjjjjjjjjjjjj

�� **VVVVVVVVVVVVVVVVVVV

H(−,BG)

##GGGGGGGGG H̄flat(−,BEG)

yyssssssssss

&&MMMMMMMMMM
Ω•flat(−,BBG)

xxrrrrrrrrrr

H(−,BEG) H̄flat(−,BBG)

G-bundle
with connection
and curvature

wwooooooooooooooooo

��
((RRRRRRRRRRRRRRRRR

G-bundle

��>>>>>>>>>>>>>>

G-valued
connection

and curvature

||yyyyyyyyyyyy

$$HHHHHHHHH

characteristic
forms

||xxxxxxxxxx

characteristic
classes

The various morphisms here are defined in terms of the codescent objects
ΠY (X) and ΠY

0 (X):
the above pullback says that the cocycles in H̄(−,BG) are the cocycles

ΠY (X) // BEG

in HΠ(−,BEG) which fit into a square
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ΠY
0 (X)� _

i

��

// BG

��

G-cocycle

ΠY (X) //

π

����

BEG� _

��

connection and curvature

Π(X) // BBG characteristic forms .

The bottom morphism represents BBG-valued forms. Precomposition of
that with the lower left vertical arrow π is the map

Ω•(−,BBG)→ HΠ(−,BBG) .

Postcomposition with the lower right vertical morphism is the map

HΠ(−,BEG)→ HΠ(−,BBG) .

Precomposition with the upper left vertical morphism i is the map

HΠ(−,BEG)→ H(−,BEG) .

Finally, postcomposition with the upper right vertical morphism is the map

H(−,BG)→ H(−,BEG) .

The simplest example is obtained for G = U(1), where the diagram re-
produces the familiar description of a U(1)-bundle with connection, the lower
morphism Πω(X)→ BBU(1) being its curvature 2-form.

6 Lie ∞-algebras and integration

Lie ∞-algebras are L∞-algebras. A review and literature is given at the begin-
ning of [52].

One expects an analog of Lie’s theorem relating Lie ∞-groups and Lie ∞-
algebras.

It seems to be an old result about the integration theory of Lie algebras (Ezra
Getzler told me in private communication that it is the way he originally learned
about integration of Lie algebras from Bott) that the simply connected Lie group
G integrating an ordinary Lie algebra g is, as a space, that of equivalence classes
of g-valued 1-forms on the interval, where two such are regarded as equivalent
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if they can be interpolated by a flat g-valued 1-form over the disk. The group
multiplication is then just compoisition of intervals.

I am not sure what the canonical reference for this result is. It does appear,
though, as a corollary of the work on the integration of Lie algebroids. See for
instance [23] for technical details and [54] for the central idea.

In any case, we observe here (an obvious statement, which however seems
not to have been stated this way in the corresponding literature) that this says
nothing but that the Lie group is the fundamental path groupoid of the smooth
classifying space S(CE(g)) of g-valued 1-forms:

BG = Π1(S(CE(g))) .

Here CE(g) is the Chevalley-Eilenberg algebra of g and S(CE(g)) the smooth
space whose plots on U are the flat g-valued forms on U . (More details below).

We adopt the point of view that “Lie groupoid” means groupoid internal to
SSpaces. Hence a Lie ω-groupoid is, for us, just another name for a smooth
ω-groupoid.

In that we differ from other authors, who try to integrate to n-groupoids
internal to manifolds [33] or Banach spaces [36].

6.1 Lie ∞-algebras

A finite dimensional L∞-algebra is a finite dimensional N+-graded vector space
g∗ together with a differential

d : ∧•g∗ → ∧•g∗

of degree +1 such that d2 = 0.
We write

CE(g) = (∧•g∗, d)

for the corresponding differential graded-commutative algebra and call it the
Chevalley-Eilenberg-algebra of g.

For every such we also get the Weil algebra

W(g) = (∧•(g∗ ⊕ g∗[1], d =
(

σ 0
dCE(g) −σ ◦ dCE(g) ◦ σ−1

)
)

as well as the DGCA of basic or invariant form

inv(g) ⊂W(g)

which is the joint kernel of all contractions ιx along the unshifted copy g and
all corresponding Lie derivatives [dW(g), ιx].

