String and Chern-Simons Lie 3-Algebras

Urs Schreiber

with Jim Stasheff

based in parts on work with
John Baez
Alissa Crans
David Roberts
Danny Stevenson
Konrad Waldorf

August 17, 2007

Plan

The Talk

- **1** Motivation
- 2 Connections with values in Lie *n*-Algebras
- 3 Conclusion

Further material

- Consequences
- Further topics

Thanks

to

- John Baez
- Bruce Bartlett
- Christoph Schweigert
- Jim Stasheff

for helpful comments on earlier versions of this talk.

How can we understand quantum Chern-Simons theory as a 3-

functorial Quantum Field Theory

- such that it allows us to derive the TFT construction of
- 2-dimensional CFT [Fuchs, Runkel, Schweigert] from first principles ?

Strategy

Proceed in two steps:

- Understand classical Chern-Simons parallel 3 transport
- 2 Quantize.

How can we understand quantum Chern-Simons theory as a 3-functorial Quantum Field Theory

such that it allows us to derive the TFT construction of2-dimensional CFT [Fuchs,Runkel,Schweigert] from first principles?

Strategy

Proceed in two steps:

- Understand classical Chern-Simons parallel 3-transport
- Ourselies

How can we understand quantum Chern-Simons theory as a 3-functorial Quantum Field Theory

such that it allows us to derive the TFT construction of
 2-dimensional CFT [Fuchs, Runkel, Schweigert] from first principles
 ?

Strategy

Proceed in two steps:

- Understand classical Chern-Simons parallel 3-transport
- Onantize.

How can we understand quantum Chern-Simons theory $\$ as a 3-functorial Quantum Field Theory

- such that it allows us to derive the TFT construction of
- 2-dimensional CFT [Fuchs,Runkel,Schweigert] from first principles ?

Strategy

Proceed in two steps

- Understand classical Chern-Simons parallel 3-transport
- Guantize

How can we understand quantum Chern-Simons theory as a 3-functorial Quantum Field Theory

- such that it allows us to derive the TFT construction of
- 2-dimensional CFT [Fuchs,Runkel,Schweigert] from first principles ?

Strategy

Proceed in two steps:

- Understand classical Chern-Simons parallel 3-transport.
- 2 Quantize.

How can we understand quantum Chern-Simons theory as a 3-functorial Quantum Field Theory

- such that it allows us to derive the TFT construction of
 2-dimensional CFT [Fuchs, Runkel, Schweigert] from first principles
- 2-dimensional CFT [Fuchs,Runkel,Schweigert] from first principles ?

Strategy

Proceed in two steps:

- 1 Understand classical Chern-Simons parallel 3-transport.
- 2 Quantize.

How can we understand quantum Chern-Simons theory as a 3-functorial Quantum Field Theory

- such that it allows us to derive the TFT construction of2-dimensional CFT [Fuchs,Runkel,Schweigert] from first principles?
- Strategy

Proceed in two steps:

- Understand classical Chern-Simons parallel 3-transport.
- Quantize.

How can we understand quantum Chern-Simons theory as a 3-functorial Quantum Field Theory

such that it allows us to derive the TFT construction of2-dimensional CFT [Fuchs,Runkel,Schweigert] from first principles

Strategy

Proceed in two steps:

- 1 Understand classical Chern-Simons parallel 3-transport.
- 2 Quantize. (Or rather 3-quantize.)

How can we understand quantum Chern-Simons theory as a 3-functorial Quantum Field Theory

such that it allows us to derive the TFT construction of2-dimensional CFT [Fuchs,Runkel,Schweigert] from first principles?

Strategy

Proceed in two steps:

- 1 Understand classical Chern-Simons parallel 3-transport.
- 2 Quantize.

- Atiyah and Segal have famously axiomatized d-dimensional QFTs
- as functors

$$Z: nCob_S \rightarrow Vect$$

$$Z: \left(\partial_{\mathrm{in}}\Sigma \xrightarrow{(\Sigma,g)} > \partial_{\mathrm{out}}\Sigma\right) \mapsto \left(H_{\mathrm{in}} \xrightarrow{U(\Sigma,g)} > H_{\mathrm{out}}\right).$$

- Atiyah and Segal have famously axiomatized d-dimensional OFTs
- as functors

$$Z: nCob_S \rightarrow Vect$$

$$Z: \left(\partial_{\mathrm{in}}\Sigma \xrightarrow{(\Sigma,g)} > \partial_{\mathrm{out}}\Sigma\right) \mapsto \left(H_{\mathrm{in}} \xrightarrow{U(\Sigma,g)} > H_{\mathrm{out}}\right).$$

- Atiyah and Segal have famously axiomatized d-dimensional QFTs
- as functors

$$Z: nCob_S \to Vect$$

$$Z: \left(\partial_{\mathrm{in}}\Sigma \xrightarrow{(\Sigma,g)} > \partial_{\mathrm{out}}\Sigma\right) \mapsto \left(H_{\mathrm{in}} \xrightarrow{U(\Sigma,g)} > H_{\mathrm{out}}\right).$$

- Atiyah and Segal have famously axiomatized d-dimensional OFTs
- as functors

$$Z: nCob_S \rightarrow Vect$$

$$Z \ : \ \left(\ \partial_{\mathrm{in}} \Sigma \xrightarrow{\quad (\Sigma,g) \quad} \partial_{\mathrm{out}} \Sigma \ \right) \ \mapsto \ \left(\ H_{\mathrm{in}} \xrightarrow{\quad U(\Sigma,g) \quad} H_{\mathrm{out}} \ \right) \ .$$

 $\langle \phi | \mathit{U}(\Sigma) | \psi
angle$

 $\langle \phi | \mathit{U}(\Sigma) | \psi
angle$

 $\langle \phi | \mathit{U}(\Sigma) | \psi
angle$

But later it was noticed that this is too imprecise if we want to be able to talk about

crucial requirements on QFT description

locality

boundary conditions

Instead

refined picture

An *n*-dimensional QFT should be an *n*-functor. [Freed, Hopkins, Stolz, Teichner]

But later it was noticed that this is too imprecise if we want to be able to talk about

crucial requirements on QFT description

locality

boundary conditions.

Instead

refined picture

An *n*-dimensional QFT should be an *n*-functor. [Freed, Hopkins, Stolz, Teichner]

But later it was noticed that this is too imprecise if we want to be able to talk about

crucial requirements on QFT description

- locality
- boundary conditions.

Instead

refined picture

An *n*-dimensional QFT should be an *n*-functor. [Freed, Hopkins, Stolz, Teichner]

But later it was noticed that this is too imprecise if we want to be able to talk about

crucial requirements on QFT description

- locality
- boundary conditions.

Instead

refined picture

An *n*-dimensional QFT should be an *n*-functor. [Freed, Hopkins, Stolz, Teichner]

But later it was noticed that this is too imprecise if we want to be able to talk about

crucial requirements on QFT description

- locality
- boundary conditions.

Instead:

refined picture

An *n*-dimensional QFT should be an *n*-functor. [Freed, Hopkins, Stolz, Teichner]

But later it was noticed that this is too imprecise if we want to be able to talk about

crucial requirements on QFT description

- locality
- boundary conditions.

Instead:

refined picture

An *n*-dimensional QFT should be an *n*-functor.

[Freed, Hopkins, Stolz, Teichner]

But later it was noticed that this is too imprecise if we want to be able to talk about

crucial requirements on QFT description

- locality
- boundary conditions.

Instead:

refined picture

An *n*-dimensional QFT should be an *n*-functor. [Freed, Hopkins, Stolz, Teichner]

Cartoon of a 2-functorial QFT

Cartoon of a 2-functorial QFT

Cartoon of a 2-functorial QFT

Cartoon of a 3-functorial QFT

Cartoon of a 3-functorial QFT

Cartoon of a 3-functorial QFT

It follows that the action of the *n-particle*. . .

- n=1: the point particle
- n=2: the string
- n=3: the membrane
- \blacksquare *n*-particle $\simeq (n-1)$ -brane

It follows that the action of the *n-particle*. . .

- n = 1: the point particle
- n=2: the string
- n = 3: the membrane
- \blacksquare *n*-particle $\simeq (n-1)$ -brane

It follows that the action of the *n-particle*. . .

- n = 1: the point particle
- n = 2: the string
- n = 3: the membrane
- \blacksquare *n*-particle $\simeq (n-1)$ -brane

It follows that the action of the *n-particle*. . .

- n = 1: the point particle
- n = 2: the string
- n=3: the membrane
- \blacksquare *n*-particle $\simeq (n-1)$ -brane

It follows that the action of the *n-particle*. . .

- n = 1: the point particle
- n = 2: the string
- n=3: the membrane
- n-particle $\simeq (n-1)$ -brane

It follows that the action of the *n-particle* charged under an *n-bundle with connection*...

```
n-background fields
```

- n=1: the electromagnetic field
- n = 2: the Kalb-Ramond field
- n=3: the supergravity 3-form field
- \blacksquare *n*-bundle $\simeq (n-1)$ -gerbe

It follows that the action of the *n-particle* charged under an *n-bundle with connection*...

