
String and Chern-Simons Lie 3-Algebras

String and Chern-Simons Lie 3-Algebras

Urs Schreiber

with
Jim Stasheff

based in parts on work with
John Baez

Alissa Crans
David Roberts

Danny Stevenson
Konrad Waldorf

August 17, 2007

Urs Schreiber String and Chern-Simons Lie 3-Algebras



String and Chern-Simons Lie 3-Algebras

Plan

The Talk

1 Motivation

2 Connections with values in Lie n-Algebras

3 Conclusion

Further material

Consequences

Further topics

Urs Schreiber String and Chern-Simons Lie 3-Algebras



String and Chern-Simons Lie 3-Algebras

Thanks

to

John Baez

Bruce Bartlett

Christoph Schweigert

Jim Stasheff

for helpful comments on earlier versions of this talk.

Urs Schreiber String and Chern-Simons Lie 3-Algebras



String and Chern-Simons Lie 3-Algebras

Motivation

Motivation

How can we understand quantum Chern-Simons theory as a 3-
functorial Quantum Field Theory
– such that it allows us to derive the TFT construction of
2-dimensional CFT [Fuchs,Runkel,Schweigert] from first principles
?

Strategy

Proceed in two steps:

1 Understand classical Chern-Simons parallel 3-transport.

2 Quantize.

This talk is about step 1.
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Motivation

Extended QFT

A Quantum Field Theory is a Functor

Atiyah and Segal have famously axiomatized d-dimensional
QFTs

as functors
Z : nCobS → Vect

Z :

(
∂inΣ

(Σ,g) // ∂outΣ

)
7→

(
Hin

U(Σ,g) // Hout

)
.
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Motivation
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Cartoon of a 1-functorial QFT
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Motivation

Extended QFT

A Quantum Field Theory is an n-Functor

But later it was noticed that this is too imprecise if we want to be
able to talk about

crucial requirements on QFT description

locality

boundary conditions.

Instead:

refined picture

An n-dimensional QFT should be an n-functor.
[Freed, Hopkins, Stolz, Teichner]

(remark on n-categories)
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Motivation

The “charged n-Particle”

n-Particles and (n − 1)-Branes

It follows that the action of the n-particle. . .

n-Particle

n = 1: the point particle

n = 2: the string

n = 3: the membrane

n-particle ' (n − 1)-brane
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The “charged n-Particle”

Parallel n-Transport

It follows that the action of the n-particle
charged under an n-bundle with connection

is itself an n-functor

tra1 :
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String and Chern-Simons Lie 3-Algebras

Motivation

n-Transport and (n + 1)-Curvature

Parallel n-Transport

A parallel n-transport is (locally) an n-functor from the path
n-groupoid to the structure n-group .

tran : Pn(X ) → ΣG(n)

(n + 1)-Curvature

Its (n + 1)-curvature is (locally) an (n + 1)-functor from the
fundamental (n + 1)-groupoid to the inner automorphism
(n + 1)-group of G(n) .

dtran := curv(n+1) : Πn+1(X ) → Σ(INNG(n))
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String and Chern-Simons Lie 3-Algebras

Motivation

n-Transport and (n + 1)-Curvature

Tangent Categories

Inner automorphism (n + 1)-Groups

Every n-group G(n) has an (n + 1)-group AUT(G(n)) of
automorphisms.

This sits inside an exact sequence
1 → Z (G(n)) → INN(G(n)) → AUT(G(n)) → OUT(G(n)) → 1

and INN0 plays the role of the universal G(n)-bundle
G(n) → INN0(G(n)) → ΣG(n)

We will re-encounter these crucial facts in their Lie n-algebra
incarnation shortly.
[U.S., David Roberts]
(on tangent categories) (on inner automorphisms)
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String and Chern-Simons Lie 3-Algebras

Motivation

n-Transport and (n + 1)-Curvature

Some structure n-Groups

Important structure (1-)Groups

electrically charged 1-particle: G(1) = U(1)
spinning 1-particle: G(1) = Spin(n)

Important structure (2-)Groups

Kalb-Ramond charged 2-particle: G(2) = ΣU(1)
spinning 2-particle: G(2) = Stringk(Spin(n))

Important Structure 3-Groups

Chern-Simons charged 3-particle: G(3) = ?