These fit into a sequence

CE(g) W(g)oooo inv(g)? _oo .
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• For g an ordinary Lie algebra CE(g) is the DGCA of left-invariant differ-
ential forms on G.

• It was known to Cartan that W(g) plays the role of differential forms of
EG.

• And for G compact, it is a standard fact that inv(g) ' H•(BG,R).

That means the above sequence is to be thought of as that of differential
forms on the universal G-bundle.

6.2 Lie ∞-algebra valued forms

For g any L∞-algebra and Y any smooth space, we say that

Ω•(Y, g) := HomDGCAs(W(g),Ω•(Y ))

is the collection of g-valued differential forms, while

Ω•flat(Y, g) := HomDGCAs(CE(g),Ω•(Y ))

is the collection of flat g-valued differential forms.

CE(g)

(A,0)

���
�
�
�
�
�

W(g)

(A,FA)

��

oooo

Ω•(Y ) = // Ω•(Y )

.

Using the ambimorphic object Ω•, a smooth space which is also a DGCA,
we get an adjunction between smooth spaces and DGCAs

SSpaces
Ω•(−) //

S(−):=Hom(−,Ω•(−))
// DGCAs .

The functor S : DGCAs → SSpaces sends every DGCA A to a smooth space
whose algebra of differential forms is essentially given by that DGCA: we have
an inclusion

A
� � // Ω•(S(CE(g))) ,

the unit of the adjunction. (In rational homotopy theory the analogous injec-
tion (with our smooth spaces replaced by simplicial spaces) is shown to be an
isomorphism in cohomology. I suspect the same is true here, but have no proof
yet.)

This smooth space is the classifying space for g-valued forms:
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the adjunction says that

HomDGCAs(CE(g),Ω•(Y )) ' HomSSpaces(Y, S(CE(g)))

and hence that
Ω•(Y, g) ' SSpaces(Y, S(W(g)))

and
Ω•flat(Y, g) ' SSpaces(Y, S(CE(g))) .

Using the fact that we have the inner hom in smooth spaces, this yields a smooth
space of g-valued differential forms.

6.3 Integration of Lie ∞-algebras to Lie ω-groups

From every L∞-algebra we can first pass to its Chevalley-Eilenberg DGCA
CE(g) (which we have essentially identified with the L∞-algebra, conceptually)
and then to the smooth space S(CE(g)) which contains CE(g) in its algebra
of differential forms. From this space, finally, we obtain an ω-groupoid: its
fundamental ω-groupoid. Since there is only the trivial (p ≥ 1)-form on R0,
this ω-groupoid necessarily has a single object. Hence we can identify it with
an ω-group. That’s the ω-group G integrating g:

BG := Πω(S(CE(g))) .

Notice that this is just a slight ω-categorical variant of the Kan simplicial
construction of [33, 36]: these authors consider for any g the simplical space

(
∫

g)n := Ω•flat(∆
n, g)

of flat g-valued forms on the standard n-simplex ∆n. But we have seen that we
can reexpress this as

(
∫

g)n = Hom(∆n, S(CE(g)))

so that it turns out that
∫

g is nothing but the simplicial space of singular
simplices in the classifying space S(CE(g)). The simplicial space of singular
simplices of any space X deserves to be addressed as the ∞-path groupoid of
X:

Π∞(X) := (n 7→ Hom(∆n, X)) .

(Here “∞-groupoids = Kan complexes”.)
If g is a Lie n-algebra, it is often convenient to truncate and form Πn(−)

instead of Πω(−). The results should be weakly equivalent.
Given any L∞-algebra g, we address the image under Πω ◦ S of

CE(g) W(g)oooo inv(g)? _oo
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as
BG � � // BEG // // BBG .

One can unravel this abstract nonsense in some concrete examples:
for g an ordinary Lie algebra we find that 1-morphisms in Π1(S(CE(g)))

are g-valued 1-forms A ∈ Ω1(I, g) on the interval, two of which are taken to be
equivalent if they are interpolated by a flat g-valued 1-form on the disk:

[A ∈ Ω1(I, g)] = [A′ ∈ Ω1(I, g)] ⇔ ∃Ã ∈ Ω1
flat(D

2, g) : (Ã|∂1D2 , Ã|∂2D2) = (A,A′) .