- n = 1: the electromagnetic field
- n = 2: the Kalb-Ramond field
- n = 3: the supergravity 3-form field
- \blacksquare *n*-bundle $\simeq (n-1)$ -gerbe

It follows that the action of the *n-particle* charged under an *n-bundle with connection*...

- n = 1: the electromagnetic field
- n = 2: the Kalb-Ramond field
- n = 3: the supergravity 3-form field
- n-bundle $\simeq (n-1)$ -gerbe

It follows that the action of the *n-particle* charged under an *n-bundle with connection*...

- n = 1: the electromagnetic field
- n = 2: the Kalb-Ramond field
- n = 3: the supergravity 3-form field
- n-bundle $\simeq (n-1)$ -gerbe

It follows that the action of the *n-particle* charged under an *n-bundle with connection*...

- n = 1: the electromagnetic field
- n=2: the Kalb-Ramond field
- n = 3: the supergravity 3-form field
- n-bundle $\simeq (n-1)$ -gerbe

It follows that the action of the *n-particle* charged under an *n-bundle with connection*

is itself an *n*-functor

$$\mathbf{tra}_{1}: \left(x \xrightarrow{\gamma} y \right) \mapsto \left(V_{X} \xrightarrow{P \exp\left(\int_{\gamma} A\right)} V_{y} \right) \\
\mathbf{tra}_{2}: \left(x \xrightarrow{\gamma_{1}} y \right) \mapsto \left(V_{X} \xrightarrow{P \exp\left(\int_{\gamma_{1}} A\right)} V_{y} \xrightarrow{P \exp\left(\int_{\gamma_{2}} A\right)} V_{y} \right) \\
\mathbf{ra}_{2}: \left(x \xrightarrow{\gamma_{1}} y \right) \mapsto \left(V_{X} \xrightarrow{P_{A} \exp\left(\int_{\gamma_{2}} A\right)} V_{y} \xrightarrow{P \exp\left(\int_{\gamma_{2}} A\right)} V_{y} \right) \\
\mathbf{ra}_{3}: \left(x \xrightarrow{\gamma_{1}} y \xrightarrow{\gamma_{2}} y \xrightarrow{P \exp\left(\int_{\gamma_{2}} A\right)} V_{y} \xrightarrow{P \exp\left(\int_{\gamma_{2}} A\right)}$$

It follows that the action of the *n-particle* charged under an *n-bundle with connection* is itself an *n*-functor

$$\mathbf{tra}_{1}: \left(x \xrightarrow{\gamma} y \right) \mapsto \left(V_{X} \xrightarrow{P \exp\left(\int_{\gamma} A\right)} V_{y} \right) \\
\mathbf{tra}_{2}: \left(x \xrightarrow{\gamma_{1}} y \right) \mapsto \left(V_{X} \xrightarrow{P_{A} \exp\left(\int_{\gamma_{1}} A\right)} V_{y} \right) \\
\downarrow P \exp\left(\int_{\gamma_{2}} A\right) \\
\downarrow P \exp\left(\int_{\gamma$$

It follows that the action of the *n*-particle charged under an *n*-bundle with connection is itself an *n*-functor

$$\operatorname{tra}_{2}: \left(\begin{array}{c} \gamma_{1} \\ X \end{array} \right) \mapsto \left(\begin{array}{c} P \exp\left(\int_{\gamma_{1}} A\right) \\ V_{X} P_{A} \exp\left(\int_{\Sigma} B\right) V_{Y} \\ P \exp\left(\int_{\gamma_{2}} A\right) \end{array} \right)$$

It follows that the action of the *n-particle* charged under an *n-bundle with connection* is itself an *n*-functor

$$\bullet \quad \operatorname{tra}_{2}: \left(\begin{array}{c} \gamma_{1} \\ x & \downarrow \Sigma \\ \gamma_{2} \end{array} \right) \mapsto \left(\begin{array}{c} P \exp\left(\int_{\gamma_{1}} A\right) \\ V_{x} & P_{A} \exp\left(\int_{\Sigma} B\right) \\ V_{y} & \downarrow \\ P \exp\left(\int_{\gamma_{2}} A\right) \end{array} \right)$$

It follows that the action of the 3-particle charged under a 3-bundle with connection is itself a 3-functor

It follows that the action of the 3-particle charged under a 3-bundle with connection is itself a 3-functor

tra₃:

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\mathbf{tra}_{\boldsymbol{n}}: \mathcal{P}_n(X) \to \Sigma G_{(n)}$$

(n+1)-Curvature

$$d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\mathrm{INN}G_{(n)})$$

Parallel n-Transport

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\operatorname{tra}_{\boldsymbol{n}}: \mathcal{P}_{n}(X) \to \Sigma G_{(n)}$$

(n+1)-Curvature

$$d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\mathrm{INN}\,\mathcal{G}_{(n)})$$

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\operatorname{tra}_{\boldsymbol{n}}:\mathcal{P}_n(X) \longrightarrow \Sigma G_{(n)}$$

(n+1)-Curvature

$$d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\mathrm{INN}G_{(n)})$$

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\operatorname{tra}_n: \mathcal{P}_n(X) \to \Sigma G_{(n)}$$

(n+1)-Curvature

Its (n+1)-curvature — is (locally) an (n+1)-functor—from the fundamental (n+1)-groupoid — to the inner automorphism (n+1)-group of $G_{(n)}$.

 $d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\mathrm{INN}\,G_{(n)})$

Parallel n-Transport

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group.

$$\operatorname{tra}_n: \mathcal{P}_n(X) \to \sum G_{(n)}$$

(n+1)-Curvature

Its (n+1)-curvature is (locally) an (n+1)-functor from the fundamental (n+1)-groupoid to the inner automorphism (n+1)-group of $G_{(n)}$.

 $d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\mathrm{INNG}_{(n)})$

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\operatorname{tra}_n: \mathcal{P}_n(X) \to \Sigma G_{(n)}$$

(n+1)-Curvature

$$d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\mathrm{INN}\,G_{(n)})$$

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\operatorname{tra}_n: \mathcal{P}_n(X) \to \Sigma G_{(n)}$$

(n+1)-Curvature

$$d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\mathrm{INN}\,G_{(n)})$$

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\operatorname{tra}_n: \mathcal{P}_n(X) \to \Sigma G_{(n)}$$

(n+1)-Curvature

$$d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\mathrm{INN}\,G_{(n)})$$

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\operatorname{tra}_n: \mathcal{P}_n(X) \to \Sigma G_{(n)}$$

(n+1)-Curvature

$$d\mathrm{tra}_n := \mathrm{curv}_{(n+1)} : \prod_{n+1} (X) \to \Sigma(\mathrm{INN}\,G_{(n)})$$

A parallel n-transport is (locally) an n-functor from the path n-groupoid to the structure n-group .

$$\operatorname{tra}_n: \mathcal{P}_n(X) \to \Sigma G_{(n)}$$

(n+1)-Curvature

$$d \operatorname{tra}_n := \operatorname{curv}_{(n+1)} : \Pi_{n+1}(X) \to \Sigma(\operatorname{INN} G_{(n)})$$

Inner automorphism (n+1)-Groups

- Every *n*-group $G_{(n)}$ has an (n+1)-group $AUT(G_{(n)})$ of automorphisms.
- This sits inside an exact sequence
- \blacksquare and INN₀ plays the role of the universal $G_{(n)}$ -bundle
 - $G_{(n)} \to \mathrm{INN}_0(G_{(n)}) \to \Sigma G_{(n)}$

We will re-encounter these crucial facts in their Lie *n*-algebra incarnation shortly.

[U.S., David Roberts

(on tangent categories) (on inner automorphisms)

Inner automorphism (n+1)-Groups

- Every *n*-group $G_{(n)}$ has an (n+1)-group $AUT(G_{(n)})$ of automorphisms.
- This sits inside an exact sequence
 - $1 \to Z(G_{(n)}) \to INN(G_{(n)}) \to AUT(G_{(n)}) \to OUT(G_{(n)})$
- and INN₀ plays the role of the universal $G_{(n)}$ -bundle $G_{(n)} \to \text{INN}_0(G_{(n)}) \to \Sigma G_{(n)}$

We will re-encounter these crucial facts in their Lie *n*-algebra incarnation shortly.

[U.S., David Roberts]
(on tangent categories) (on inner automorphisms)

Inner automorphism (n+1)-Groups

- Every *n*-group $G_{(n)}$ has an (n+1)-group $AUT(G_{(n)})$ of automorphisms.
- This sits inside an exact sequence

$$1 o Z(\mathit{G}_{(n)}) o \mathrm{INN}(\mathit{G}_{(n)}) o \mathrm{AUT}(\mathit{G}_{(n)}) o \mathrm{OUT}(\mathit{G}_{(n)}) o 1$$

■ and INN₀ plays the role of the universal $G_{(n)}$ -bundle

We will re-encounter these crucial facts in their Lie *n*-algebra incarnation shortly

[U.S., David Roberts]

(on tangent categories) (on inner automorphisms)

Inner automorphism (n+1)-Groups

- Every *n*-group $G_{(n)}$ has an (n+1)-group $AUT(G_{(n)})$ of automorphisms.
- This sits inside an exact sequence $1 \to Z(G_{(n)}) \to \mathrm{INN}(G_{(n)}) \to \mathrm{AUT}(G_{(n)}) \to \mathrm{OUT}(G_{(n)}) \to 1$
- and INN₀ plays the role of the universal $G_{(n)}$ -bundle $G_{(n)} \to \text{INN}_0(G_{(n)}) \to \Sigma G_{(n)}$

We will re-encounter these crucial facts in their Lie *n*-algebra incarnation shortly.

