Urs Schreiber

on joint work with

John Baez David Roberts Hisham Sati Jim Stasheff Konrad Waldorf

with special thanks to

Danny Stevenson Todd Trimble

March 17, 2008

<ロ> (日) (日) (日) (日) (日)

Plan Hallo

Preliminaries

- The idea of differential cohomology
- Overview: concept of nonabelian differential cohomology
- Overview: Chern-Simons application

Nonabelian differential cohomology

- **1** Thesis: (Nonabelian) Cohomology
- 2 Anti-Thesis: (Nonabelian) Differential Forms
- **3** Synthesis: (Nonabelian) Differential Cohomology
- A concrete model: L_{∞} -connections
 - L_{∞} -connections
 - Application: Obstructing Chern-Simons L_{∞} -connections

<u>Literature</u>

▲圖▶ ▲屋▶ ▲屋▶

The idea of differential cohomology

The idea of differential cohomology

/⊒ > < ≣ >

æ

< ∃ >

The idea of differential cohomology

("Generalized") Differential cohomology is about

- refining topology to differential geometry.
- refining cohomology classes by deRham classes approximating them.
- equipping higher generalized bundles with smooth connections.

The idea of differential cohomology

topology

differential geometry

-Overview: concept of nonabelian differential cohomology

Overview: concept of nonabelian differential cohomology

Overview: concept of nonabelian differential cohomology

We recall how n-functors

classify higher *G*-bundles and hence yield (nonabelian) cohomology.

イロン イヨン イヨン イヨン

-Overview: concept of nonabelian differential cohomology

We describe how smooth n-functors

encode differential forms.

イロト イヨト イヨト イヨト

-Overview: concept of nonabelian differential cohomology

We merge these two aspects to describe how *n*-bundles with connection

encode (nonabelian) differential cohomology.

-Overview: concept of nonabelian differential cohomology

We propose a concrete way to deal with the fully weak $n = \infty$ situation: \underline{L}_{∞} -connections. This yields diagrams of **smooth spaces** of the form

・ 回 と ・ ヨ と ・ ヨ と

- Overview: concept of nonabelian differential cohomology

 L_{∞} -connections lend themselves to concrete computations. As an example we can analyze higher Chern-Simons ∞ -connections as obstructions to lifts through String-like extension.

- Look at overview of obstructing Chern-Simons connections.
- Skip to main part: Nonabelian differential cohomology.

・ロン ・回 と ・ 回 と ・ 回 と

-Overview: Chern-Simons application

Overview: Chern-Simons application

Urs Schreiber On nonabelian differential cohomology

- We recall *L*_∞-algebras, which are a categorified version of ordinary Lie algebras.
- We discuss how Lie algebra cohomology generalizes to *L*_∞-algebras by looking at their Chevalley-Eilenberg differential algebras.
- We notice that for every L_{∞} -algebra g and every degree n cocycle μ on it, there is an extension

$$0 o b^{n-1}\mathfrak{u}(1) o \mathfrak{g}_\mu o \mathfrak{g} o 0$$

of \mathfrak{g} by (n-1)-tuply shifted $\mathfrak{u}(1)$, which includes and generalizes the *String extension*.

■ We define for arbitrary L_∞-algebras g a notion of higher bundles with L_∞-connection and define characteristic classes for these.

We obtain the following theorem:

・ロン ・回と ・ヨン・

Overview: Chern-Simons application

Let the degree (n + 1) cocycle μ on the L_{∞} -algebra \mathfrak{g} be in transgression with the invariant polynomial P on \mathfrak{g} .

Theorem

The obstruction to lifting a g-connection (A, F_A) to a \mathfrak{g}_{μ} -connection $(A', F_{A'})$ is a $b^n\mathfrak{u}(1)$ -connection whose single characteristic class is that of

 $P(F_A)$.