This is known to indeed yield the simply connected group G integrating g

G = {[A ∈ Ω1(I, g)]} .

We could have formed the 2-groupoid Π2(S(CE(g))) instead, which yields a
“puffed up” version of the group G: now 1-morphisms are just thin-homotopy
classes of paths in G, starting at the identity, and 2-morphisms are homotopy
classes of disks in D interpolating between two paths with the same endpoint.

Here we are using the fact that a flat g-valued 1-form A on a contractible
space Y is the same as a choice of point in Y and a functor g : Y → G, using
A = gdg−1.

Since π2(G) = 1 we get

Π2(S(CE(g))) = B(ΩG→ PG) .

Compare with [8].
In a similar manner the String Lie 2-algebra gµ for g a semisiple Lie algebra

and µ = 〈·, [·, ·]〉 the canonical 3-cocycle is integrated (compare [36]): choose the
normalization of µ such that it yields the integral 3-form representing H3(G,Z)
for the compact, simple, simply connected group G.

Then 1-morphisms in Π2(S(CE(gµ))) are thin homotopy classes of path in
G, starting at the identity. Thin homotopy classes of 2-paths in S(CE(gµ)) are
disks in G as before, but now equipped with a 2-form B on the disk, of which
only the integral

∫
D2 B survises dividing out thin homotopy.

A non-thin homotopy between a pair (g : D2 → G,
∫
B) and a pair (g′ :

D2 → G,
∫
B′) is an extension

g̃ : D3 → G

such that ∫
B −

∫
B′ =

∫
D3
g̃∗µ .

We recognize the construction of the “tautological bundle gerbe on G” which is
the central extension of the loop group. Hence

Π2(S(CE(gµ))) = B(Ω̂G→ PG) =: BString(G) .

This is essentially the integration found in [8], only that the horizontal com-
position is now by concatenation of paths in G. This reproduces actually the
construction in [19, 20]
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6.4 ∞-Cartan-Ehresmann connections

In the special case where we have a 1-group G which is 1-connected (i.e. simply
connected) and a principal G-bundle P → X it so happens that, setting Y = P ,
we have that the Čech groupoid for the canonical trivialization

ΠP
0 (X) = Πvert

1

is nothing but the vertical part of the fundamental groupoid of P . Similar
statements apply to n-group cocycles over surjections Y which are n-connected.

Motivated by this operation we define, for any L∞-algebra g and regular
epimorphism Y → X a g-connection descent object over X to be a diagram as
on the right [52]:

ΠY
0 (X)� _

i

��

// BG

��

G-cocycle Ω•vert(Y ) CE(g)
Avertoo

first Cartan-Ehresmann condition

ΠY (X) //

π

����

BEG� _

��

connection and curvature Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

second Cartan-Ehresmann condition

Π(X) // BBG characteristic forms Ω•(X)
?�

OO

inv(g)
{Pi(FA)}oo

?�

OO

nonabelian differential G-cocycle g-connection descent object

.

The g-connection descent objects (or just “g-connections”, for short) on the
right have the advantage that their Lie ∞-algebraic formulation lends itself
to concrete computations and constructions [52]. But, due to the differential
nature, certain integral and torsion phenomena may not be manifest or may
even be missed by the g-connection itself.

In the next section we indicate how to identitfy if a certain g-connection
satisfies the proper “integrability conditions” and how to integrate it to a full
nonabelian differential cocycle if it does.

6.5 Twisted L∞-connections

The concept of a vector bundle twisted by a 2-bundle (' gerbe) is, by now,
familiar. It leads, notably, to twisted K-theory. In the context of bundle gerbes,
such twisted bundles are usually addressed as gerbe modules. Twisted 2-bundles,
i.e. modules for bundle 2-gerbes, have been defined analogously.
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Here we describe the notion of n-bundles twisted by an (n + 1)-bundle in
the context of our notion of L∞-algebra connections. As one application, we
interpret the Green-Schwarz mechanism in heterotic String theory as saying that
the Kalb-Ramond field (a 2-bundle with connection) is twisted, in this sense,
by the supergravity C-field restricted to the end-of-the-world 9-brane.