[U.S., David Roberts]
(on tangent categories) (on inner automorphisms)

Tangent Categories

Inner automorphism (n+1)-Groups

- Every *n*-group $G_{(n)}$ has an (n+1)-group $AUT(G_{(n)})$ of automorphisms.
- This sits inside an exact sequence $1 \to Z(G_{(n)}) \to \operatorname{INN}(G_{(n)}) \to \operatorname{AUT}(G_{(n)}) \to \operatorname{OUT}(G_{(n)}) \to 1$
- and INN₀ plays the role of the universal $G_{(n)}$ -bundle $G_{(n)} \to \text{INN}_0(G_{(n)}) \to \Sigma G_{(n)}$

We will re-encounter these crucial facts in their Lie *n*-algebra incarnation shortly.

[U.S., David Roberts]
(on tangent categories) (on inner automorphisms)

Tangent Categories

Inner automorphism (n+1)-Groups

- Every *n*-group $G_{(n)}$ has an (n+1)-group $AUT(G_{(n)})$ of automorphisms.
- This sits inside an exact sequence $1 \to Z(G_{(n)}) \to \operatorname{INN}(G_{(n)}) \to \operatorname{AUT}(G_{(n)}) \to \operatorname{OUT}(G_{(n)}) \to 1$
- and INN₀ plays the role of the universal $G_{(n)}$ -bundle $G_{(n)} \to \mathrm{INN}_0(G_{(n)}) \to \Sigma G_{(n)}$

We will re-encounter these crucial facts in their Lie *n*-algebra incarnation shortly.

[U.S., David Roberts]
(on tangent categories) (on inner automorphisms)

Tangent Categories

Inner automorphism (n+1)-Groups

- Every *n*-group $G_{(n)}$ has an (n+1)-group $AUT(G_{(n)})$ of automorphisms.
- This sits inside an exact sequence $1 \to Z(G_{(n)}) \to \operatorname{INN}(G_{(n)}) \to \operatorname{AUT}(G_{(n)}) \to \operatorname{OUT}(G_{(n)}) \to 1$
- lacksquare and INN_0 plays the role of the universal $G_{(n)}$ -bundle $G_{(n)} o \mathrm{INN}_0(G_{(n)}) o \Sigma G_{(n)}$

We will re-encounter these crucial facts in their Lie *n*-algebra incarnation shortly.

[U.S., David Roberts]

(on tangent categories) (on inner automorphisms)


```
- Motivation
```

Some structure *n*-Groups

Important structure (1-)Groups

```
electrically charged 1-particle: G_{(1)} = U(1)
spinning 1-particle: G_{(1)} = \mathrm{Spin}(n)
```

Important structure (2-)Groups

```
Kalls-Ramond charged 2-particle: G_{(2)} = \Sigma U(1)
spinning 2-particle: G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))
```

Important Structure 3-Groups

```
Chem-Simons charged 3-particle: G_{(3)}
```

Tough question. Let's pass to the differential picture.

```
_ Motivation
```

Some structure *n*-Groups

```
Important structure (1-)Groups
```

electrically charged 1-particle:

spinning 1-particle:

$$G_{(1)} = U(1)$$

 $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Grant

mportant Structure 2 Crouns

Chem-Simons charged 3-particle

Tough question. Let's pass to the differential piccare


```
- Motivation
```

Some structure *n*-Groups

```
Important structure (1-)Groups
```

electrically charged 1-particle:

spinning 1-particle:

$$G_{(1)} = U(1)$$

 $G_{(1)} = \operatorname{Spin}(n)$

Important Structure 3-Groups

Let's pass to the differential picture.


```
- Motivation
```

n-Transport and (n+1)-Curvature

Some structure *n*-Groups

```
Important structure (1-)Groups
```

electrically charged 1-particle: $G_{(1)}$ $G_{(1)}$ U(1)

spinning 1-particle:


```
- Motivation
```

Some structure *n*-Groups

```
Important structure (1-)Groups
```

```
electrically charged 1-particle: G_{(1)} = U(1)
spinning 1-particle: G_{(1)} = \operatorname{Spin}(n)
```

Tough question. Let's pass to the differential picture.

Important structure (1-)Groups

electrically charged 1-particle: $G_{(1)} = U(1)$ spinning 1-particle: $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: $G_{(2)} = \Sigma U(1)$ spinning 2-particle: $G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))$

 $[\mathsf{Bartels}], [\mathsf{Baez}, \mathsf{S}], [\mathsf{S}, \mathsf{Waldorf}]$

Important structure (1-)Groups

electrically charged 1-particle: $G_{(1)} = U(1)$ spinning 1-particle: $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: $G_{(2)} = \Sigma U(1)$ spinning 2-particle: $G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))$

 $[\mathsf{Bartels}], [\mathsf{Baez}, \mathsf{S}], [\mathsf{S}, \mathsf{Waldorf}]$

Important structure (1-)Groups

electrically charged 1-particle: $G_{(1)} = U(1)$ spinning 1-particle: $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: $G_{(2)} = \Sigma U(1)$ spinning 2-particle: $G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))$

 $[\mathsf{Baez},\mathsf{Crans},\mathsf{S},\mathsf{Stevenson}]$

Important structure (1-)Groups

electrically charged 1-particle: $G_{(1)} = U(1)$ spinning 1-particle: $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: $G_{(2)} = \Sigma U(1)$ spinning 2-particle: $G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))$

 $[\mathsf{Baez},\mathsf{Crans},\mathsf{S},\mathsf{Stevenson}]$

Important structure (1-)Groups

electrically charged 1-particle: $G_{(1)} = U(1)$ spinning 1-particle: $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: $G_{(2)} = \Sigma U(1)$

spinning 2-particle: $G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))$

Important Structure 3-Groups

Chern-Simons charged 3-particle: $G_{(3)} = ?$

lough question. Let's pass to the differential picture


```
- Motivation
```

Some structure *n*-Groups

Important structure (1-)Groups

electrically charged 1-particle: $G_{(1)} = U(1)$ spinning 1-particle: $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: $G_{(2)} = \Sigma U(1)$

spinning 2-particle: $G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))$

Important Structure 3-Groups

Chern-Simons charged 3-particle: $G_{(3)} = ?$

Tough question. Let's pass to the differential picture


```
- Motivation
```

Some structure *n*-Groups

Important structure (1-)Groups

electrically charged 1-particle: $G_{(1)} = U(1)$ spinning 1-particle: $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: $G_{(2)} = \Sigma U(1)$

spinning 2-particle: $G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))$

Important Structure 3-Groups

Chern-Simons charged 3-particle: $G_{(3)} = ?$

Tough question. Let's pass to the differential picture.

Important structure (1-)Groups

electrically charged 1-particle: $G_{(1)} = U(1)$ spinning 1-particle: $G_{(1)} = \operatorname{Spin}(n)$

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: $G_{(2)} = \Sigma U(1)$

spinning 2-particle: $G_{(2)} = \operatorname{String}_k(\operatorname{Spin}(n))$

Important Structure 3-Groups

Chern-Simons charged 3-particle: $G_{(3)} = ?$

Tough question. Let's pass to the differential picture.

Problem

Identify that class of 3-transport — given by its structure 3-group — which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

Strategy

- Differentiate
- Find that Lie 3-algebra □

<ロ > < 部 > < き > < き > ・ き ・ り へ ○

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate.
- Find that Lie 3-algebra

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate
- Find that Lie 3-algebra

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate. Pass from Lie *n*-groups to Lie *n*-algebras.
- Find that Lie 3-algebra $cs_k(g)$ with the property that connections taking values in it, $Vect \rightarrow cs_k(g)$, correspond to triples (A, B, C) of forms such that $C = CS_k(A) + dB$.

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate. Pass from Lie *n*-groups to Lie *n*-algebras.
- Find that Lie 3-algebra $cs_k(\mathfrak{g})$ with the property that connections taking values in it, $Vect \rightarrow cs_k(\mathfrak{g})$, correspond to triples (A, B, C) of forms such that $C = CS_k(A) + dB$.

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate. Pass from Lie *n*-groups to Lie *n*-algebras.
- Find that Lie 3-algebra $\operatorname{cs}_k(\mathfrak{g})$ with the property that connections taking values in it, $\operatorname{Vect} \to \operatorname{cs}_k(\mathfrak{g})$, correspond to triples (A, B, C) of forms such that $C = \operatorname{CS}_k(A) + dB$.

