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Abstract

After going through some ground work concerning generalized smooth spaces and their differential
graded ommutative algebras of forms, I talk about the issue of transgression of transport ω-functors and
of Lie ∞-valued connections to smooth mapping spaces.

I discuss how what we call transgression of ω-functors here is really the morphism part of an internal
hom, and how that does reproduce the ordinary notion of transgression of differential forms under the
relation between n-transport and differential forms.
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1 Introduction

I want to better understand the

• general systematics

and the

• specific details

of what it means to transgress

• transport n-functors [1, 3, 4, 5]

and

• Lie n-algebra valued connections [6]

to mapping spaces.
This is essentially about understanding the pull-push operation of n-transport and n-connections on a

“target space” tar from right to left through a span

hom(par, tar)⊗ par
p1

uullllllllllllll
ev

''OOOOOOOOOOOOO

hom(par, tar) tar

to obtain an n-transport and n-connection on the “configuration space” of maps

conf := hom(par, tar)

from some “parameter space” par to tar.
But in fact it turns out that the “good” answer does apparently not quite involve the naive push-forward

along p1, but a slight variant, which then amounts to simply defining the transgression of the n-transport or
n-connection tra to be

hom(Idpar, tra) .

This difference to the naive definition of transgression as direct push-pull through the above span actually
takes care of a fact neglected in standard discussions that do not make the n-categorical nature of n-transport
manifest: namely that under transgression not only the domain, but also the codomain of n-transport and
n-connections changes.

For instance, in the simplest kind of example, an ordinary abelian 2-connection is not really something
taking values in U(1), but rather something taking values in BU(1). Transgressing it to loop spaces by
setting par = S1 in the above turns it into a 1-connection with values in hom(S1,BU(1)), which is indeed

ΛBU(1) = U(1)

as it should be.
So this general notion of transgression is what shall be discussed here. I then recall the general relation

between smooth n-functors and differential forms, and discuss how the above notion of transgression of
n-functors does reproduce the ordinary notion of transgression of differential forms.

Before getting into the issue of transgression proper, I try to lay some necessary groundwork on the general
concept of generalized smooth spaces and the differential graded-commutative algebras of differential forms
on them.

Here I take “generalized smooth spaces” simply to be presheaves over manifolds. This is clearly the right
ambient topos, in general, for any discussion of smooth parallel n-transport and smooth n-connections.
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My tentative discussion of differential forms on such generalized smooth spaces, and the relation to
general differential graded commutative algebras, is included here because I am not aware of a discussion of
the necessary points in the literature. This may, however, well be – in parts or possibly even in total – just
be due to my woeful ignorance.

Hopefully much of what I am trying to say concerning the general issue of smooth spaces versus differential
graded algebras is actually well known, possibly in slightly different guise, in rational homtopy theory.

In any case, after having dealt to some extent with this groundwork, I’ll define in more detail the problem
of transgression to be discussed here, and then start looking at concrete questions and specific examples.

Acknowedgements. I am indebted to Todd Trimble for teaching me much of the correct abstract stuff
appearing here and telling me about a bunch of facts. Of course all the incorrect abstract stuff and the
remaining mistakes are mine.

Most of what I say here is aimed at, motivated by and draws from collaborative work with Konrad
Waldorf [4] and with Hisham Sati and Jim Stasheff [6].

I benefitted some time ago from conversations with Simon Willerton about the general issue of transgres-
sion, for which I am grateful. With Bruce Bartlett I had talked in more detail about the idea of understanding
the standard pull-push idea of transgression as an internal hom, which here constitutes 4.2.

2 Differential graded-commutative algebras

Well behaved differential graded commutative algebras correspond, by dualization, to codifferential graded
co-commutative coalgebras, which in turn describe semistrict Lie∞-algebras g, namely ω-categories internal
to vector vector spaces and equipped with a skew-symmetric bracket functor which satisfies a Jacobi identity
up to coherent equivalence. In straightforward generalization of the situation for ordinary Lie algebras, we
say that the original DGCA is the Chevalley-Eilenberg algebra of the Lie ∞-algebra g.