6.5.1 Twisted L∞-connections

In [52] we had discussed that the obstruction to lifting a g-connection

Ω•vert(Y ) oo
Avert

OOOO
CE(g)
OOOO

Ω•(Y ) oo
(A,FA)

OO

� ?

W(g)
OO

� ?
Ω•(X) oo

{Pi}
inv(g)

through a String-like central extension

0→ bn−1u(1)→ gµ → g→ 0

is the bnu(1)-connection obtained by canonically completing this diagram to the
right as shown in figure 1.

The construction crucially involves first forming the lift of the g-connection
to a (bn−1u(1) ↪→ gµ)-connection, where (bn−1u(1) ↪→ gµ) is the “weak cokernel”
or “homotopy quotient” of the injection of bn−1u(1) into gµ. This lift through
the homotopy quotient always exists, since the homotopy quotient is in fact
equivalent to just g. But performing the lift to the homotopy quotient also
extracts the failure of the underlying attempted lift to gµ proper. This failure
may be projected out under

(bn−1u(1) ↪→ gµ) // // bnu(1)

to yield the bnu(1)-connection which obstructs the lift. It is the morphism
denoted f−1 in 1 which picks up the information about the twist/obstruction.
This was constructed in proposition 40 of [52].

However, the (bn−1u(1) ↪→ gµ)-connection itself deserves to be considered
in its own right: this is just the L∞-connection version of “twisted bundles” or
“gerbe modules”.

In particular, the obstruction problem can also be read the other way round:
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ordinary
g-connection

attempted
lift to

gµ-connection

obstructing
bnu(1)-connection

obstruction
interpretation

ordinary
g-connection

twisted
gµ-connection

twisting
bnu(1)-connection

twisting
interpretation

ordinary
g-connection

twisted
gµ-connection

magnetic
charge

charge
interpretation

Ω•vert(Y ) oo
Avert

OOOO
CE(g)
OOOO

CE(bn−1u(1) ↪→ gµ)oo
OOOO

CE(bnu(1))
OOOO

oo

Ω•(Y ) oo
(A,FA)

OO

� ?

W(g)
OO

� ?

W(bn−1u(1) ↪→ gµ)
OO

� ?

f−1
oo CE(bnu(1))

OO

� ?

oo

Ω•(X) oo
{Pi}

inv(g) inv(bn−1u(1) ↪→ gµ)oo inv(bnu(1))oo

Figure 1: Obstructing bnu(1) (n+1)bundles and “twisted” gµ n-bundles
are two aspects of the same mechanism: the (n + 1)-bundle is the obstruction
to “untwisting” the n-bundle. The n-bundle is “twisted by” the (n+ 1)-bundle.
There may be many non-equivalent twisted n-bundles corresponding to the same
twisting (n+ 1)-bundle. We can understand these as forming a collection of n-
sections of the (n+ 1)-bundle.

given a bnu(1)-bundle, we may ask for which g-bundles it is the obstruction
to lifting these to a gµ-bundle. In string theory, this is actually usually the more
natural point of of view:

• given the Kalb-Ramond background field (a bu(1)-connection) pulled back
to the worldvolume of a D-brane, the “twisted U(H)-bundles” correspond-
ing to it are the “Chan-Paton bundles” supported on that D-brane;

• given the supergravity 3-form field (a b2u(1)-connection) pulled back to the
end-of-the-world 9-branes, the “twistedBU(1)-2-bundle” corresponding to
it is the Kalb-Ramond field, with the twist giving the failure of its 3-form
curvature to close

dH3 = G4 .

46



6.5.2 Ordinary twisted bundles in terms of L∞-connections

Let g be a Lie algebra with 2-cocycle µ ∈ CE(g) which induces a central exten-
sion

0 // u(1) // ĝ //

=

g // 0

gµ

which we can think of as a special case of our “string-like” central extensions,
according to the first example in section 6.4.1 of [52].

Then the weak cokernel Lie 2-algebra

(u(1) ↪→ ĝ)

is in fact a special case of a strict Lie 2-algebra as in the third example of 6.1.1
in [52]. Accordingly, the following discussion is really a special case of the kind
of computations shown in section 6.3.1 of [52]. But it deserves to be spelled out
for the present case in detail here.