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate. Pass from Lie *n*-groups to Lie *n*-algebras.
- Find that Lie 3-algebra $\operatorname{cs}_k(\mathfrak{g})$ with the property that connections taking values in it, $\operatorname{Vect} \to \operatorname{cs}_k(\mathfrak{g})$, correspond to triples (A,B,C) of forms such that $C=\operatorname{CS}_k(A)+dB$.

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate. Pass from Lie *n*-groups to Lie *n*-algebras.
- Find that Lie 3-algebra $cs_k(\mathfrak{g})$ with the property that connections taking values in it, $Vect \to cs_k(\mathfrak{g})$, correspond to triples (A, B, C) of forms such that $C = CS_k(A) + dB$.

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate. Pass from Lie *n*-groups to Lie *n*-algebras.
- Find that Lie 3-algebra $\operatorname{cs}_k(\mathfrak{g})$ with the property that connections taking values in it, $\operatorname{Vect} \to \operatorname{cs}_k(\mathfrak{g})$, correspond to triples (A,B,C) of forms such that $C=\operatorname{CS}_k(A)+dB$.

Problem

Identify that class of 3-transport – given by its structure 3-group – which evaluates to the Chern-Simons functional on 3-dimensional morphisms.

- Differentiate. Pass from Lie *n*-groups to Lie *n*-algebras.
- Find that Lie 3-algebra $cs_k(\mathfrak{g})$ with the property that connections taking values in it, $Vect \to cs_k(\mathfrak{g})$, correspond to triples (A, B, C) of forms such that $C = CS_k(A) + dB$.

Lie
$$n$$
-algebras $(\simeq n$ -term $\simeq algebras$ (qDGCAs)

$$\Sigma(\operatorname{INN}(G_{(n)})) \qquad \operatorname{inn}(\mathfrak{g}_{(n)}) \qquad (\bigwedge^{\bullet}(s\mathfrak{g}_n^* \oplus ss\mathfrak{g}_{(n)}^*), d)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Parallel *n*-transport is a morphism of Lie (n+1)-groupoids.

Connections with values in Lie *n*-algebras

Differentiating parallel transport

From paralllel *n*-transport to Lie *n*-algebra valued connections

Parallel *n*-transport is a morphism of Lie (n + 1)-groupoids.

Connections with values in Lie *n*-algebras

Differentiating parallel transport

From paralllel *n*-transport to Lie *n*-algebra valued connections

This morphism may be differentiated...

This morphism may be differentiated...

... to produce a morphism of Lie (n+1)-algebroids.

Lie
$$n$$
-algebras $(\simeq n$ -term $\simeq algebras$ $(DGCAs)$

$$\Sigma(INN(G_{(n)}))$$

$$inn(\mathfrak{g}_{(n)})$$

$$f$$

$$f$$

$$Inn(X)$$

$$Vect(X)$$

$$(M^{\bullet}(X), d)$$

... to produce a morphism of Lie (n+1)-algebroids.

These are best handled in terms of their dual maps,

which are morphisms of quasi-free differential-graded algebras.

The basic concepts

Lie 2-algebras

- Baez and Crans consider 2-vector spaces as categories internal to vector spaces.
- This are nothing but 2-term chain complexes but interpreted suitably.
- They then define a Lie 2-algebra to be a Lie algebra internal to these 2-vector spaces.
- With strict skew symmetry but weak Jacobi identity.
- Notice one can also weaken the skew symmetry [Roytenberg].

The basic concepts

Lie 2-algebras

- Baez and Crans consider 2-vector spaces as categories internal to vector spaces.
- This are nothing but 2-term chain complexes but interpreted suitably.
- They then define a Lie 2-algebra to be a Lie algebra internal to these 2-vector spaces.
- With strict skew symmetry but weak Jacobi identity.
- Notice one can also weaken the skew symmetry [Roytenberg].

The basic concepts

- Baez and Crans consider 2-vector spaces as categories internal to vector spaces.
- This are nothing but 2-term chain complexes but interpreted suitably.
- They then define a Lie 2-algebra to be a Lie algebra internal to these 2-vector spaces.
- With strict skew symmetry but weak Jacobi identity.
- Notice one can also weaken the skew symmetry [Roytenberg].

Connections with values in Lie n-algebras

Lie *n*-algebras

The basic concepts

- Baez and Crans consider 2-vector spaces as categories internal to vector spaces.
- This are nothing but 2-term chain complexes but interpreted suitably.
- They then define a Lie 2-algebra to be a Lie algebra internal to these 2-vector spaces.
- With strict skew symmetry but weak Jacobi identity.
- Notice one can also weaken the skew symmetry [Roytenberg].

The basic concepts

- Baez and Crans consider 2-vector spaces as categories internal to vector spaces.
- This are nothing but 2-term chain complexes but interpreted suitably.
- They then define a Lie 2-algebra to be a Lie algebra internal to these 2-vector spaces.
- With strict skew symmetry but weak Jacobi identity.
- Notice one can also weaken the skew symmetry [Roytenberg]

The basic concepts

- Baez and Crans consider 2-vector spaces as categories internal to vector spaces.
- This are nothing but 2-term chain complexes but interpreted suitably.
- They then define a Lie 2-algebra to be a Lie algebra internal to these 2-vector spaces.
- With strict skew symmetry but weak Jacobi identity.
- Notice one can also weaken the skew symmetry [Roytenberg].

The basic concepts

- Baez and Crans showed that their Lie 2-algebras are equivalent to 2-term L_{∞} -algebras.
- In general, semistrict Lie *n*-algebras should be equivalent to n-term L_{∞} -algebras.
- n-Term L_{∞} -algebras are, in turn, equivalent to quasi-free differential graded algebras (qDGCAs) concentrated in the first n-degrees.
- The L_{∞} and qDGCA-formulation are good for computations. The categorical Lie *n*-algebra formulation is helpful conceptually.

Connections with values in Lie n-algebras

Lie *n*-algebras

The basic concepts

- Baez and Crans showed that their Lie 2-algebras are equivalent to 2-term L_{∞} -algebras.
- In general, semistrict Lie n-algebras should be equivalent to n-term L_{∞} -algebras.
- n-Term L_{∞} -algebras are, in turn, equivalent to quasi-free differential graded algebras (qDGCAs) concentrated in the first n-degrees.
- The L_∞- and qDGCA-formulation are good for computations. The categorical Lie *n*-algebra formulation is helpful conceptually.

The basic concepts

- Baez and Crans showed that their Lie 2-algebras are equivalent to 2-term L_{∞} -algebras.
- In general, semistrict Lie n-algebras should be equivalent to n-term L_{∞} -algebras.
- n-Term L_{∞} -algebras are, in turn, equivalent to quasi-free differential graded algebras (qDGCAs) concentrated in the first n-degrees.
- The L_∞- and qDGCA-formulation are good for computations. The categorical Lie *n*-algebra formulation is helpful conceptually.

The basic concepts

- Baez and Crans showed that their Lie 2-algebras are equivalent to 2-term L_{∞} -algebras.
- In general, semistrict Lie n-algebras should be equivalent to n-term L_{∞} -algebras.
- n-Term L_{∞} -algebras are, in turn, equivalent to quasi-free differential graded algebras (qDGCAs) concentrated in the first n-degrees.
- The L_{∞} and qDGCA-formulation are good for computations. The categorical Lie n-algebra formulation is helpful conceptually.

The basic concepts

- Baez and Crans showed that their Lie 2-algebras are equivalent to 2-term L_{∞} -algebras.
- In general, semistrict Lie n-algebras should be equivalent to n-term L_{∞} -algebras.
- n-Term L_{∞} -algebras are, in turn, equivalent to quasi-free differential graded algebras (qDGCAs) concentrated in the first n-degrees.
- The L_{∞} and qDGCA-formulation are good for computations. The categorical Lie n-algebra formulation is helpful conceptually.

Example: ordinary Lie algebras

For g an ordinary Lie algebra, and with $\{t_a\}$ a chosen basis with structure constants $\{C^a_{bc}\}$, the corresponding qDGCA is the graded-commutative exterior algebra

$$\wedge^{\bullet}(s\mathfrak{g}^*)$$

with sg^* denoting g^* in degree 1, on which

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c$$

defines the differential.

Example: ordinary Lie algebras

For g an ordinary Lie algebra, and with $\{t_a\}$ a chosen basis with structure constants $\{C^a_{bc}\}$, the corresponding qDGCA is the graded-commutative exterior algebra

$$\bigwedge^{\bullet}(s\mathfrak{g}^*)$$

with $s\mathfrak{g}^*$ denoting \mathfrak{g}^* in degree 1, on which

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c$$

defines the differential.

Example: ordinary Lie algebras

For g an ordinary Lie algebra, and with $\{t_a\}$ a chosen basis with structure constants $\{C^a_{bc}\}$, the corresponding qDGCA is the graded-commutative exterior algebra

$$\bigwedge^{\bullet}(s\mathfrak{g}^*)$$

with $s\mathfrak{g}^*$ denoting \mathfrak{g}^* in degree 1, on which

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c$$

defines the differential.