Tough question. Let’s pass to the differential picture.
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String and Chern-Simons Lie 3-Algebras

Connections with values in Lie n-algebras

Finding the Chern-Simons Lie 3-algebra

Problem

Identify that class of 3-transport – given by its structure 3-group –
which evaluates to the Chern-Simons functional on 3-dimensional
morphisms.

Strategy

Differentiate. Pass from Lie n-groups to Lie n-algebras.

Find that Lie 3-algebra csk(g) with the property that
connections taking values in it, Vect → csk(g), correspond
to triples (A,B,C ) of forms such that C = CSk(A) + dB.
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Connections with values in Lie n-algebras

Differentiating parallel transport

From paralllel n-transport to Lie n-algebra valued
connections

Lie
n-groupoids

diff. //

Lie n-algebras
(' n-term

L∞-algebras)
'

differential
algebras

(qDGCAs)

Σ(INN(G(n)))

Πn+1(X )

F

OO
inn(g(n))

Vect(X )

f

OO
(
∧•(sg∗n ⊕ ssg∗(n)), d)

f ∗

��
(Ω•(X ), d)

Parallel n-transport is a morphism of Lie (n + 1)-groupoids.
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These are best handled in terms of their dual maps,
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Connections with values in Lie n-algebras

Differentiating parallel transport

From paralllel n-transport to Lie n-algebra valued
connections

Lie
n-groupoids

diff. //
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which are morphisms of quasi-free differential-graded algebras.
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String and Chern-Simons Lie 3-Algebras

Connections with values in Lie n-algebras

Lie n-algebras

The basic concepts

Lie 2-algebras

Baez and Crans consider 2-vector spaces as categories internal
to vector spaces.

This are nothing but 2-term chain complexes – but interpreted
suitably.

They then define a Lie 2-algebra to be a Lie algebra internal
to these 2-vector spaces.

With strict skew symmetry but weak Jacobi identity.

Notice one can also weaken the skew symmetry [Roytenberg].
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String and Chern-Simons Lie 3-Algebras

Connections with values in Lie n-algebras

Lie n-algebras

The basic concepts

Lie n-algebras, L∞-algebras and qDGCAs

Baez and Crans showed that their Lie 2-algebras are
equivalent to 2-term L∞-algebras.

In general, semistrict Lie n-algebras should be equivalent to
n-term L∞-algebras.

n-Term L∞-algebras are, in turn, equivalent to quasi-free
differential graded algebras (qDGCAs) concentrated in the
first n-degrees.

The L∞- and qDGCA-formulation are good for computations.
The categorical Lie n-algebra formulation is helpful
conceptually.
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Connections with values in Lie n-algebras

Lie n-algebras

Example: ordinary Lie algebras

For g an ordinary Lie algebra, and with {ta} a chosen basis with
structure constants {C a

bc}, the corresponding qDGCA is the
graded-commutative exterior algebra∧•(sg∗)

with sg∗ denoting g∗ in degree 1, on which

dta = −1

2
C a

bct
b ∧ tc

defines the differential.

It is a (sad) fact of life that qDGCA discussions are often
unfeasible without choosing a basis
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Connections with values in Lie n-algebras

Lie n-algebras

The inn(·)-construction

Definition. (Inner derivation Lie (n + 1)-algebra)

inn(g(n)) is the mapping cone of the identity on g(n)

inn(g(n)) ' (
∧

(sg(n))⊕ ssg(n)), d
′)

Proposition

There is a canonical injection g(n) ↪→ inn(g).

inn(g(n)) is contractible

(
∧

(sg(1))⊕ ssg(1)), d
′) is the Weil algebra of g(1)

Remark.