By inspection, one finds that forms on Y with values in (u(1) ↪→ ĝ) have the
following characterization, as displayed in figure 6.5.2:

CE(u(1) ↪→ ĝ)

A ∈ Ω1(Y, ĝ)
B ∈ Ω2(Y )

(FA)a = 0
(FA)0 = B
dB = 0

��

W(u(1) ↪→ ĝ)oooo

A ∈ Ω1(Y, ĝ)
β ∈ Ω1(Y, ĝ)
B ∈ Ω2(Y )
C ∈ Ω3(Y )

(FA)a = βa

(FA)0 −B = β0

(dAβ)0 = C

��
Ω•(Y ) = Ω•(Y )

let, as usual {ta} be a chosen basis of g∗ and let t0 denote the canonical
basis of the central part of ĝ. Then a (u(1) ↪→ ĝ)-descent object

Ω•vert(Y ) CE(u(1) ↪→ ĝ)
Avertoo

is a g-descent object whose failure to be a ĝ-descent object is measured by a
closed vertical 2-form B.

Analogously, a (u(1) ↪→ ĝ)-connection descent object has a ĝ-valued cur-
vature 2-form β whose g-valued part satisfies the ordinary g-Bianchi identity,
(dAβ)a = 0, but whose central part satisfies (dAβ)0 = C, for C the curvature
3-form of the twisting 2-bundle.
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This phenomenon is sometimes addressed as a failure of the Bianchi identity,
but of course it is just the Bianchi identity of a 1-connection which fails, while
what we see is actually the Bianchi identity of a 2-connection.

6.5.3 Twisted 2-bundles

Now for µ a 3-cocycle on g, repeating the above for the String-extension

0 // u(1) // ĝ //

=

g // 0

gµ

yields a “twisted 2-bundle” whose 3-form crvature H3 suffers an similar “failure
of the Bianchi identity”

dH3 = G .

7 Integration of L∞-connections to full nonabelian
differential cocycles

For g an L∞-algebra, a g-connection descent object (or just “g-connection”, for
short) on a smooth space X is a choice of regular epimorphism π : Y → X
together with a diagram

Ω•vert(Y ) CE(g)
Avertoo

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

Ω•(X)
?�

OO

inv(g)
?�

OO

{Pi(FA)}oo

of DGCAs.
A non-flat nonabelian differential cocycle, on the other hand, for a smooth

ω-group BG obtained as a quotient by a discrete ω-group of the ω-group inte-
grating g is diagram

ΠY
0 (X)

g //
� _

��

BG� _

��

nonabelian cocycle

ΠY
ω (X) //

����

BEG

����

connection and curvature data

Πω(X) // BBG characteristic forms
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Here

ΠY
0 (X) := ( Y [2]

π1 //
π2
// Y ) .

is the codescent or Čech (ω-)groupoid coming from Y and

BG→ BEG→ BBG

is the integration of
CE(g)←W(g)← inv(g)

We want to extend the integration procedure from L∞-algebras to ω-groups
to one that takes an entire g-connection and integrates it to a full nonabelian
differential cocycle.

7.1 Recalling the integration procedure for L∞-algebras

We have seen, as a slight variation on the theme investigated by Getzler and
Henriques, how an L∞-algebra g may be integrated into a smooth ω-group by
first forming the smooth classifying space S(CE(g)) of flat g-valued forms, which
is the sheaf that assigns to each smooth test domain U the set of g-valued forms
on U :

S(CE(g)) : U 7→ Ω•flat(U, g) := HomDGCAs(Ω•(U),CE(g))

and then forming the smooth fundamental ω groupoid of that

g 7→ BG := Πω(S(CE(g)))

or just the fundamental n-groupoid

Πn(S(CE(g)))

if g is a Lie n-algebra.
For instance, for g an ordinary finite dimensional Lie algebra, the simply

connected Lie group G integrating it is given by

BG = Π1(S(CE(g))) ,

where BG always denotes the one-object groupoid version of a group G.
As familiar from the case of ordinary Lie algebras, the ω-group obtained this

way tends to behave like a “simply connected” cover. There might be discrete
sub ω-groups

BT ↪→ BG

which we want to quotient out. For instance for each n ∈ N we get for the Lie
n-algebra of (n− 1)-fold shifted u(1) the result

Πn(S(CE(bn−1)u(1))) = BnR

and the expected BnU(1) is obtained only after quotienting out the discrete sub
n-group BnZ ↪→ BnR.