Example: ordinary Lie algebras

For $\mathfrak g$ an ordinary Lie algebra, and with $\{t_a\}$ a chosen basis with structure constants $\{C^a_{bc}\}$, the corresponding qDGCA is the graded-commutative exterior algebra

$$\bigwedge^{\bullet}(s\mathfrak{g}^*)$$

with sg^* denoting g^* in degree 1, on which

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c$$

defines the differential.

Example: ordinary Lie algebras

For $\mathfrak g$ an ordinary Lie algebra, and with $\{t_a\}$ a chosen basis with structure constants $\{C^a{}_{bc}\}$, the corresponding qDGCA is the graded-commutative exterior algebra

$$\bigwedge^{\bullet}(s\mathfrak{g}^*)$$

with sg^* denoting g^* in degree 1, on which

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c$$

defines the differential

Example: ordinary Lie algebras

For $\mathfrak g$ an ordinary Lie algebra, and with $\{t_a\}$ a chosen basis with structure constants $\{C^a{}_{bc}\}$, the corresponding qDGCA is the graded-commutative exterior algebra

$$\bigwedge^{\bullet}(s\mathfrak{g}^*)$$

with $s\mathfrak{g}^*$ denoting \mathfrak{g}^* in degree 1, on which

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c$$

defines the differential

Example: ordinary Lie algebras

For $\mathfrak g$ an ordinary Lie algebra, and with $\{t_a\}$ a chosen basis with structure constants $\{C^a{}_{bc}\}$, the corresponding qDGCA is the graded-commutative exterior algebra

$$\bigwedge^{\bullet}(s\mathfrak{g}^*)$$

with $s\mathfrak{g}^*$ denoting \mathfrak{g}^* in degree 1, on which

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c$$

defines the differential.

The $inn(\cdot)$ -construction

Definition. (Inner derivation Lie (n+1)-algebra)

 $\operatorname{inn}(\mathfrak{g}_{(n)})$ is the mapping cone of the identity on $\mathfrak{g}_{(n)}$ $\operatorname{inn}(\mathfrak{g}_{(n)}) \simeq (\bigwedge(s\mathfrak{g}_{(n)}) \oplus ss\mathfrak{g}_{(n)}), d')$

Proposition

- There is a canonical injection $\mathfrak{g}_{(n)} \hookrightarrow \operatorname{inn}(\mathfrak{g})$.
- \blacksquare inn(g_(n)) is contractible.
- $\blacksquare (\land (s\mathfrak{g}_{(1)}) \oplus ss\mathfrak{g}_{(1)}), d')$ is the *Weil algebra* of $\mathfrak{g}_{(1)}$

Remark

Hence $inn(\mathfrak{g}_{(1)})^*$ plays the role of differential forms on the universal G-bundle

The $inn(\cdot)$ -construction

Definition. (Inner derivation Lie (n+1)-algebra)

 $\operatorname{inn}(\mathfrak{g}_{(n)})$ is the mapping cone of the identity on $\mathfrak{g}_{(n)}$ $\operatorname{inn}(\mathfrak{g}_{(n)}) \simeq (\bigwedge(s\mathfrak{g}_{(n)}) \oplus ss\mathfrak{g}_{(n)}), d')$

Proposition

- There is a canonical injection $\mathfrak{g}_{(n)} \hookrightarrow \operatorname{inn}(\mathfrak{g})$.
- \blacksquare inn($\mathfrak{g}_{(n)}$) is contractible
- lacksquare $(\bigwedge(s\mathfrak{g}_{(1)})\oplus ss\mathfrak{g}_{(1)}),d')$ is the *Weil algebra* of $\mathfrak{g}_{(1)}$

Remark

Hence $inn(\mathfrak{g}_{(1)})^*$ plays the role of differential forms on the universal G-bundle

The $inn(\cdot)$ -construction

Definition. (Inner derivation Lie (n+1)-algebra)

 $\operatorname{inn}(\mathfrak{g}_{(n)})$ is the mapping cone of the identity on $\mathfrak{g}_{(n)}$ $\operatorname{inn}(\mathfrak{g}_{(n)}) \simeq (\bigwedge(s\mathfrak{g}_{(n)}) \oplus ss\mathfrak{g}_{(n)}), d')$

Proposition

- There is a canonical injection $\mathfrak{g}_{(n)} \hookrightarrow \operatorname{inn}(\mathfrak{g})$.
- \bullet inn($\mathfrak{g}_{(n)}$) is contractible
- lacksquare $(\bigwedge(s\mathfrak{g}_{(1)})\oplus ss\mathfrak{g}_{(1)}),d')$ is the *Weil algebra* of $\mathfrak{g}_{(1)}$

Remark

Hence $inn(\mathfrak{g}_{(1)})^*$ plays the role of differential forms on the universal G-bundle

The $inn(\cdot)$ -construction

Definition. (Inner derivation Lie (n+1)-algebra)

 $\operatorname{inn}(\mathfrak{g}_{(n)})$ is the mapping cone of the identity on $\mathfrak{g}_{(n)}$ $\operatorname{inn}(\mathfrak{g}_{(n)}) \simeq (\bigwedge(s\mathfrak{g}_{(n)}) \oplus ss\mathfrak{g}_{(n)}), d')$

Proposition

- There is a canonical injection $\mathfrak{g}_{(n)} \hookrightarrow \operatorname{inn}(\mathfrak{g})$.
- \bullet inn $(\mathfrak{g}_{(n)})$ is contractible
- $lack (\bigwedge(s\mathfrak{g}_{(1)})\oplus ss\mathfrak{g}_{(1)}),d')$ is the *Weil algebra* of $\mathfrak{g}_{(1)}$

Remark

Hence $inn(\mathfrak{g}_{(1)})^*$ plays the role of differential forms on the universal G-bundle.

The $inn(\cdot)$ -construction

Definition. (Inner derivation Lie (n+1)-algebra)

 $\operatorname{inn}(\mathfrak{g}_{(n)})$ is the mapping cone of the identity on $\mathfrak{g}_{(n)}$ $\operatorname{inn}(\mathfrak{g}_{(n)}) \simeq (\bigwedge(s\mathfrak{g}_{(n)}) \oplus ss\mathfrak{g}_{(n)}), d')$

Proposition

- There is a canonical injection $\mathfrak{g}_{(n)} \hookrightarrow \operatorname{inn}(\mathfrak{g})$.
- \bullet inn($\mathfrak{g}_{(n)}$) is contractible
- lacksquare $(\bigwedge(s\mathfrak{g}_{(1)})\oplus ss\mathfrak{g}_{(1)}),d')$ is the *Weil algebra* of $\mathfrak{g}_{(1)}$

Remark.

Hence $inn(\mathfrak{g}_{(1)})^*$ plays the role of differential forms on the universal G-bundle.

The $inn(\cdot)$ -construction

The qDGCA of inn(g): the Weil algebra

 $\operatorname{inn}(\mathfrak{g}) \simeq (\bigwedge^{\bullet}(s\mathfrak{g}^* \oplus ss\mathfrak{g}^*), d)$ is spanned by generators $\{t^a\}$ in degree 1 and $\{r^a\}$ in degree 2, with differential

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c} - r^{a}$$
$$dr^{a} = -C^{a}{}_{bc}t^{b} \wedge r^{c}.$$

- express the Lie algebra cohomology of \mathfrak{g} in terms of the cohomology of the qDGCA underlying $\operatorname{inn}(\mathfrak{g})$.
- use the insight gained thereby to describe three families of Lie n-algebras: one for each cocycle, one for each invariant polynomial and one for each transgression element.
- then show that for the canonical 3-cocycle on a semisimple Lie algebra, connections with values in the Lie 3-algebra obtained this way describe the Chern-Simons parallel transport which we are after.

- express the Lie algebra cohomology of \mathfrak{g} in terms of the cohomology of the qDGCA underlying $\operatorname{inn}(\mathfrak{g})$.
- use the insight gained thereby to describe three families of Lie n-algebras: one for each cocycle, one for each invariant polynomial and one for each transgression element.
- then show that for the canonical 3-cocycle on a semisimple Lie algebra, connections with values in the Lie 3-algebra obtained this way describe the Chern-Simons parallel transport which we are after.

- express the Lie algebra cohomology of \mathfrak{g} in terms of the cohomology of the qDGCA underlying $inn(\mathfrak{g})$.
- use the insight gained thereby to describe three families of Lie n-algebras: one for each cocycle, one for each invariant polynomial and one for each transgression element.
- then show that for the canonical 3-cocycle on a semisimple Lie algebra, connections with values in the Lie 3-algebra obtained this way describe the Chern-Simons parallel transport which we are after.

- express the Lie algebra cohomology of \mathfrak{g} in terms of the cohomology of the qDGCA underlying $inn(\mathfrak{g})$.
- use the insight gained thereby to describe three families of Lie n-algebras: one for each cocycle, one for each invariant polynomial and one for each transgression element.
- then show that for the canonical 3-cocycle on a semisimple Lie algebra, connections with values in the Lie 3-algebra obtained this way describe the Chern-Simons parallel transport which we are after.