→ 同 → → 目 →

Applied to the special case that $\mathfrak g$ is an ordinary Lie algebra with bilinear invariant form $\langle\cdot,\cdot\rangle$ and corresponding 3-cocycle $\mu=\langle\cdot,[\cdot,\cdot]\rangle$ we get

Corollary

The lift of an ordinary g-connection (A, F_A) to a String 2-connection is obstructed by a $b^2\mathfrak{u}(1)$ 3-connection whose local connection 3-form is the Chern-Simons 3-form

$$\mathrm{CS}(A,F_A) = \langle A \wedge dA \rangle + \frac{1}{3} \langle A \wedge [A \wedge A] \rangle$$

and whose single characteristic class is hence the Pontryagin class of $({\cal A},{\cal F}_{\cal A})$

$$p_1 = \langle F_A \wedge F_A \rangle \,.$$

・ロト ・回ト ・ヨト ・ヨト

Nonabelian differental cohomology

Nonabelian differential cohomology

- **1** Thesis: (Nonabelian) Cohomology
- 2 Anti-Thesis: (Nonabelian) Differential Forms
- **3** Synthesis: (Nonabelian) Differential Cohomology

Nonabelian cohomology

(Nonabelian) Cohomology

・同・ ・ヨ・ ・ヨ・

-Nonabelian cohomology

└- some preliminaries

Fix • X — a manifold and • $\int_{\pi}^{Y} = a$ surjective submersion X

which for the time being we assume to come from

$$Y = \bigsqcup_{i} U_{i}$$

$$\bigvee_{\substack{\gamma \\ X}} \pi \quad -\text{ a good open cover of } X \text{ by open subsets.}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-Nonabelian cohomology

└─ some preliminaries

This Y naturally gives rise to

• Y^{\bullet} — an ∞ -groupoid

objects are points in Y

1-morphisms are points

$$\pi_1(y) \longrightarrow \pi_2(y)$$

in
$$Y \times_X Y$$

2-morphisms are points

in $Y \times_X Y \times_X Y$ etc.

(4回) (1日) (日)

-Nonabelian cohomology

└─ Definition

We write

■ **B***G* — a one-object ∞-groupoid

and

• G — the corresponding ∞ -group.

(nonabelian) cohomology of X

The $\mathbf{B}G$ -cohomology of X is

 $\operatorname{Hom}(Y^{\bullet}, \mathbf{B}G).$

イロト イヨト イヨト イヨト

Nonabelian cohomology

Examples

- **B**ⁿU(1) the strict *n*-groupoid which is trivial everywhere except in degree *n*, where it has U(1) worth of *n*-morphisms
- A standard fact about Čech cohomology implies that

Fact

 $\mathbf{B}^n U(1)$ -cohomology is **integral singular cohomology**:

$$\operatorname{Hom}(Y^{ullet}, {\mathbf B}^n U(1))_\sim = H^{n+1}(X, {\mathbb Z}).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Nonabelian cohomology

Examples

 ■ (B U) × Z — the strict 1-groupoid coming from Z copies of the stable unitary group U

A standard fact about K-theory implies

Fact

 $(\mathbf{B}U) \times \mathbb{Z}$ -cohomology is K-theory:

$$\operatorname{Hom}(Y^{\bullet},(\mathbf{B}U)\times\mathbb{Z})_{\sim}=K^{0}(X).$$

イロン イヨン イヨン イヨン

Nonabelian cohomology

Examples

In general

BG — the classifying groupoid of any ∞ -group G

Then more or less (depending on taste) by definition:

Fact

B*G*-cohomology is equivalence classes of principal *G*-bundles on *X*:

$$\operatorname{Hom}(Y^{ullet}, \operatorname{\boldsymbol{\mathsf{B}}} G))_{\sim} = \operatorname{\boldsymbol{\mathsf{G}}}\operatorname{Bund}(X)_{\sim}.$$

Nonabelian cohomology

L Interlude

- Since nonabelian cohomology classifies higher **bundles**
- ... we can hope to refine cohomology by equipping these bundles with a **connection**.
- Given a connection we expect to obtain its curvature characteristic **differential forms** on base space.