In this way DGCAs describe the differential aspect of higher categegorical Lie groups, which are one-
object ∞-groupoids (for instance modeled as suitably smooth Kan-complexes).

From a homotopy theorists point of view an ∞-groupoid is essentially “the same” as a topological space.
A smooth ∞-groupoid is therefore something like a smooth space.

There is a also a more direct route leading from DGCAs to spaces: to some extent, every DGCA arises
as (a sub-DGCA of) the algebra of differential forms on some smooth space (proposition 3) below.

Definition 1 We write DGCAs for the category whose objects are differential graded commutative algebras
of non-negative degree, and whose morphisms are linear maps which repsect both the algebra structure and
the differential.

Since they arise as Chevalley-Eilenberg algebras of Lie∞-algebroids, we will by default denote differential
graded commutative algebras by symbols “CE(g, V )”, where V is an associative algebra and g an L∞-algebra,
satisfying certain properties. This will, however, not play any role in detail here.

3 Smooth spaces

In all of the following, fix once and for all S to be one of the following sites:

• S = Conv – the site of convex subsets of R ∪ R2 ∪ R3 ∪ · · · and all smooth maps between these;

• S = Manifolds – the site of all smooth manifolds and all smooth morphisms between these.

The objects of S are then used to “probe” smooth spaces. Or rather, a smooth space is now defined to
by anything which may be “probed” by objects of S.
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Definition 2 (smooth spaces) A presheaf over S we will call a (generalized) smooth space. We write

S∞ := SetS
op

for the category of set-valued presheaves on S.

The symbol “S∞” is to remind us of “smooth spaces”.
The set X(U) which such a presheaf X assigns to an object U of S plays the role of the set of smooth

maps from U into X. Precisely if X is itself represented by an object of S do these sets precisely coincide
with the set of morphisms in S from U to X.

Sometime we will address the set X(U) as the set of plots from U into X. This is standard terminology
for the special kind of smooth spaces called Chen smooth spaces or diffeological spaces, discussed in 3.1.

Fact 1 The category S∞ is a presheaf topos, hence comes with a couple of nice properties.

• S∞ is cartesian closed.

– The tensor product is
X ×S∞ Y : U 7→ X(U)×Set Y (U) .

– The internal hom is
homS∞(X,Y ) : U → HomS∞(U ×S∞ X,Y ) .

I’ll generally write Hom for the external hom-set and hom for the internal hom object.
It is this internal hom which will play an important role in the discussion of transgression. Its existence

makes the collection of maps from one smooth space to another itself into a smooth space. Trangression
is about creating from a structure on a smooth space Y a corresponding structure on the smooth space
homS∞(X,Y ), for X any other smooth space.

3.1 Diffeological spaces as smooth spaces

A useful subclass of smooth spaces are those called

• diffeological spaces

or

• Chen-smooth spaces.

These are presheaves X on S which are “quasi representable” in the sense that the set of smooth maps
X(U), called plots in this case, which they assign to any object U of S, is required to be a subset of the set
of set maps from U to some given set Xs,

X(U) ⊂ HomSet(U,Xs) .

A morphism X → Y of such diffeological or Chen-smooth spaces is taken to be a morphism of such presheaves
which is induced by a map of sets Xs → Ys.

Definition 3 (diffeological smooth spaces) The category Diffeo of diffeological spaces has as objects
smooth spaces X for which there exists a set Xs such that for all U ∈ Obj(S) we have X(U) ⊂ HomSet(U,Xs),
and whose morphisms f : X → Y are morphisms of smooth spaces which come from maps of sets fs : Xs →
Ys, in that

f(U) : φ ∈ HomSet(U,Xs) 7→ fs ◦ φ ∈ HomSet(U, Ys)

for all U ∈ Obj(S).
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Proposition 1 The category of diffeological spaces is itself already closed. The internal hom is given as
follows: its underlying set is

homDiffeo(X,Y )s := HomSet(Xs, Ys)

and its plots on any U ∈ Obj(X) are precisely those maps of sets φ : U → HomSet(X,Y ) for which the
composite

U ×Set Xs
φ×Id// HomSet(Xs, Ys)×Set Xs

ev // Ys

induces a map of diffeological spaces.