Lie algebra cohomology in terms of $inn(\mathfrak{g})$

■ A Lie algebra n-cocycle μ is

$$d|_{\bigwedge^{\bullet}(\mathfrak{sg}^*)}\mu=0\,.$$

 \blacksquare An invariant degree *n*-polynomial k is

$$d|_{\bigwedge^{ullet}(ss\mathfrak{g}^*)}k=0$$
 .

$$\begin{array}{cc} \cos|_{\bigwedge_{gg^*}} &= \mu \\ dcs &= k \end{array}$$

Lie algebra cohomology in terms of $inn(\mathfrak{g})$

 \blacksquare A Lie algebra *n*-cocycle μ is

$$d|_{\bigwedge^{ullet}(\mathfrak{sg}^*)}\mu=0$$
 .

 \blacksquare An invariant degree *n*-polynomial k is

$$d|_{\bigwedge^{\bullet}(ss\mathfrak{g}^*)}k=0.$$

$$\begin{array}{ccc}
\cos|_{\bigwedge_{gg^*}} &= \mu \\
dcs &= k
\end{array}$$

■ A Lie algebra n-cocycle μ is

$$d|_{\bigwedge^{ullet}(\mathfrak{sg}^*)}\mu=0$$
 .

■ An invariant degree n-polynomial k is

$$d|_{\bigwedge^{\bullet}(ss\mathfrak{g}^*)}k=0$$
.

$$\begin{array}{cc} \cos|_{\bigwedge \bullet_{sg^*}} &= \mu \\ dcs &= k \end{array}$$

■ A Lie algebra n-cocycle μ is

$$d|_{\bigwedge^{ullet}(\mathfrak{sg}^*)}\mu=0$$
 .

■ An invariant degree n-polynomial k is

$$d|_{\bigwedge^{\bullet}(ss\mathfrak{g}^*)}k=0$$
.

$$\begin{array}{ccc}
\cos|_{\bigwedge_{\mathfrak{sg}^*}} &= \mu \\
dcs &= k
\end{array}$$

■ A Lie algebra n-cocycle μ is

$$d|_{\bigwedge^{ullet}(\mathfrak{sg}^*)}\mu=0$$
 .

■ An invariant degree n-polynomial k is

$$d|_{\bigwedge^{\bullet}(ss\mathfrak{g}^*)}k=0$$
.

$$\begin{array}{ccc}
\operatorname{cs}|_{\bigwedge_{\mathfrak{sg}^*}} & = \mu \\
d\operatorname{cs} & = k.
\end{array}$$

■ A Lie algebra n-cocycle μ is

$$d|_{\bigwedge^{ullet}(\mathfrak{sg}^*)}\mu=0$$
 .

■ An invariant degree n-polynomial k is

$$d|_{\bigwedge^{\bullet}(ss\mathfrak{g}^*)}k=0$$
.

$$\begin{array}{ccc}
\operatorname{cs}|_{\bigwedge^{\bullet} s \mathfrak{g}^{*}} & = \mu \\
d \operatorname{cs} & = k.
\end{array}$$

- Recall that we said that $inn(\mathfrak{g}_{(n)})$ is trivializable.
- This means there is a homotopy

■ Since we have τ , we have an effective algorithm to always solve k=dcs as

$$cs := \tau(k) + dq$$

■ The only nontrivial condition is hence $\operatorname{cs}|_{\bigwedge_{sg^*}} = \mu$.

- Recall that we said that $inn(\mathfrak{g}_{(n)})$ is trivializable.
- This means there is a homotopy

■ Since we have τ , we have an effective algorithm to always solve k = dcs as

$$cs := \tau(k) + dq.$$

 \blacksquare The only nontrivial condition is hence $\operatorname{cs}|_{\bigwedge_{-s\mathfrak{g}^*}}=\mu.$

- Recall that we said that $inn(\mathfrak{g}_{(n)})$ is trivializable.
- This means there is a homotopy

■ Since we have τ , we have an effective algorithm to always solve k = dcs as

$$cs := \tau(k) + dq.$$

■ The only nontrivial condition is hence $\operatorname{cs}|_{\bigwedge_{sg^*}} = \mu$.

- Recall that we said that $inn(\mathfrak{g}_{(n)})$ is trivializable.
- This means there is a homotopy

■ Since we have τ , we have an effective algorithm to always solve k = dcs as

$$cs := \tau(k) + dq.$$

 \blacksquare The only nontrivial condition is hence $\operatorname{cs}|_{\bigwedge^{\bullet} s\mathfrak{g}^*} = \mu.$

A map of the cocycle situation

cocycle

Chern-Simons

inv. polynomial

$$(\bigwedge^{\bullet}(s\mathfrak{g}^*),d_{\mathfrak{g}}) \stackrel{i^*}{\longleftarrow} (\bigwedge^{\bullet}(s\mathfrak{g}^* \oplus ss\mathfrak{g}^*),d_{\mathrm{inn}(\mathfrak{g})}) \stackrel{p^*}{\longleftarrow} (\bigwedge^{\bullet}(ss\mathfrak{g})^*)$$

Baez-Crans Lie *n*-algebras from cocycles

Definition and proposition [Baez, Crans]

For every Lie algebra (n+1)-cocycle μ of the Lie algebra ${\mathfrak g}$ there is a skeletal Lie n-algebra

$$\mathfrak{g}_{\mu}$$
 .

Construction

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c}$$
$$db = -\mu$$

Baez-Crans Lie *n*-algebras from cocycles

Definition and proposition [Baez, Crans]

For every Lie algebra (n + 1)-cocycle μ of the Lie algebra ${\mathfrak g}$ there is a skeletal Lie n-algebra

$$\mathfrak{g}_{\mu}$$
 .

Construction

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c$$

$$db = -u$$

Baez-Crans Lie *n*-algebras from cocycles

Definition and proposition [Baez, Crans]

For every Lie algebra (n+1)-cocycle μ of the Lie algebra ${\mathfrak g}$ there is a skeletal Lie n-algebra

$$\mathfrak{g}_{\mu}$$
 .

Construction.

Set $\mathfrak{g}_{\mu}\simeq (\bigwedge^{ullet}(s\mathfrak{g}^*\oplus s^n\mathbb{R}^*),d)$ such that \qquad the differential is given by

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c}$$
$$db = -\mu$$

Baez-Crans Lie *n*-algebras from cocycles

Definition and proposition [Baez, Crans]

For every Lie algebra (n+1)-cocycle μ of the Lie algebra ${\mathfrak g}$ there is a skeletal Lie n-algebra

$$\mathfrak{g}_{\mu}$$
 .

Construction.

Set $\mathfrak{g}_{\mu} \simeq (\bigwedge^{\bullet}(s\mathfrak{g}^* \oplus s^n\mathbb{R}^*), d)$ such that with $\{t^a\}$ as basis for $s\mathfrak{g}^*$ and with $\{b\}$ the canonical basis of \mathbb{R} the differential is given by

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c}$$
$$db = -\mu$$

Baez-Crans Lie *n*-algebras from cocycles

Definition and proposition [Baez, Crans]

For every Lie algebra (n+1)-cocycle μ of the Lie algebra ${\mathfrak g}$ there is a skeletal Lie n-algebra

$$\mathfrak{g}_{\mu}$$
 .

Construction.

Set $\mathfrak{g}_{\mu}\simeq (\bigwedge^{ullet}(s\mathfrak{g}^*\oplus s^n\mathbb{R}^*),d)$ such that \quad the differential is given by

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c}$$
$$db = -\mu$$

Connections with values in Lie n-algebras

Families of Lie n-algebras

Chern Lie *n*-algebras from invariant polynomials

Definition and proposition

For every degree (n+1) Lie algebra invariant polynomial k of the Lie algebra $\mathfrak g$ there is a Lie (2n+1)-algebra

$$\operatorname{ch}_k(\mathfrak{g})$$
.

Construction

Set $\mathrm{ch}_k(\mathfrak{g})\simeq (\bigwedge^{ullet}(s\mathfrak{g}^*\oplus ss\mathfrak{g}^*\oplus s^{(2n+1)}\mathbb{R}^*),d)$ such that—we have

$$dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c - r^a$$

 $dr^a = -C^a{}_{bc}t^b \wedge t^c$

$$dc = k$$

Chern Lie n-algebras from invariant polynomials

Definition and proposition

For every degree (n+1) Lie algebra invariant polynomial k of the Lie algebra $\mathfrak g$ there is a Lie (2n+1)-algebra

$$\operatorname{ch}_k(\mathfrak{g})$$
.

Construction

Set $\mathrm{ch}_k(\mathfrak{g})\simeq (\bigwedge^{ullet}(s\mathfrak{g}^*\oplus ss\mathfrak{g}^*\oplus s^{(2n+1)}\mathbb{R}^*),d)$ such that $\ \$ we have

 $dt^a = -\frac{1}{2}C^a{}_{bc}t^b \wedge t^c - r^a$

 $dr^a = -C^a{}_{bc}t^b \wedge t^c$

dc = k

Chern Lie n-algebras from invariant polynomials

Definition and proposition

For every degree (n+1) Lie algebra invariant polynomial k of the Lie algebra $\mathfrak g$ there is a Lie (2n+1)-algebra

$$\operatorname{ch}_k(\mathfrak{g})$$
.