We want to extend this integration procedure now from L∞-algebras to
L∞-connection descent objects, to obtain nonabelian differential cocycles from
these.
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7.2 Principal bundles with simply connected structure group

Before describing the procedure in generality, we look at the simple case of an
ordinary G-principal bundle with G the simply connected Lie group integrating
the Lie algebra g.

With π : P → X a principal G-bundle, we have seen that a Cartan-
Ehresmann connection A ∈ Ω1(P, g) on it is expressed as a g-connection descent
object with Y := P and

Ω•vert(Y ) CE(g)
Avertoo

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

Ω•(X)
?�

OO

inv(g)
?�

OO

{Pi(FA)}oo

.

Suppose we had forgotten that Y already is a principalG bundle with connection
and tried to recover the nonabelian differential cocycle describing it from just
this diagram.

We do want to remember, though, in this example that the fibers of Y are
simply connected. In that case, we observe that the vertical fundamental path
groupoid

Πvert
1 (Y ) ⊂ Π1(Y )

of all those homotopy classes of paths that project down to a constant path,
happens to be canonically isomorphic

Πvert
1 (Y ) ' ΠY

0 (X)

to the codescent groupoid

ΠY
0 (X) := ( Y [2]

π1 //
π2
// Y ) .

Simply because for the fibers of Y simply connected, there is a unique homotopy
class of paths between any two points in a fiber. We are eventually interested
in a more intricate situation, but this simple case is helpful for orientation.

In this case, we find that the vertical part of the Cartan-Ehresmann con-
nection itself may be integrated up to recover the nonabelian cocycle which
classifies the G bundle P :

By acting with our contravariant integration functor

Π1 ◦ S : DGCAs→ SCat

from DGCAs to smooth categories on the topmost morphism

Ω•vert(Y ) CE(g)
Avertoo
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it turns precisely into the nonabelian cocycle that encodes the canonical local
trivialization of the original G bundle P when pulled back to its own total space
P = Y :

Π1 ◦ S
(

Ω•vert(Y ) CE(g)
Avertoo

)
= ΠY

0 (X)
g // BG .

The crucial aspect to notice here is that it is the flatness of Avert which
allows to interpret its parallel transport as a cocycle.

Namely the integration process indicated is effectively regarding the ordinary
cocycle condition for a G-bundle

g : ΠY
0 (X)→ BG

π2(y)

##GGGGGGGG

π1(y)

;;wwwwwwww
// π3(y)

7→ •
π∗23g(y)

��@@@@@@@

•

π∗12g(y)
??�������

π∗13g(y)
// •

as the flat parallel transport around a closed loop:

π2(y)
γ2

##GGGGGGGG

π1(y)

γ1

;;wwwwwwww

γ3
// π3(y)

7→ •
P exp(

∫
γ2
Avert)

��@@@@@@@

•

P exp(
∫
γ1
Avert)

??�������

P exp(
∫
γ3
Avert)

// •

.

flatness of Avert ↔ cocycle condition for g := Π1 ◦ S(Avert)
•

P exp(
∫
γ2
Avert)

��@@@@@@@

•

P exp(
∫
γ1
Avert)

??�������

P exp(
∫
γ3
Avert)

// •

•
π∗23g(y)

��@@@@@@@

•

π∗12g(y)
??�������

π∗13g(y)
// •

Table 6: For a g-connection descent object with respect to a surjection Y → X
with sufficiently high connected fibers, the integration (the parallel n-transport)
of the vertical part Ω•(Y ) Avert← CE(g) over singular simplices in the fibers pro-
duces a G-cocycle, for G a quotient of the ω-group integrating g. The quotient
is by the vertical holonomy ω-group of Avert.