Hence inn(g(1))
∗ plays the role of differential forms on the

universal G -bundle.
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Lie n-algebras

The inn(·)-construction

The qDGCA of inn(g): the Weil algebra

inn(g) ' (
∧•(sg∗ ⊕ ssg∗), d) is spanned by generators {ta} in

degree 1 and {ra} in degree 2, with differential

dta = −1

2
C a

bct
b ∧ tc − ra

dra = −C a
bct

b ∧ r c .
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Connections with values in Lie n-algebras

Lie n-algebras

We will now

express the Lie algebra cohomology of g in terms of the
cohomology of the qDGCA underlying inn(g).

use the insight gained thereby to describe three families of Lie
n-algebras: one for each cocycle, one for each invariant
polynomial and one for each transgression element.

then show that for the canonical 3-cocycle on a semisimple
Lie algebra, connections with values in the Lie 3-algebra
obtained this way describe the Chern-Simons parallel transport
which we are after.
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Connections with values in Lie n-algebras

Lie n-algebras

Lie algebra cohomology in terms of inn(g)

A Lie algebra n-cocycle µ is

d |∧•
(sg∗)

µ = 0 .

An invariant degree n-polynomial k is

d |∧•
(ssg∗)

k = 0 .

A transgression element cs is

cs|∧•
sg∗

= µ

dcs = k .
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Lie n-algebras

The homotopy operator

Recall that we said that inn(g(n)) is trivializable.

This means there is a homotopy

inn(g(n))

0

%%

Id=[d ,τ ]

99
inn(g(n))τ

��

Since we have τ , we have an effective algorithm to always
solve k = dcs as

cs := τ(k) + dq .

The only nontrivial condition is hence cs|∧•
sg∗

= µ.
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Lie n-algebras

A map of the cocycle situation

cocycle Chern-Simons inv. polynomial

(
∧•(sg∗), dg) (

∧•(sg∗ ⊕ ssg∗), dinn(g))
i∗oooo (

∧•(ssg)∗)? _
p∗oo

0

0 p∗k
_
dinn(g)

OO

τ

��

k
�

p∗
oo

µ
_
dg

OO

cs�i∗oo
_
dinn(g)

OO
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Connections with values in Lie n-algebras

Families of Lie n-algebras

Baez-Crans Lie n-algebras from cocycles

Definition and proposition [Baez,Crans]

For every Lie algebra (n + 1)-cocycle µ of the Lie algebra g there
is a skeletal Lie n-algebra

gµ .

Construction.

Set gµ ' (
∧•(sg∗ ⊕ snR∗), d) such that the differential is given

by

dta = −1

2
C a

bct
b ∧ tc

db = −µ
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Families of Lie n-algebras

Baez-Crans Lie n-algebras from cocycles

Definition and proposition [Baez,Crans]

For every Lie algebra (n + 1)-cocycle µ of the Lie algebra g there
is a skeletal Lie n-algebra

gµ .

Construction.

Set gµ ' (
∧•(sg∗ ⊕ snR∗), d) such that with {ta} as basis for sg∗

and with {b} the canonical basis of R the differential is given by

dta = −1

2
C a

bct
b ∧ tc

db = −µ
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Families of Lie n-algebras

Chern Lie n-algebras from invariant polynomials

Definition and proposition

For every degree (n + 1) Lie algebra invariant polynomial k of the
Lie algebra g there is a Lie (2n + 1)-algebra

chk(g) .

Construction.

Set chk(g) ' (
∧•(sg∗ ⊕ ssg∗ ⊕ s(2n+1)R∗), d) such that we have
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2
C a

bct
b ∧ tc − ra

dra = −C a
bct

b ∧ tc

dc = k
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Connections with values in Lie n-algebras

Families of Lie n-algebras

Chern-Simons Lie n-algebras from transgression elements

Definition and proposition

For every transgression element q of degree (2n + 1) there is a
Lie (2n + 1)-algebra
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Connections with values in Lie n-algebras

Families of Lie n-algebras

Theorem

Whenever they exist, these Lie (2n + 1)-algebras form a (weakly)
short exact sequence:

0 → gµk
→ csk(g) → chk(g) → 0 .