Construction.

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c} - r^{a}$$

$$dr^{a} = -C^{a}{}_{bc}t^{b} \wedge t^{c}$$

$$dc = k$$

Chern Lie *n*-algebras from invariant polynomials

Definition and proposition

For every degree (n+1) Lie algebra invariant polynomial k of the Lie algebra $\mathfrak g$ there is a Lie (2n+1)-algebra

$$\operatorname{ch}_k(\mathfrak{g})$$
.

Construction.

Set $\operatorname{ch}_k(\mathfrak{g}) \simeq (\bigwedge^{\bullet}(s\mathfrak{g}^* \oplus ss\mathfrak{g}^* \oplus s^{(2n+1)}\mathbb{R}^*), d)$ such that with $\{t^a\}$ a basis for $s\mathfrak{g}^*$, $\{r^a\}$ the corresponding basis for $ss\mathfrak{g}^*$ and with $\{c\}$ the canonical basis of $s^{(2n+1)}$ we have

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c} - r^{a}$$
$$dr^{a} = -C^{a}{}_{bc}t^{b} \wedge t^{c}$$

Chern Lie n-algebras from invariant polynomials

Definition and proposition

For every degree (n+1) Lie algebra invariant polynomial k of the Lie algebra $\mathfrak g$ there is a Lie (2n+1)-algebra

$$\operatorname{ch}_k(\mathfrak{g})$$
.

Construction.

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c} - r^{a}$$

$$dr^{a} = -C^{a}{}_{bc}t^{b} \wedge t^{c}$$

$$dc = k$$

Chern-Simons Lie *n*-algebras from transgression elements

Definition and proposition

For every transgression element q of degree (2n+1) there is a

Lie
$$(2n+1)$$
-algebra

$$\operatorname{cs}_k(\mathfrak{g})$$
.

Construction.

Set $\operatorname{cs}_k(\mathfrak{g})\simeq (\bigwedge^{\bullet}(s\mathfrak{g}^*\oplus ss\mathfrak{g}^*\oplus \oplus s^{2n}\mathbb{R}^*\oplus s^{(2n+1)}\mathbb{R}^*),d)$ such that

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c} - r^{a}$$

$$dr^{a} = -C^{a}_{bc}t^{b} \wedge t^{c}$$

$$db = -cs + c$$

Chern-Simons Lie *n*-algebras from transgression elements

Definition and proposition

For every transgression element q of degree (2n+1) there is a Lie (2n+1)-algebra

 $\operatorname{cs}_k(\mathfrak{g})$.

Construction

Set $cs_k(\mathfrak{g}) \simeq (\bigwedge^{\bullet} (s\mathfrak{g}^* \oplus ss\mathfrak{g}^* \oplus \oplus s^{2n}\mathbb{R}^* \oplus s^{(2n+1)}\mathbb{R}^*), d)$ such that

 $dt^a = -\frac{1}{2}C^a_{bc}t^a \wedge t^c - r^c$

 $ar = -C_{bc}t \wedge t$

dv = -cs + c dc = k

Chern-Simons Lie *n*-algebras from transgression elements

Definition and proposition

For every transgression element q of degree (2n+1) there is a Lie (2n+1)-algebra

$$\operatorname{cs}_k(\mathfrak{g})$$
.

Construction.

Set $\operatorname{cs}_k(\mathfrak{g})\simeq (\bigwedge^{\bullet}(s\mathfrak{g}^*\oplus ss\mathfrak{g}^*\oplus \oplus s^{2n}\mathbb{R}^*\oplus s^{(2n+1)}\mathbb{R}^*),d)$ such that

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c} - r^{a}$$

$$dr^{a} = -C^{a}{}_{bc}t^{b} \wedge t^{c}$$

$$db = -cs + c$$

$$dc = k$$

Chern-Simons Lie *n*-algebras from transgression elements

Definition and proposition

For every transgression element q of degree (2n+1) there is a Lie (2n+1)-algebra

$$\operatorname{cs}_k(\mathfrak{g})$$
.

Construction.

Set $\operatorname{cs}_k(\mathfrak{g})\simeq (\bigwedge^{\bullet}(s\mathfrak{g}^*\oplus ss\mathfrak{g}^*\oplus \oplus s^{2n}\mathbb{R}^*\oplus s^{(2n+1)}\mathbb{R}^*),d)$ such that

$$dt^{a} = -\frac{1}{2}C^{a}{}_{bc}t^{b} \wedge t^{c} - r^{a}$$

$$dr^{a} = -C^{a}{}_{bc}t^{b} \wedge t^{c}$$

$$db = -cs + c$$

$$dc = k$$

Theorem

Whenever they exist, these Lie (2n+1)-algebras form a (weakly) short exact sequence:

$$0 \to \mathfrak{g}_{\mu_k} \to \operatorname{cs}_k(\mathfrak{g}) \to \operatorname{ch}_k(\mathfrak{g}) \to 0$$
.

Theorem

Moreover, we have an isomorphism

$$\operatorname{cs}_k(\mathfrak{g}) \simeq \operatorname{inn}(\mathfrak{g}_{\mu_k})$$
.

Theorem

Whenever they exist, these Lie (2n + 1)-algebras form a (weakly) short exact sequence:

$$0 \to \mathfrak{g}_{\mu_k} \to \operatorname{cs}_k(\mathfrak{g}) \to \operatorname{ch}_k(\mathfrak{g}) \to 0$$
.

Theorem

Moreover, we have an isomorphism

$$\operatorname{cs}_k(\mathfrak{g}) \simeq \operatorname{inn}(\mathfrak{g}_{\mu_k})$$
.

Now we can study n-connections with values in these Lie n-algebras.

Definition

For our purposes, an n-connection with values in the Lie n-algebra $\mathfrak{g}_{(n)}$ on a space X is a morphism

$$A: \operatorname{Vect}(X) \to \mathfrak{g}_{(n)}$$
,

which we conceive as the dual morphism

$$A^*:\mathfrak{g}_{(n)}^*\to\Omega^{\bullet}(X)$$

of differential algebras.

Now we can study n-connections with values in these Lie n-algebras.

Definition

For our purposes, an n-connection with values in the Lie n-algebra $\mathfrak{g}_{(n)}$ on a space X is a morphism

$$A: \operatorname{Vect}(X) \to \mathfrak{g}_{(n)}$$
,

which we conceive as the dual morphism

$$A^*:\mathfrak{g}_{(n)}^*\to\Omega^{\bullet}(X)$$

of differential algebras.

Ordinary connection 1-forms

Ordinary connection 1-forms

$$n=1$$

$$\begin{array}{c}
\mathfrak{g} \\
(A) \uparrow \\
F_{A} = 0
\end{array}$$

$$\operatorname{Vect}(X)$$

for
$$A \in \Omega^1(X, \mathfrak{g})$$
.

Morphisms into $\mathfrak{g}_{(1)}$ come from *flat* connection 1-forms.

for $A \in \Omega^1(X, \mathfrak{g})$.

Ordinary connection 1-forms

Ordinary connection 1-forms

$$\mathfrak{g} \stackrel{\longleftarrow}{\longrightarrow} \operatorname{inn}(\mathfrak{g})$$
 $\stackrel{(A) \uparrow}{F_{A_{i}}=0} \qquad \stackrel{(A) \uparrow}{\bigvee}$
 $\operatorname{Vect}(X) \qquad \operatorname{Vect}(X)$

n=2

Morphisms into $inn(\mathfrak{g}_{(1)})$ come from *arbitrary* connection 1-forms.

n=1

General Chern-Simons-like connections

Theorem

For every degree (2n+1) Lie algebra transgressive element, (2n+1)-connections with values in $\operatorname{cs}_k(\mathfrak{g})$ are in bijection with \mathfrak{g} -Chern-Simons forms.

This means...

General Chern-Simons-like connections

Theorem

For every degree (2n+1) Lie algebra transgressive element, (2n+1)-connections with values in $cs_k(\mathfrak{g})$ are in bijection with \mathfrak{g} -Chern-Simons forms.

This means...

General Chern-Simons-like connections

Vect(X)

General Chern-Simons-like connections

Vect(X)

General Chern-Simons-like connections

General Chern-Simons-like connections

__n-Connections

The standard Chern-Simons 3-connection

Finally: the case we wanted to understand

Let now g be semisimple and let

$$\mu = \langle \cdot, [\cdot, \cdot] \rangle$$

be the canonical 3-cocycle.

Theorem (Baez, Crans, S, Stevenson)

The corresponding Baez-Crans Lie 2-algebra \mathfrak{g}_μ is equivalent to that of the corresponding String 2-group

$$\mathfrak{g}_{\mu} \simeq \mathrm{Lie}(\mathrm{String}_k(G))$$
.

The standard Chern-Simons 3-connection

Finally: the case we wanted to understand

Let now g be semisimple and let

$$\mu = \langle \cdot, [\cdot, \cdot] \rangle$$

be the canonical 3-cocycle.