7.3 Bundles with non-simply connected structure group

In general the situation is more intricate than for 1-bundles with simply con-
nected fibers: if there is ambiguity in homotopy classes of paths between any
two points in a fiber, then the vertical parallel transport of the vertical 1-form
Avert will differ along them by an element in the vertical holonomy group.
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The simplest example for this are circle bundles:
let now π : P → X be a principal U(1)-bundle, set again Y := P and let

Avert ∈ Ω1(P ) be the Cartan-Ehresmann connection on the total space.
In this case now the Čech groupoid ΠY

0 (X) differs from the vertical funda-
mental groupoid Πvert

1 (Y ): the former has unique morphisms between any two
points in the same fiber, the latter has one for every homotopy class (winding
n times around the circle).

So instead of an isomorphism of groupoids, we get a surjection

Πvert
1 (Y )

����
ΠY

0 (X)

For integrating Avert we pick any lift for each pair of points and evalute the
R-valued parallel transport of Avert over this path. Since on each fiber Avert

is restricted to be the canonical 1-form on the circle, which we can assume
normalized such as to be the image in deRham cohomology of H1(S1,Z), the
difference in the R-valued parallel transport along the lifts is in Z. Hence our
intergartion process here yields now a R/Z-cocycle. As it should be.

Πvert
1 (Y )

ĝ:=Π1◦S(Avert) //

����

BR

����
ΠY

0 (X)
g // B(R/Z)

.

So the cocycle ĝ we get by the direct integration procedure is that of the R-
bundle universally covering our U(1)-bundle. The cocycle of the latter is ob-
tained by quotienting out Z.

7.4 Integration of Chern-Simons L∞-connections

Let g be a finite dimensional semisiple Lie algebra with bilinear invariant form
P = 〈·, ·〉 normalized such that the canonical 3-cocycle

µ = 〈·, [·, ·]〉 ∈ ∧3g∗

extends left invariantly to the image in deRham cohomology of the generator
(either one of the two) of H3(G,Z), where G is the simply connected compact
semisimple Lie group intgerating g.

Let π : P → X be a principal G-bundle with Cartan-Ehresmann connection
A ∈ Ω1(P, g), which we read as a g-connection descent object.

By the discussion in [52] there is a b2u(1)-connection descent object obstruct-
ing the lift of the g-connection through the string-extension

0→ bu(1)→ gµ → g→ 0
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whose diagram is the canonically constructed b2u(1)-connection

Ω•vert(Y ) CE(g)
Avertoo CE(bu(1)→ gµ)oo CE(b2u(1))oo

µ(Avert)

jj

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

W(bu(1)→ g)oo

OOOO

W(b2u(1))oo

OOOO

(cs(A,FA),P (FA))

ii

Ω•(X)
?�

OO

inv(g)
?�

OO

{Pi(FA)}oo inv(bu(1)→ g)
?�

OO

oo inv(b2u(1))
?�

OO

oo

P (FA)

ii

whose connection 3-form on Y := P is the Chern-Simons 3-forms with respect
to P of the original connection 1-form A, and whose vertical connection 3-form
is, therefore

Ω•vert(Y ) CE(bu(1))
µ(Avert)oo .

The following simple and standard obersvation is crucial for what follows:

Observation 1 A flat Lie algebra valued 1-form ω ∈ Ω1
flat(F, g) on a simply

connected space F is the same as a choice of basepoint x ∈ F together with a
basepoint-preserving function Fx → G to the simply connected Lie group inte-
gerating g:

Ω1
flat(F, g) '

∏
x∈F

Maps∗(Fx, G) .

The bijection is established by interpreting the map f : Fx → G as assigning to
each y ∈ F the G-valued parallel transport of the (then necessarily flat) g-valued
form ω along any path from x to y.

Recall that it is by making us of this fact that we find the integration of the
String Lie 2-algebra gµ to the strict String Lie 2-group String(G) by our general
procedure (a mixture of [Henriques] and [BCSS]):

Π2(S(CE(gµ))) = BString(G) .

We now apply Π3 ◦S : DGCAs→ S3Cat to the vertical part µ(Avert) of the
Chern-Simons 3-connection obtained above.