イロン イヨン イヨン イヨン

Lie ∞ -algebra valued differential forms

/⊒ > < ≣ >

3 ×

Lie ∞ -algebra valued differential forms

 L_{∞} algebras

Ordinary Lie algebras, the useful perspective

Recall:

■ g — a finite dimensional Lie algebra

The bracket defines a differential

$$d_{\mathfrak{g}}: \wedge^{\bullet}\mathfrak{g}^* \to \wedge^{\bullet}\mathfrak{g}^*$$

$$\bullet \deg(d) = +1$$

The Jacobi identity is equivalent to its nilpotency

•
$$d^2 = 0.$$

The differential graded commutative algebra (DGCA)

```
\operatorname{CE}(\mathfrak{g}) := (\wedge^{\bullet} \mathfrak{g}^*, d_{\mathfrak{g}})
```

is the Chevalley-Eilenberg algebra of \mathfrak{g} .

Lie ∞ -algebra valued differential forms

 L_{∞} algebras

We turn this around to get

Definition

Every DGCA ($\wedge^{\bullet}\mathfrak{g}^*, d_\mathfrak{g}$) for \mathfrak{g} an \mathbb{N} -graded finite dimensional vector space is the Chevalley-Eilenberg algebra of an L_{∞} -algebra \mathfrak{g} :

$$\operatorname{CE}(\mathfrak{g}) := (\wedge^{\bullet}\mathfrak{g}^*, d_\mathfrak{g}).$$

If \mathfrak{g} is concentrated in the lowest *n* degrees, we say it is a **Lie** *n*-algebra.

・ロン ・回と ・ヨン ・ヨン

Lie ∞ -algebra valued differential forms

 \vdash examples for L_{∞} algebras

Examples

- (n-1)-fold shifted $\mathfrak{u}(1)$: $CE(b^{n-1}\mathfrak{u}(1)) = (\wedge^{\bullet}\binom{n}{c}, d=0)$
- String-like extensions: for g any L_∞-algebra and for every closed element μ ∈ CEⁿ⁺¹(g), d_gμ = 0, we get a new L_∞-algebra g_μ by "killing" μ these are shifted central extensions:

$$0 o b^{n-1} \mathfrak{u}(1) o \mathfrak{g}_\mu o \mathfrak{g} o 0$$

- homotopy quotients and crossed modules: for g → h a normal sub L_∞-algebra, the homotopy quotient h//g we denote by (g → h)
- inn(g) and Weil algebra: in particular, for every g we have the Weil algebra

$$W(\mathfrak{g}) := \operatorname{CE}(\operatorname{inn}(\mathfrak{g})) := \operatorname{CE}(\mathfrak{g} \stackrel{\operatorname{Id}}{
ightarrow} \mathfrak{g})$$

Lie ∞ -algebra valued differential forms

Definition

Lie ∞ -algebra valued forms

Definition

For Y a manifold and $\mathfrak g$ an $L_\infty\text{-algebra},$ the $\mathfrak g\text{-valued}$ forms on Y are

$$\Omega^{ullet}(Y, \mathfrak{g}) := \operatorname{Hom}_{\operatorname{DGCA}}(\operatorname{W}(\mathfrak{g}), \Omega^{ullet}(Y))$$
 .

The *flat* g-valued forms are

$$\Omega^{ullet}_{\mathrm{flat}}(Y, \mathfrak{g}) := \mathrm{Hom}_{\mathrm{DGCA}}(\mathrm{CE}(\mathfrak{g}), \Omega^{ullet}(Y)).$$

- ★ 臣 ▶ - - 臣

Lie ∞ -algebra valued differential forms

Definition

- For g an ordinary Lie algebra, this reproduces the ordinary notion of g-valued 1-forms.
- $b^{n-1}\mathfrak{u}(1)$ -valued forms are just ordinary *n*-forms:

$$CE(b^{n-1}\mathfrak{u}(1)) \xleftarrow{} W(b^{n-1}\mathfrak{u}(1))$$

$$(A, dA=0) \qquad (A\in\Omega^{n}(Y), F_{A}=dA)$$

$$\Omega^{\bullet}(Y) = \Omega^{\bullet}(Y)$$

▲圖▶ ▲屋▶ ▲屋▶

└─ Lie ∞-algebra valued differential forms

Definition

For g an ordinary Lie algebra, μ an (n+1)-cocycle, g_μ-valued forms are essentially Chern-Simons forms:

イロト イヨト イヨト イヨト

Lie ∞ -algebra valued differential forms

- Integration

Integration of L_{∞} -algebras

We can integrate L_∞ -algebras to Lie ∞ -groupoids.