Theorem (Baez, Crans, S, Stevenson)

The corresponding Baez-Crans Lie 2-algebra \mathfrak{g}_μ is equivalent to that of the corresponding String 2-group

$$\mathfrak{g}_{\mu} \simeq \mathrm{Lie}(\mathrm{String}_k(G))$$
.

Conclusion

I Every degree (2n + 1) transgressive element in Lie algebra cohomology gives rise to an exact sequence

$$0 o \mathfrak{g}_{\mu_k} o \operatorname{cs}_k(\mathfrak{g}) o \operatorname{ch}_k(\mathfrak{g}) o 0$$

- of Lie (2n+1)-algebras.
- 2 Connections with values in these Lie (2n + 1)-algebras are precisely the corresponding Chern-Simons functionals, "localized" as a (2n + 1)-transport.

Conclusion

I Every degree (2n + 1) transgressive element in Lie algebra cohomology gives rise to an exact sequence

$$0 \to \mathfrak{g}_{\mu_k} \to \operatorname{cs}_k(\mathfrak{g}) \to \operatorname{ch}_k(\mathfrak{g}) \to 0$$

- of Lie (2n+1)-algebras.
- 2 Connections with values in these Lie (2n + 1)-algebras are precisely the corresponding Chern-Simons functionals, "localized" as a (2n + 1)-transport.

Consequences

Consequences

This is the end of the talk.

But for those reading this, here are a couple of further aspects and topics:

This is the end of the talk.

But for those reading this, here are a couple of further aspects and topics:

- Which Lie 3-group does our Chern-Simons Lie 3-algebra $cs_k(\mathfrak{g})$ integrate to?
- How does the Chern-Simons 3-group help to understand the relation between Chern-Simons theory and Wess-Zumino-Witten theory?
- How does the Chern-Simons 3-transport help to understand String bundles with connection?
- How are the Chern Lie (2n + 1)-algebras related to Roytenberg's Lie n-algebras with weak skew-symmetry?

- Which Lie 3-group does our Chern-Simons Lie 3-algebra $cs_k(\mathfrak{g})$ integrate to?
- How does the Chern-Simons 3-group help to understand the relation between Chern-Simons theory and Wess-Zumino-Witten theory?
- How does the Chern-Simons 3-transport help to understand String bundles with connection?
- How are the Chern Lie (2n + 1)-algebras related to Roytenberg's Lie n-algebras with weak skew-symmetry?

- Which Lie 3-group does our Chern-Simons Lie 3-algebra $cs_k(\mathfrak{g})$ integrate to?
- How does the Chern-Simons 3-group help to understand the relation between Chern-Simons theory and Wess-Zumino-Witten theory?
- How does the Chern-Simons 3-transport help to understand String bundles with connection?
- How are the Chern Lie (2n + 1)-algebras related to Roytenberg's Lie n-algebras with weak skew-symmetry?

- Which Lie 3-group does our Chern-Simons Lie 3-algebra $cs_k(\mathfrak{g})$ integrate to?
- How does the Chern-Simons 3-group help to understand the relation between Chern-Simons theory and Wess-Zumino-Witten theory?
- How does the Chern-Simons 3-transport help to understand String bundles with connection?
- How are the Chern Lie (2n + 1)-algebras related to Roytenberg's Lie n-algebras with weak skew-symmetry?

Integrating the Chern-Simons Lie 3-algebra

We have found the Lie 3-algebra

$$\operatorname{cs}_{\langle\cdot,\cdot
angle}(\mathfrak{g})$$

which characterizes Chern-Simons 3-transport. Due to the isomorphism

$$\operatorname{cs}_{\langle\cdot,[\cdot,\cdot]
angle}\simeq\operatorname{inn}(\mathfrak{g}_{\langle\cdot,[\cdot,\cdot]
angle})$$

and the equivalence

$$\mathfrak{g}_{\langle\cdot,[\cdot,\cdot]
angle}\simeq\operatorname{string}_{\langle\cdot,\cdot
angle}(\mathfrak{g})$$

the corresponding Lie 3-group should be

$$\mathrm{INN}_0(\mathrm{String}_{\langle\cdot,\cdot\rangle})(G)$$
.

What does $INN_0(String_k(G))$ know about Wess-Zumino-Witten theory?

By the *n*-functorial holographic principle we expect that the WZW 2-transport arises as *transformations* of the Chern-Simons 3-transport.

Indeed, one can see that the 2-category of cylinders in the 3-group $\mathrm{INN}_0(\operatorname{String}_k(G))$ has the right properties for this.

(To see this, recall that, by [Baez,Crans,S,Schreiber], the 2-group $\operatorname{String}_k(G)$ is, as a groupoid, precisely the canonical gerbe on G which enters the WZW theory.)

How does the Chern-Simons Lie 3-algebra help to understand String-bundles with connections?

Ask Google the question: "How to get a spinning string from here to there?"

Which role do weakly skew-symmetric Lie n-algebras play?

Baez and Crans considered Lie *n*-algebras which have a strictly skew-symmetric bracket, which however satisfies the Jacobi identity only weakly.

One can see that the Lie n-algebras \mathfrak{g}_{μ} for each (n+1)-cocycle μ which we discussed are ordinary Lie algebras except that their (n-2)nd coherence for the Jacobiator is nontrivial, and in fact precisely given by this cocycle.

Now, Roytenberg considered the case that skew-symmetry is weakened, too. It seems that one finds in his description that the higher coherences then are given by symmetric forms on the Lie algebra. In particular, for n=2 the Killing form may be regarded as the "skew-symmetrizator".

This seems to suggest the following picture:

Which role do weakly skew-symmetric Lie n-algebras play?

This seems to suggest the following picture:

weak Jacobi

weak skew symmetry

$$\mathfrak{g}_{\mu_k} \longrightarrow \operatorname{cs}_{\mu}(\mathfrak{g}) \longrightarrow \operatorname{ch}_{\mu}(\mathfrak{g})$$

and might thus give an even more fundamental interpretation of the exact sequence which we found.

But this needs to be better understood.

More details

On the following slides are collected a couple of definitions and explanations which were omitted from the main part.

n-Categories

Our 3-Categories are Gray-Categories

Whenever details are relevant, we shall restrict to n=3 and use 3-categories which are *Gray-categories*. In such 3-categories everything is strict, except possibly the exchange law for 2-morphisms.

Our 3-Groupoids are Gray-Groupoids

Given a notion of n-category, an n-groupoid is an n-category in which all k-morphisms are equivalences.

(back)

n-Groups

Definition

An *n*-group is an *n*-groupoid with a single object.

Notation

We write $G_{(n)}$ when we think of an n-group as a monoidal (n-1)-groupoid. Then we write $\Sigma G_{(n)}$ for the corresponding one-object n-groupoid.

Example

For $G_{(2)}$ any strict 2-group, $INN_0(G_{(2)})$ is a 3-group coming from a Gray-groupoid.

(back)

Tangent n-Categories

Definition

For *C* any *n*-category, let $\mathbf{pt} := \{ \bullet \xrightarrow{\sim} \circ \}$ be the "fat point", and let

$$TC \subset \operatorname{Hom}(\mathbf{pt}, C)$$

be that maximal sub-n-category which collapses to a 0-category when pulled back along the inclusion $\{\bullet\} \hookrightarrow \mathbf{pt}$. We call TC the tangent n-category to C.

The general concept of tangent categories is important for the bigger picture underlying our dicussion, but for the present purpose many of the details are not crucial.

Properties of the tangent *n*-category

Proposition

For C any *n*-category, we find that the *n*-bundle

$$TC \to \mathrm{Obj}(C)$$

is a "deformation retract" of Obj(C) in that

$$TC \simeq \mathrm{Obj}(C)$$
.

Properties of the tangent *n*-category

Proposition

For C any n-category, we find that the n-bundle

$$TC \rightarrow \mathrm{Obj}(C)$$

sits inside an exact sequence

$$Mor(C) \rightarrow TC \rightarrow C$$
.

When $C = \sum G_{(n)}$ comes from an *n*-groupoid, this "is" the universal $G_{(n)}$ -bundle.

Inner automorphism (n+1)-Groups

Definition

Given any n-groupoid C, we say that

$$\mathrm{INN}(C) := T_{\mathrm{Id}_C}(\mathrm{AUT}(C))$$

is the inner automorphism (n+1)-group of C.

proposition

 $INN(G_{(n)})$ sits inside the exact sequence

$$1 \to Z(G_{(n)}) \to \mathrm{INN}(G_{(n)}) \to \mathrm{AUT}(G_{(n)}) \to \mathrm{OUT}(G_{(n)}) \to 1$$

of (n+1)-groups. Here $Z(G_{(n)})$ is the (suspension of) the categorical center of $\Sigma G_{(n)}$.

Inner automorphism (n+1)-Groups

Proposition

There is a canonical inclusion

$$TC \hookrightarrow T_{\mathrm{Id}_{\mathcal{C}}}(\mathrm{AUT}(\mathcal{C}).$$

Definition

The image under this inclusion we call

$$INN_0(C) \subset INN(C)$$
.

(back)