Proof. This follows by tracing everything back to the closedness of Set.
Let f : X × Y → Z be a morphism of diffeological spaces, so that fs : Xs × Ys → Zs is a map of sets

with the property that for any φ ∈ (X × Y )(U) for any U ∈ Obj(S) we have

(f ◦ φ : U
φ // Xs × Ys

fs // Zs ) ∈ Zs(U) .

Then writing
f̂s : Xs → HomSet(Ys, Zs)

for the transform of fs in Set, we find that

f̂s ◦ ρ : V
ρ // Xs

f̂s // HomSet(Ys, Zs)

is a plot of homDiffeo(Y,Z) precisely if ρ is a plot of Xs by taking the product of everything with Ys

f̂s ◦ ρ : V × Ys
ρ×Id // Xs × Ys

f̂s //

fs

77HomSet(Ys, Zs)× Ys
ev // Zs .

Conversely, every diffeological map f̂ : X → hom(Y,Z) gives rise to a diffeological map f : X × Y → Z this
way, using the fact that a plot of X × Y is a plot of X and a plot of Y . �

3.2 Differential forms on smooth spaces

Definition 4 (differential forms on smooth spaces) We write Ω• for the smooth space of differential
forms

Ω• : U 7→ Ω•(U) .

A differential form ω on a smooth space X is a morphism of smooth spaces

ω : X → Ω• .

We write
Ω•(X) := HomS∞(X,Ω•)

for the collection of differential forms on X.

Proposition 2 For any smooth space X, the set Ω•(X) naturally inherits the structure of a graded-commutative
differential algebra.

This DGCA structure on Ω•(X) is induced by the dg-algebra structure of Ω•(U) for all objects U of S
and the fact that exterior derivative and wedge product both commute with pullback of forms.
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Definition 5 We write
Ω• : S∞ → DGCAs

for the contravariant functor from smooth spaces to differential non-negatively graded-commutative algebras.

Conversely, every differential graded-commutative algebra yields a smooth space.

Definition 6 We write
Hom(−,Ω•(−)) : DGCAs→ S∞

for the contravariant functor which sends any DGCA CE(g, V ) to the smooth space X(g,V ) defined by setting

X(g,V ) : U 7→ HomDGCAs(CE(g, V ),Ω•(U))

for all U ∈ Obj(S).

Proposition 3 Notice that there is a canonical embedding of the original DGCA into the DGCA of differ-
ential forms on the corresponding space

CE(g, V ) � � // Ω•(Xg,V ) .

Proof. This sends each elements k of CE(g, V ) to the element of HomS∞(X(g,V ),Ω•) which for any U sends
any f ∈ HomDGCAs(CE(g),Ω•(U)) to f(k) ∈ Ω•(U). �

Fact 2 The contravariant functors

Ω• : S∞ oo // DGCAs : Hom(−,Ω•(−))

form an adjunction.

In other words for all smooth spaces X and DGCAs CE(g, V ) we have isomorphisms of Hom-sets

HomS∞(HomDGCAs(CE(g, V ),Ω•(−)), X) ' HomDGCAs(CE(g, V ),Ω•(X))

natural in both arguments.
(** Urs: Thanks to Todd for this fact. I AM GUESSING that we should get more than an adjunction

in cohomology, and possibly with some nice assumptions here and there, but I don’t know. **)

3.3 Currents on smooth spaces

Using the construction of smooth spaces of maps, we can equip for any smooth space X the dg-algebra of
differential forms, whose underlying set was defined to be

Ω•(X) = HomS∞(X,Ω•)

with the structure of a smooth space, by setting, instead,

Ω•(X) := homS∞(X,Ω•) .

Proposition 4 The exterior differential

d : Ω•(X)→ Ω•(X)

and the wedge product
∧ : Ω•(X)× Ω•(X)→ Ω•(X)

are morphisms of smooth spaces.
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Proof. I think this amounts to a triviality after just writing out what this means in detail, which is straight-
forward but a little lengthy. But I should check this again. �

Using the smooth structure on Ω•(X) we can define currents, the generalization of distributions from
0-forms to arbitrary forms.

Definition 7 (currents) For X any smooth space, and p ∈ N, a degree p current c on X is a smooth linear
map

c : Ωp(X)→ R .