smooth classifying spaces

- A smooth space is (for us, here) a sheaf on manifolds.
- The smooth classifying space of \mathfrak{g} -valued forms is $S(W(\mathfrak{g})) : U \mapsto \operatorname{Hom}_{\operatorname{DGCA}}(W(\mathfrak{g}), \Omega^{\bullet}(U))$

Fact: \mathfrak{g} -valued forms are smooth maps into $S(W(\mathfrak{g}))$

$$\begin{split} & \operatorname{Hom}_{\operatorname{smth}.\operatorname{Space}}(Y, \mathcal{S}(\operatorname{W}(\mathfrak{g}))) \simeq \Omega^{\bullet}(Y, \mathfrak{g}) \\ & \operatorname{Hom}_{\operatorname{smth}.\operatorname{Space}}(Y, \mathcal{S}(\operatorname{CE}(\mathfrak{g}))) \simeq \Omega^{\bullet}_{\operatorname{flat}}(Y, \mathfrak{g}) \end{split}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Lie ∞ -algebra valued differential forms

- Integration

Definition: strict path n-groupoids

Write $\mathcal{P}_{(n)}(Y)$ for the strict globular fundamental *n*-groupoid of *Y*: *k*-morphisms are *thin*-homotopy classes of globular *k*-paths. Write $\Pi_n(Y)$ for $\mathcal{P}_n(Y)$ with full homotopy divided out for *n*-paths.

(4回) (4回) (4回)

Lie ∞ -algebra valued differential forms

- Integration

Paths in the L_∞ -algebra classifying space

Definition

The Lie *n*-group G integrating \mathfrak{g} is $\mathbf{B}G := \prod_n (S(CE(\mathfrak{g})))$.

For instance, for \mathfrak{g} an ordinary Lie algebra, and G the simply connected Lie group integrating it, the fact that

 $\mathbf{B} G = \Pi_1(S(\mathrm{CE}(\mathfrak{g})))$

corresponds to the integration method of Lie algebras in terms of equivalence classes of g-valued 1-forms on the interval.

・ロン ・回 と ・ 回 と ・ 回 と

Lie ∞ -algebra valued differential forms

- Integration

Smooth 2-Functors and differential forms

Theorem: ([5], see also [1])

Let G be a strict Lie 2-group and \mathfrak{g} its Lie 2-algebra. Then smooth 2-functors from 2-paths into **B**G correspond to \mathfrak{g} -valued forms

$$\begin{split} &\operatorname{Hom}_{\mathrm{s2Grpd}}(\mathsf{\Pi}_2(Y),\mathsf{B} G) = \Omega^{\bullet}_{\mathrm{flat}}(Y,\mathfrak{g}) = \operatorname{Hom}_{\mathrm{sSpace}}(Y,S(\mathrm{CE}(\mathfrak{g}))) \\ &\operatorname{Hom}_{\mathrm{s2Grpd}}(\mathcal{P}_2(Y),\mathsf{B} G) = \Omega^{\bullet}_{\mathrm{fake-flat}}(Y,\mathfrak{g}) \subset \operatorname{Hom}_{\mathrm{sSpace}}(Y,S(\mathrm{W}(\mathfrak{g}))) \,. \end{split}$$

...and using [<u>2</u>]

 $\operatorname{Hom}_{\mathrm{s3Grpd}}(\Pi_3(Y), \textbf{BE}(\mathcal{G})) = \Omega^{\bullet}(Y, \mathfrak{g}) = \operatorname{Hom}_{\mathrm{sSpace}}(Y, \mathcal{S}(\mathrm{W}(\mathfrak{g})))$

(日) (同) (E) (E) (E)