Theorem

Moreover, we have an isomorphism

csk(g) ' inn(gµk
) .
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Connections with values in Lie n-algebras

n-Connections

Now we can study n-connections with values in these Lie
n-algebras.

Definition

For our purposes, an n-connection with values in the Lie n-algebra
g(n) on a space X is a morphism

A : Vect(X ) → g(n) ,

which we conceive as the dual morphism

A∗ : g∗(n) → Ω•(X )

of differential algebras.
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Connections with values in Lie n-algebras

n-Connections

Ordinary connection 1-forms

Ordinary connection 1-forms

n=1

g

Vect(X )

(A)
FA=0

OO

for A ∈ Ω1(X , g).

Morphisms into g(1) come from flat connection 1-forms.
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Connections with values in Lie n-algebras

n-Connections

Ordinary connection 1-forms

Ordinary connection 1-forms

n=1 n=2

g � � // inn(g)

Vect(X )

(A)

FA=0

OO

Vect(X )

(A)

OO

for A ∈ Ω1(X , g).

Morphisms into inn(g(1)) come from arbitrary connection 1-forms.
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Connections with values in Lie n-algebras

n-Connections

General Chern-Simons-like connections

Theorem

For every degree (2n + 1) Lie algebra transgressive element,
(2n + 1)-connections with values in csk(g) are in bijection with
g-Chern-Simons forms.

This means...
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General Chern-Simons-like connections

1

g

Vect(X )

(A)

FA=0

OO
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Connections with values in Lie n-algebras

n-Connections

General Chern-Simons-like connections

Baez-Crans

1 2n

g gµk
oooo

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+CSk (A)=0

OO
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Connections with values in Lie n-algebras

n-Connections

General Chern-Simons-like connections

Baez-Crans Chern-Simons

1 2n 2n + 1

g gµk
oooo � � // csk(g)

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+CSk (A)=0

OO

Vect(X )

(A,B,C)

C=dB+CSk (A)

OO
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Connections with values in Lie n-algebras

n-Connections

General Chern-Simons-like connections

Baez-Crans Chern-Simons Chern

1 2n 2n + 1 2n + 1

g gµk
oooo � � // csk(g) // // chk(g)

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+CSk (A)=0

OO

Vect(X )

(A,B,C)

C=dB+CSk (A)

OO

Vect(X )

(A,C)

dC=k((FA)n+1)

OO
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Connections with values in Lie n-algebras

n-Connections

The standard Chern-Simons 3-connection

Finally: the case we wanted to understand

Let now g be semisimple and let

µ = 〈·, [·, ·]〉

be the canonical 3-cocycle.

Theorem (Baez, Crans, S, Stevenson)

The corresponding Baez-Crans Lie 2-algebra gµ is equivalent to
that of the corresponding String 2-group

gµ ' Lie(Stringk(G )) .
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g

Vect(X )
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OO
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n-Connections

The standard Chern-Simons 3-connection

g stringk(g)oooo

∼

g gkoooo

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)
FA=0

dB+kCS(A)=0

OO

Urs Schreiber String and Chern-Simons Lie 3-Algebras



String and Chern-Simons Lie 3-Algebras

Connections with values in Lie n-algebras

n-Connections

The standard Chern-Simons 3-connection

g stringk(g)oooo � � //

∼

inn(stringk(g))

g gkoooo � � // csk(g)

∼

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+kCS(A)=0

OO

Vect(X )

(A,B,C)

C=dB+kCS(A)

OO
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n-Connections

The standard Chern-Simons 3-connection

g stringk(g)oooo � � //

∼

inn(stringk(g))

g gkoooo � � // csk(g)

∼

// // chk(g)

Vect(X )

(A)

FA=0

OO

Vect(X )

(A,B)

FA=0

dB+kCS(A)=0

OO

Vect(X )

(A,B,C)

C=dB+kCS(A)

OO

Vect(X )

(A,C)

dC=〈FA∧FA〉

OO
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Conclusion

1 Every degree (2n + 1) transgressive element in Lie algebra
cohomology gives rise to an exact sequence

0 → gµk
→ csk(g) → chk(g) → 0

of Lie (2n + 1)-algebras.