The space of all currents
C•(X) := homS∞(Ω•(X),R)

inherits the structure of a smooth chain complex.

3.3.1 Examples

Definition 8 (δ-currents) For X any compact orientable manifold of dimension n and f : X → Y any
smooth map, we obtain a current

δX,f ∈ C(Y )n

on Y defined on any ω ∈ Ω•(Y ) by

δX,f : ω 7→
∫
X

f∗ω ,

where we take the integral of an n-form over an m-dimensional compact manifold to be zero when m 6= n.

3.4 Differential forms on spaces of maps

A large class of differential forms on spaces of maps maps(X,Y ) arises from pairs

(c, ω) ∈ C•(X)⊗ Ω•(Y )

consisting of a current c on X and a differential form ω on Y .

Proposition 5 For X and Y smooth spaces and for (c, ω) ∈ Cn(X)⊗ Ωm(Y ), the assignment

f ∈ HomS∞(U ⊗X,Y ) 7→ c(f∗ω) ∈ Ωm−n(U)

for all U ∈ Obj(S) defines a differential form

ωc ∈ Ωm−n(maps(X,Y )) .

3.4.1 Examples

Let x be any point in X and write δx ∈ C0(X) for the corresponding delta-distribution 0-current which
evaluates functions ar x. Let F ∈ Ω0(Y ) be any smooth function on Y , then we obtain a smooth function

Fδx
∈ Ω0(maps(X,Y ))

whose value on any map γ : X → Y is F (γ(x)).
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3.5 Transgression of differential forms on smooth spaces

Definition 9 (transgression of differential forms) Let X be a compact manifold of dimension n. We
obtain a smooth map of smooth DGCAs

tgX,Y : Ω•(Y ) // Ω•(hom(X,Y ))

by composing the pullback along
ev : hom(X,Y )×X → Y

with the δ-current from definition 8:

tgX,Y : Ω•(Y )

ev∗ ))SSSSSSSSSSSSSS

tgX,Y // Ω•(hom(X,Y ))

Ω•(hom(X,Y )×X)
δX

55kkkkkkkkkkkkkk

Remark. This is usually interpreted as the pull-push operation from right to left through the span

hom(par,P)⊗ par

p1vvlllllllllllll
ev

&&NNNNNNNNNNNN

hom(par,P) P

where the push-forward along p1 corresponds to the “fiber integration” δX .
We will define a notion of trangression that makes sense more abstractly in 4, which will reproduce

the above notion of transgression of differential forms using the relation between differential n-forms and
BnU(1)-valued smooth ω-functors described in 9.

Proposition 6 For X a closed manifold, the curvature of a transgressed form is the transgression of the
original curvature: for Y any smooth space and ω ∈ Ω•(Y ) any differential form on Y , we have

d(tgX,Y ω) = tgX,Y (dω) .

Proof. The transgressed form is the presheaf morphism

tgX,Y ω : hom(X,Y )→ Ωn−1

given by
evU � //

∫
X

ev∗UB

U HomS∞(U ×X,Y ) // Ω•(U)

.

Acting on this with the differential d : Ω•(hom(X,Y ))→ Ω•(hom(X,Y )) yields the presheaf morphism

evU 7→ dU

∫
X

ev∗UB =
∫
X

dUev∗UB =
∫
X

(dU + dX)ev∗UB =
∫
X

ev∗UdB .

For all U ∈ Obj(S) we have
dX×U = dX + dU .

�
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3.5.1 Examples

Let X = S1 ' R/Z be the circle. For any abject U of S, let ∂
∂s ∈ ΓT (U ×X) be the canonical vector field

around the S1 factor.
Given any differential form B ∈ Ωn(Y ), its transgression to hom(X,Y ) is the morphism of presheaves

tg : hom(X,Y )→ Ωn−1

given by
evU � //

∫
[0,1]

(ι ∂
∂s

ev∗uB)(s) ds

U HomS∞(U ×X,Y ) // Ωn−1(U)

.

4 ω-Functor trangression

4.1 Smooth ω-functors and differential forms

For Y any smoth space, denote by Pn(Y ) the smooth n-groupoid of thin-homotopy classes of n-paths in X.