Lie ∞ -algebra valued differential forms

- Integration

Remark

If set up correctly, this statement should generalize to any Lie n-algebra and the Lie n-group G integrating it

$$\begin{split} &\operatorname{Hom}_{\mathrm{s}\infty\mathrm{Grpd}}(\Pi_{\infty}(Y),\mathsf{B}\mathcal{G}) = \Omega^{\bullet}_{\mathrm{flat}}(Y,\mathfrak{g}) = \operatorname{Hom}_{\mathrm{s}\mathrm{Space}}(Y,\mathcal{S}(\mathrm{CE}(\mathfrak{g})) \\ &\operatorname{Hom}_{\mathrm{s}\infty\mathrm{Grpd}}(\Pi_{\infty}(Y),\mathsf{B}\mathrm{INN}_{0}(\mathcal{G})) = \Omega^{\bullet}(Y,\mathfrak{g}) = \operatorname{Hom}_{\mathrm{s}\mathrm{Space}}(Y,\mathcal{S}(\mathrm{W}(\mathfrak{g}))) \end{split}$$

(日) (同) (E) (E) (E)

- Interlude

Punchline

Hence we express ordinary cohomology as well as differential forms as maps from here to there.

- Ordinary cohomology is about *n*-functors from the Čech *n*-groupoid Y[•].
- DeRham cohomology is about smooth *n*-functors from the path *n*-groupoid $\prod_n(X)$.

To get differential cohomology, we notice that these two aspects merge in a natural way.

・ 回 ト ・ ヨ ト ・ ヨ ト

(nonabelian) differential cohomology

/⊒ > < ≣ >

æ

We shall now try to connect nonabelian cohomology with differential forms by completing diagrams of the form

I ► < I ► ►</p>

- E - N

On nonabelian differential cohomology

Differential cohomology

Example: line bundles

Example: line bundles

Recall that

a line bundle is given by a functor

$$Y^{\bullet} \xrightarrow{g} \mathbf{B} U(1)$$

a closed 2-form is given by a smooth 2-functor

$$\Pi_2(X) \xrightarrow{B} \mathbf{B}^2 U(1)$$

How can these two morphisms be connected?

- 4 同 6 4 日 6 4 日 6

Example: line bundles

Definition

Let $\Pi_2^Y(X)$ be something like the codiagonal of

$$\Pi_2(Y^{\bullet}) = (\cdots \Pi_2(Y^{[3]}) \Longrightarrow \Pi_2(Y^{[2]}) \Longrightarrow \Pi_2(Y)),$$

the simplicial 2-groupoid of 2-paths in the cover.

(Details in [6] and for n = 1 in [4]). This 2-groupoid is generated from

2-paths in Y;

jumps within a fiber;

modulo some relations.

Image: A = A = A

Example: line bundles

Theorem (corollary of [<u>4]</u> and [<u>5]</u>)

Line bundles with connection are equivalent to diagrams

Here $EU(1) := INNU(1) = (U(1) \rightarrow U(1))$ is the strict 2-group arising as the homotopy quotient of the identity on U(1).

・ロト ・回ト ・ヨト

Example: higher line bundles

While details haven't been written up, it is clear that the same holds true for all *n*:

Abelian (n-1)-gerbes with connection, *n*th Deligne cohomology, degree *n* Cheeger-Simons differential characters are all equivalent to diagrams

$$Y^{\bullet} \xrightarrow{g} \mathbf{B}^{n} U(1) \qquad [g] \in H^{n+1}(X, \mathbb{Z})$$

$$\bigcap_{n+1}^{Y} (X) \xrightarrow{(g,A,F_{A})} \mathbf{B} \mathbf{E} \mathbf{B}^{n-1} U(1) \qquad [g,A] \in \overline{H}^{n+1}(X, \mathbb{Z})$$

$$\bigcup_{n+1}^{Y} (X) \xrightarrow{F_{A}} \mathbf{B} \mathbf{B}^{n} U(1) \qquad [F_{A}] \in H^{n+1}_{dR}(X)$$

Example: non-abelian differential 2-coycles

Nonabelian gerbes with connection

We can in principle use any other *n*-group.

Theorem ([6], see also [1])

Let G = AUT(H) be a strict automorphism Lie 2-group of a Lie group H. Smooth 2-functors

$$\mathcal{P}_2^Y(X) \longrightarrow \mathbf{B}G$$

are the same as the nonabelian differential cocycles on H-gerbes described in [Breen], with vanishing fake curvature.

As before, we get rid of the fake flatness constraint by mapping into $BEG := BINN_0(G)$ instead...