2 Connections with values in these Lie (2n + 1)-algebras are
precisely the corresponding Chern-Simons functionals,
“localized” as a (2n + 1)-transport.
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But for those reading this, here are a couple of further aspects and
topics:
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Consequences

Further aspects and topics

Which Lie 3-group does our Chern-Simons Lie 3-algebra
csk(g) integrate to?

How does the Chern-Simons 3-group help to understand the
relation between Chern-Simons theory and
Wess-Zumino-Witten theory?

How does the Chern-Simons 3-transport help to understand
String bundles with connection?

How are the Chern Lie (2n + 1)-algebras related to
Roytenberg’s Lie n-algebras with weak skew-symmetry?

The following slides contain brief comments on this.

Urs Schreiber String and Chern-Simons Lie 3-Algebras



String and Chern-Simons Lie 3-Algebras

Consequences

Further aspects and topics

Which Lie 3-group does our Chern-Simons Lie 3-algebra
csk(g) integrate to?

How does the Chern-Simons 3-group help to understand the
relation between Chern-Simons theory and
Wess-Zumino-Witten theory?

How does the Chern-Simons 3-transport help to understand
String bundles with connection?

How are the Chern Lie (2n + 1)-algebras related to
Roytenberg’s Lie n-algebras with weak skew-symmetry?

The following slides contain brief comments on this.

Urs Schreiber String and Chern-Simons Lie 3-Algebras



String and Chern-Simons Lie 3-Algebras

Consequences

Further aspects and topics

Which Lie 3-group does our Chern-Simons Lie 3-algebra
csk(g) integrate to?

How does the Chern-Simons 3-group help to understand the
relation between Chern-Simons theory and
Wess-Zumino-Witten theory?

How does the Chern-Simons 3-transport help to understand
String bundles with connection?

How are the Chern Lie (2n + 1)-algebras related to
Roytenberg’s Lie n-algebras with weak skew-symmetry?

The following slides contain brief comments on this.

Urs Schreiber String and Chern-Simons Lie 3-Algebras



String and Chern-Simons Lie 3-Algebras

Consequences

Further aspects and topics

Which Lie 3-group does our Chern-Simons Lie 3-algebra
csk(g) integrate to?

How does the Chern-Simons 3-group help to understand the
relation between Chern-Simons theory and
Wess-Zumino-Witten theory?

How does the Chern-Simons 3-transport help to understand
String bundles with connection?

How are the Chern Lie (2n + 1)-algebras related to
Roytenberg’s Lie n-algebras with weak skew-symmetry?

The following slides contain brief comments on this.

Urs Schreiber String and Chern-Simons Lie 3-Algebras



String and Chern-Simons Lie 3-Algebras

Consequences

Integrating the Chern-Simons Lie 3-algebra

We have found the Lie 3-algebra

cs〈·,·〉(g)

which characterizes Chern-Simons 3-transport. Due to the
isomorphism

cs〈·,[·,·]〉 ' inn(g〈·,[·,·]〉)

and the equivalence

g〈·,[·,·]〉 ' string〈·,·〉(g)

the corresponding Lie 3-group should be

INN0(String〈·,·〉)(G ) .
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Consequences

What does INN0(Stringk(G )) know about
Wess-Zumino-Witten theory?

By the n-functorial holographic principle we expect that the WZW
2-transport arises as transformations of the Chern-Simons
3-transport.
Indeed, one can see that the 2-category of cylinders in the 3-group
INN0(Stringk(G )) has the right properties for this.
(To see this, recall that, by [Baez,Crans,S,Schreiber], the 2-group
Stringk(G ) is, as a groupoid, precisely the canonical gerbe on G
which enters the WZW theory.)
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Consequences

How does the Chern-Simons Lie 3-algebra help to
understand String-bundles with connections?