Proposition 7 Smooth n-functors
tra : Pn(Y )→ BnU(1)

are in bijective correspondence with differential n-forms ω ∈ Ωn(X). In fact, these n-forms naturally live in
an n-category ZnId(Y ) and we have a canonical isomorphism

nFunct∞(Y,BnU(1)) ' ZnId(Y )

given by exponentiated intgration of forms.

Proof. For n = 1 this is shown in [3]. For n = 2 in [4]. The same kind of proof goes through for all n. �

4.2 The notion of transgression

We define what we will understand under the transression of an ω-functor, comment on how this fits into the
general logic of transgression, and then discuss a couple of examples, proving in particular (proposition 10 and
corollary 1 below) that under the identification of ω-functors with differential forms from proposition 7 our
ω-functor transgression reproduces the ordinary notion of transgression of differential forms from definition
9.

For definiteness, consider ω-categories, living in the closed monoidal category (ω − Cat,⊗) described in
[2].

Definition 10 (transgression for ω-functors) Given an ω-functor

tra : P → T

and given an ω-category par, we call the ω-functor

homωCat(par, tra) : homωCat(par,P)→ homωCat(par, t)

the transgression of tra to par.

Throughout I write Hom for the external and hom for the internal hom.
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Remark: Interpretation of transgression as a pull-push operation. Transgression of ω-functors as
defined above is essentially the pull-push operation from right to left through the span

hom(par,P)⊗ par

p1vvlllllllllllll
ev

&&NNNNNNNNNNNN

hom(par,P) P

.

Pulling back tra : P → T along the right leg of this span yields the ω-functor ev∗tra

hom(par,P)⊗ par
ev

&&NNNNNNNNNNNN

vvlllllllllllll ev∗tra

%%
hom(par,P) P tra // T

.

Then push-forward of ev∗tra along the left leg amounts essentially to passing to the hom-adjunction transform
image under

k : Hom(hom(par,P)⊗ par, T ) '−→ Hom(hom(par,P),hom(par, T )) .

We have
hom(par, tra) = k(ev∗(tra))

as one checks in components. (This should follow immediately from trivial abstract nonsense, but I am not
sure how to write that down. )

To see that k is essentially push-forward along p1, let

R : hom(par,P)⊗ par→ L

Q : hom(par,P)→ L

be any 2-n-functors, and let

r : Hom(hom(par,P), L) ↪→ Hom(hom(par,P),hom(par, L))

be the injection induced by the injection

L ↪→ hom(par, L)

given by
l 7→ (par→ {•} l→ L) .

Then we have
Hom(R, p∗1Q) ' Hom(k(R), r(Q))

by the hom-adjunction

hom(par,P)⊗ par

p1 ((RRRRRRRRRRRRR

F

&&
L

hom(par,P)
Q

::tttttttttt��
))))))))))

))))))))))

' hom(par,P)

k(F )

$$

r(Q)

::
hom(par, L)

��

.
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4.3 Loop 2-groupoids

Let G(2) be a strict smooth 2-group coming from the crossed module

H
t // G

α // Aut(H)

and BG(2) the strict 1-object 2-groupoid it corresponds to. It is a smooth 2-groupoid, i.e. a strict 2-groupoid
internal to S∞.

Definition 11 (loop groupoid) The 2-groupoid of strict 2-functors from the free abelian group on one
generator to G(2)

ΛG(2) := Homsmooth2−groupoids(BZ,BG(2))

is called the loop groupoid of G(2).

The terminology here generalizes that introduced by Willerton, who considered loop 1-groupoids of
ordinary 1-groups.

Proposition 8 The loop 2-groupoid ΛG(2) is characterized in components as follows:

• Its space of objects is isomorphic to G.

• Its space of 1-morphisms is isomorphic to (G × G) × (G nα H). Source and target maps are the
projections on the first and second G-factor, respectively, and composition is given by

(s2, t2, (g2, h2)) ◦ (s1, t1 = s2, (g1, h1)) = (s1, t2, (g2g1, h2α(g2)(h1)))

(the details of the appearance of semidirect product on the right depend on a pair of arbitrary conventions
which define the choice of isomorphism between crossed modules and strict 2-groups.)