イロン イヨン イヨン イヨン

Example: non-abelian differential 2-coycles

Consequence of [6] and [2]

The full differential cocycles of nonabelian 2-bundles come from diagrams of smooth 3-functors

- More examples: String connections
- Skip further examples.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Example: non-abelian differential 2-coycles

String 2-bundles with connection

Another interesting choice is

Definition

For \mathfrak{h} a semisimple Lie algebra and $\mu = \langle \cdot, [\cdot, \cdot] \rangle$ the canonical 3-cocycle, the Lie 3-algebra \mathfrak{g}_{μ} integrates, in particular, to a strict Lie 2-group

$$G = \operatorname{String}(H)$$

of the simple, compact, simply connected Lie group H [BCSS].

This leads to String 2-connections.

Consequence of [BCSS], [BBK] [BaezStevenson]

Differential String(H)-cocycles describe String bundles with connection.

(1日) (日) (日)

Э

└─ Characteristic forms

To extract the characteristic forms of such a nonabelian differential cocycle we still need to complete the bottom part of this diagram.

We expect "?? = **BB**G", which however only exists if G is sufficiently abelian.

回 と く ヨ と く ヨ と …

Characteristic forms

Rational approximation

But there are abelian ∞ -groups approximating **BB***G*: the *rational* cohomology of B|G|.

| ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

- Characteristic forms

Therefore the right answer for general Lie n-group G should be

Definition

A nonabelian differential G-cocycle on X is a diagram of smooth ∞ -functors

where n_i is the degree of the *i*-th nontrivial rational cohomology group of B|G|, the degree of the *i*-th invariant polynomial of G.

Characteristic forms

- view two examples for characteristic groupoids
- proceed towards L_{∞} -connections

▲ □ ► < □ ►</p>

- < ≣ →

æ

Characteristic forms

Example

Take G an ordinary compact Lie group. Then $H^{\bullet}(BG, \mathbb{R}) = inv(\mathfrak{g})$ is generated from the invariant polynomials P_i on \mathfrak{g} and hence

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Characteristic forms

Example

Take G = String(H) the strict String 2-group of a compact, simple, simply connected Lie group H. Then by [BaezStevenson]] $H^{\bullet}(B|G|, \mathbb{R}) = \text{inv}(\mathfrak{g})/\langle P \rangle$, where P is the suitably normalized Killing form on H.

Hence the characteristic forms of String(H) 2-bundles are those of the underlying *H*-bundles, but without the first Pontryagin class.

 ${}^{igsir }$ From smooth $\infty ext{-}$ groupoids to smooth spaces

To make progress with understanding how to realize that in detail, it is useful to make the

Observation

If the fibers of Y are *n*-connected, then $Y^{\bullet} \simeq \prod_{n=1}^{\text{vert}}(Y)$ and hence we **should** be able to use path groupoids for all *domains*

・ロン ・回 と ・ ヨ と ・ ヨ と

Dash From smooth ∞ -groupoids to smooth spaces

What full nonab. differential cohomology should be like

But recalling the integration theory of Lie *n*-algebras, we know that we **should** also be able to use path groupoids for all *codomains*

・ロト ・回ト ・ヨト ・ヨト

 \vdash From smooth ∞ -groupoids to smooth spaces

What full nonab. differential cohomology should be like

Finally then, morphisms between path groupoids should be just morphisms of the underlying spaces.

This leads us to study the following objects:

Image: A image: A

L_{∞} -connections

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Definition

Definition: L_{∞} -connection ([3])

For \mathfrak{g} an L_{∞} -algebra and X a smooth space, a (generalized Cartan-Ehresmann) \mathfrak{g} -connection on X is

- a choice of smooth surjection $Y \longrightarrow X$
- a diagram

of smooth spaces.

Examples

Example: ordinary Cartan-Ehresmann connections

For G an ordinary compact Lie group and \mathfrak{g} its ordinary Lie algebra, let $Y = P \rightarrow X$ by a principal G-bundle. A connection on P is given by a \mathfrak{g} -valued 1-form $A \in \Omega^1(P, \mathfrak{g})$ on Y = P satisfying two conditions which say that the diagram

Notice that $W(\mathfrak{g})_{\text{basic}} = H^{\bullet}(BG, \mathbb{R})$ is indeed the algebra of invariant polynomials on \mathfrak{g} .