Let now ΠY
0 (X) denote the strict Čech 3-groupoid of Y → X: objects are

points in Y , morphisms are sequences of jumps between points in the same
fiber, 2-morphisms are free pasting diagrams of 2-simplices with boundary such
jumps, 3-morphimss are pasting diagrams of 3-simplices with boundary such 2-
simplices, freely generated modulo the relation that all boundaries of 4-simplices
they form 3-commute.

Similar to the situation for U(1)-bundles above, but now in higher cate-
gorical dimension, we see that this Čech 3-groupoid is covered by the vertical
fundamental 3-groupoid Πvert

3 (Y ) of Y . Or rather, to say this precisely: by
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its Kan-complex simplicial version, where (k ≤ 2)-simplices are thin homotopy
classes of maps from the standard k-simplex (as opposed to the standrad k-disk
as for the globular version) into a fiber of Y , and where 3-simplices are full
homotopy classes of maps from the standard 3-simplex:

Πvert
3 (Y )

ĝ:=Π3◦S(µ(Avert)) //

����

B3R

����
ΠY

0 (X)
g // B3U(1)

By applying our intgeration procedure

Π3 ◦ S : DGCAs→ S3Cat

to Ω•vert(Y ) CE(b2u(1))
µ(Avert)oo we thereby find a cocycle g : ΠY

0 (X)→ B3U(1)

• which colors jumps between two point in the fiber by chosen (thin homo-
topy classes of) paths equipped with a map to G (coming from the flat
1-form on that path and choosing the starting point of the path as the
basepoint) – these paths always exist since G is connected;

• which colors triangles of jumps in the fiber with surfaces bounded by the
corresponding paths and again equipped with a map to G – these surfaces
always exists sice G is simply connected;

• which colors tetrahedra of jumps in the fiber with volumes fillings these
and equipped with a map f : F → G – this exists because G is necessarily
also 2-connected;

• which finally assigns to each such tetrahedron T the real number obtained
by integrating µ(Avert) over the tetrahedron, which is the same as the
integral ∫

T

f∗µ ,

but taking this number only modulo the holonomy of µ(Avert) over closed
3-dimensional volumes, hence, by assumption of the integrality of µ, mod-
ulo Z.

It is again the flatness of the vertical connection 3-form which ensures that
the construction indeed yields a 3-cocycle for a line 3-bundle: the Chern-
Simons 3-bundle whose existence obstructs the lift of the original G-bundle
to a String(G)-2-bundle.

One can see that the construction just sketched – the systematic procedure
of integrating L∞-connection descent objects to nonabelian cocycles by hitting
the Cartan-Ehresmann diagram with Πn ◦S, reproduces in the case we have de-
scribed precisely the prscription which Brylinski and McLaughlin have described
in [20].
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They have a general such prescription for all higher Pontryagin and Euler
classes [19]. This involves passing from the principal G-bundle P → X first to
an associated bundle (with fiber certain Stiefel manifolds) and then proceed-
ing essentially as above. This step can be understood, from our point, as an
integrability condition on the regular epimorphism Y → X appearing in the
L∞-connection descent object: that needs to have sufficiently highly connected
fibers, or else needs to have torsion cohomology groups, such that the higher
holonomies of the vertical connectin form have a chance of covering all required
higher morphisms in the Čech groupoid.

7.5 Integraton to n-bundles with connection

So far we have just discussed how to obtain the nonabelian cocycle itself from a
g-connection. But the constructions extends in the obvious fashion to the entire
structure:

just as we had covered the Čech-ω-groupoid ΠY
0 (X) with vertical ω-paths,

we can cover the entire differential codescent ω-category ΠY
ω (X) with ω-paths

in Y .
For the situation of Chern-Simons 3-connections this reproduces the entire

Deligne cocycle construction described in section 4 of [20].
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Biroupoid 2-Torsors (PhD thesis), Christoph Wockel, A global perspective
to gerbes and their gauge stacks [arXiv:0803.3692]. Notice that in [57,
59] the point is made that higher bundles are conveniently thought of
not as fibrations P → X but as their fiber-assigning functors X → nCat.
In particular, this achieves a useful rectification of the n-stack of these
bundles to a sheaf, a fact we are making use of above.

60