Proof. Consider this pasting diagram equation in BG(2)

• g1 //

s1

��

• g2 //

t2=s2

��

•

t2

��
• // • // •

h1

|� ��������������

��������������

h2

|� ��������������

��������������

=

• g2g1 //

s1

��

•

t2

��
• // •

h1

|� ��������������

��������������

�

4.3.1 Examples

Proposition 9 The transgression of a G(2) 2-transport on X, truncated as degree 2, is a ΛG(2) 1-transort
on loops in X. More precisley, if

tra : P2(X)→ T

is a locally (BG(2) ↪→ T )-trivializable 2-transport on X, then

hom(BZ, tra) : (ΛP2(X))1 → (ΛT )1

is a locally (ΛG(2) ↪→ ΛT )-trivializable 1-transport.
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Proof. We simply pick any local trivialization

P2(Y ) π // //

triv

��

P2(X)

tra

��
BG(2)

� � i // T

t

'

v~ uuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuu

of tra and hit the entire diagram with hom(BZ,−) to obtain a smooth local trivialization of hom(BZ, tra)

hom(BZ,P2(Y ))
hom(BZ,π) // //

hom(BZ,triv)

��

hom(BZ,P2(X))

hom(BZ,tra)

��
ΛG(2)

� � i // hom(BZ, T )

hom(BZ,t)
'

rz mmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmm

�

Proposition 10 (nonabelian Stokes theorem transgressed to loop space) Let G(2) be a strict smooth
2-group and let g(2) be the corresponding Lie 2-algebra. Let

tra : P2(Y )→ BG(2)

be a smooth 2-functor which, by [4] and [6] corresponds bijectively to a g(2)-valued form

(A,B) ∈ Ω•(Y, g(2))

with vanishing 2-form curvature
FA + t∗B = 0

hence to a DGCA morphism

Ω•(Y ) W(g)
((A,B),(FA+t∗B=0,H=dAB))oo

then the transgressed 1-functor
hom(BZ, tra) : ΛP2(Y )→ ΛG(2)

comes from a 1-form

γ 7→
∫

[0,1]

αtra(γ(s−))(δs, d
ds

ev∗B)ds

on loops in Y .

Proof. Once I fix the notation such as to actually make sense, this will follow from [4]. �

Corollary 1 Under the relation between smooth BnU(1)-valued n-functors and differential n-forms, our
n-functor transgression from definition 10 reproduces the ordinary transgression of differential forms.
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5 ∞-Connection transgression

In [6] g-connections for g any Lie ∞-algebra had been defined as follows.

Definition 12 A g-valued form on the smooth space Y is a DGCA morphism

Ω•(Y ) W(g)
(A,FA)oo .

A flat g-valued form is one which factors through CE(g)

Ω•(Y ) W(g)
(A,FA=0)oo

{{{{vvvvvvvvv

CE(g)

ddIIIIIIIII
.

Definition 13 (g-connection) Let g be any Lie ∞-algebra. A g-connection descent object on a smooth
space X is a structure consisting of a choice of surjective submersion

π : Y → X

playing the role of a cover of X, together with dg-algebra morphisms constituting a commuting diagram

Ω•vert(Y ) CE(g)
Avertoo

Ω•(Y )

OOOO

W(g)
(A,FA)oo

OOOO

Ω•(X)
?�

π∗

OO

inv(g)
{Ki}oo

?�

OO

.

Two such descent objects are taken to be equivalent if they are concordant in the obvious natural sense. An
equivalence class of g-connection descent objects is a g-connection.

5.1 Universal g-connection and classifying spaces for n-bundles with connection

By hitting everything with the functor

Hom(−−,Ω•(−−)) : DGCAs→ S∞

from definition 6, we obtain a definition of g-connections in terms of maps of smooth spaces

Yvert Xg
//A∗vert

Y
��

_�

Xinn(g)//(A∗,F∗A) ��

_�

X

����
π

BG//{K∗i }
����

.

But care has to be exercised, since Hom(−,Ω•(−)) is not an equivalence, about what this does to the
equivalence relations among such descent objects.
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