Obstructing Chern-Simons connections

Application: Obstructing Chern-Simons connections

Obstructing Chern-Simons connections

Let \mathfrak{g} be an ordinary Lie algebra with bilinear invariant form $\langle \cdot, \cdot \rangle$ and let $\mu = \langle \cdot [\cdot, \cdot] \rangle$ the corresponding cocycle.

Definition

The Chern-Simons 3-bundle (CS 2-gerbe) of a g-bundle with connection is a $b^3\mathfrak{u}(1)$ -connection whose characteristic 4-class is the Pontrjagin 4-class

$$P = \langle F_A \wedge F_A \rangle$$

of the g-bundle.

Theorem

Chern-Simons 3-bundles are the obstructions to lifting g-bundles to String 2-bundles, i.e. to g_{μ} -2-bundles.

イロン イヨン イヨン イヨン

- The computation

One computes this obstruction in a systematic manner by first lifting into the weak cokernel of

$$(b^{n-1}\mathfrak{u}(1)
ightarrow\mathfrak{g}_{\mu})\,,$$

which is always possible, and the projecting out the shifted copy

$$(b^{n-1}\mathfrak{u}(1)
ightarrow\mathfrak{g}_{\mu})$$
 \longrightarrow $b^{n}\mathfrak{u}(1)$

which contains the failure of the potential lift to just \mathfrak{g}_{μ} . Applying this procedure to the diagram describing a \mathfrak{g} -connection as a whole yields...

(4 同) (4 回) (4 回)

- The computation

└─ The computation

By chasing the generators of $W(b^n u(1))$ through this diagram one obtains the claimed result.

▲ 御 ▶ ▲ 臣 ▶

- < ≣ →

æ

Literature

- Generalized differential cohomology
- 2-Bundles and String 2-Group
- Connections on nonabelian gerbes
- *n*-Transport

< ≣⇒

æ

- Literature

Differential cohomology

- Daniel S. Freed; Dirac Charge Quantization and Generalized Differential Cohomology, [arXiv:hep-th/0011220]
- 2 M.J. Hopkins, I.M. Singer, Quadratic functions in geometry, topology,and M-theory, [arXiv:math/0211216]

- Literature

2-Bundles and String 2-Group

- Baas, Böckstedt, Kro
- J. Baez, A. Crans, U.S, D. Stevenson, From loop groups to 2-groups, [arXiv:math/0504123]
- J. Baez, D. Stevenson, The Classifying Space of a Topological 2-Group, [arXiv:0801.3843]
- T. Bartels, 2-Bundles, [arXiv:math/0410328]
- G. Ginot, M. Stienon, G-gerbes, principal 2-group bundles and characteristic classes, [arXiv:0801.1238]

- 4 周 ト - 4 日 ト - 4 日 ト

- Literature

Connections on nonabelian gerbes

- Paolo Aschieri, Luigi Cantini, Branislav Jurčo, Nonabelian Bundle Gerbes, their Differential Geometry and Gauge Theory, [arXiv:hep-th/0312154]
- Lawrence Breen, Differential Geometry of Gerbes and Differential Forms, [arXiv:0802.1833]

Literature

n-Transport

- J. Baez and U. Schreiber, Higher gauge theory, in Contemporary Mathematics, 431, Categories in Algebra, Geometry and Mathematical Physics, [arXiv:math/0511710].
- 2 D. Roberts and U. Schreiber, *The inner automorphism 3-group of a strict 2-group*, to appear in Journal of Homotopy and Related Structures, [arXiv:0708.1741].
- 3 H. Sati, U. Schreiber, J. Stasheff, L_∞-connections and applications to String and Chern-Simons n-transport, [arXiv:0801.3480]
- U. Schreiber and K. Waldorf, *Parallel transport and functors*, [arXiv:0705.0452v1].
- 5 U. Schreiber and K. Waldorf, 2-Functors vs. differential forms, [arXiv:0802.0663v1]
- 6 U. Schreiber and K. Waldorf, Parallel transport and 2-functors, to