Ask Google the question: “How to get a spinning string from here
to there?”
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Consequences

Which role do weakly skew-symmetric Lie n-algebras play?

Baez and Crans considered Lie n-algebras which have a strictly
skew-symmetric bracket, which however satisfies the Jacobi
identity only weakly.
One can see that the Lie n-algebras gµ for each (n + 1)-cocycle µ
which we discussed are ordinary Lie algebras except that their
(n − 2)nd coherence for the Jacobiator is nontrivial, and in fact
precisely given by this cocycle.
Now, Roytenberg considered the case that skew-symmetry is
weakened, too. It seems that one finds in his description that the
higher coherences then are given by symmetric forms on the Lie
algebra. In particular, for n = 2 the Killing form may be regarded
as the “skew-symmetrizator”.
This seems to suggest the following picture:
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Consequences

Which role do weakly skew-symmetric Lie n-algebras play?

This seems to suggest the following picture:

weak Jacobi weak skew symmetry

gµk
// csµ(g) // chµ(g)

and might thus give an even more fundamentel interpretation of
the exact sequence which we found.
But this needs to be better understood.
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Omitted Topics and Notions

More details

On the following slides are collected a couple of definitions and
explanations which were omitted from the main part.
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Omitted Topics and Notions

n-Categories

Our 3-Categories are Gray-Categories

Whenever details are relevant, we shall restrict to n = 3 and use
3-categories which are Gray-categories. In such 3-categories
everything is strict, except possibly the exchange law for
2-morphisms.

Our 3-Groupoids are Gray-Groupoids

Given a notion of n-category, an n-groupoid is an n-category in
which all k-morphisms are equivalences.

(back)
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Omitted Topics and Notions

n-Groups

Definition

An n-group is an n-groupoid with a single object.

Notation

We write G(n) when we think of an n-group as a monoidal
(n − 1)-groupoid. Then we write ΣG(n) for the corresponding
one-object n-groupoid.

Example

For G(2) any strict 2-group, INN0(G(2)) is a 3-group coming from
a Gray-groupoid.

(back)
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Omitted Topics and Notions

Tangent n-Categories

Definition

For C any n-category, let pt := { • ∼ // ◦ } be the “fat point”,
and let

TC ⊂ Hom(pt,C )

be that maximal sub-n-category which collapses to a 0-category
when pulled back along the inclusion {•} ↪→ pt.
We call TC the tangent n-category to C .

The general concept of tangent categories is important for the
bigger picture underlying our dicussion, but for the present purpose
many of the details are not crucial.
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Omitted Topics and Notions

Properties of the tangent n-category

Proposition

For C any n-category, we find that the n-bundle

TC → Obj(C )

is a “deformation retract” of Obj(C ) in that

TC ' Obj(C ) .
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Omitted Topics and Notions

Properties of the tangent n-category

Proposition

For C any n-category, we find that the n-bundle

TC → Obj(C )

sits inside an exact sequence

Mor(C ) → TC → C .

When C = ΣG(n) comes from an n-groupoid, this “is” the
universal G(n)-bundle.
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Omitted Topics and Notions

Inner automorphism (n + 1)-Groups

Definition

Given any n-groupoid C , we say that

INN(C ) := TIdC
(AUT(C ))

is the inner automorphism (n + 1)-group of C .

proposition

INN(G(n)) sits inside the exact sequence

1 → Z (G(n)) → INN(G(n)) → AUT(G(n)) → OUT(G(n)) → 1

of (n + 1)-groups. Here Z (G(n)) is the (suspension of) the
categorical center of ΣG(n).

(back)
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Omitted Topics and Notions

Inner automorphism (n + 1)-Groups

Proposition

There is a canonical inclusion

TC ↪→ TIdC
(AUT(C ) .

Definition

The image under this inclusion we call

INN0(C ) ⊂ INN(C ) .

(back)
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