Groupoid symmetry of general relativity

November 24, 2008

Abstract

Notes taken in a talk by Christian Blohmann at Goettingen, Nov. 24. 2008, extended Born-Hilbert Seminar Higher and graded structures in differential geometry

there used to be a question mark here, now answered, recent results,

1 The problem

first part on explaining the problem
4-manifold X and Lorentzian metric g, vacuum Einstein equations say that the metric is Ricc-flat:
$\text{Ric}(g) = 0$

often one needs to formulate this as an initial value problem
(predictions, in numerical relativity, or if one wants to quantize)
so single out on X a Cauchy hypersurface Σ (which is oriented, spacelike, codimension 1)
assign a direction for time flow, i.e choose a vector field on the Cauchy surface
canonical choice: take n to be the unit normal vector field $g(n,n) = -1$
extend this by exponential map
integrate \Rightarrow flow of Gaussian time
flow from $-\tau$ to τ now gives a cylinder $[-\tau, \tau] \times \Sigma$
the metric on this will look like $g = \gamma(t) - dt^2$
γ is a path of metrics in $\text{Met}(\Sigma)$
one can regard this as the result of a choice of gauge fixing.
now how to describe the dynamics for γ?
nicest way: by an action principle

$$S^{\text{field}}(g) = \int_{\Sigma \times [-\tau, \tau]} R(g) \text{vol}_g$$

where $R(g)$ is the scalar curvature of g.

$$S^{\text{path}}(g) := S^{\text{field}}(\gamma - dt^2) = \int_{-\tau}^\tau L(\gamma(t), \dot{\gamma}(t)) dt + \text{boundary term}$$

the boundary term contains all terms containing $\ddot{\gamma}$
here

$$L(\gamma, \dot{\gamma}) = \int_{\Sigma} (R(\gamma) + \frac{1}{4} \text{Tr}_\gamma \dot{\gamma}^2 - \frac{1}{4} (\text{Tr}_\gamma \dot{\gamma}) \text{vol}_g$$

variational principle for this \Rightarrow Euler-Lagrange equations on $\text{Met}(\Sigma)$
Legendre transformation \leftrightarrow (γ, π)
yields Hamiltonian vector field on $T^* M \text{Met}(\Sigma)$
Proposition: from earliest days of general relativity:

\[\text{Ric}(g) = 0 \iff \text{Euler-Lagrange equations} + \text{constraints (because we set up variationa problem after making a gauge choice)} \]

first constraint:

\[C_{\text{energy}} = -R(\gamma) + \text{Tr}_\gamma \pi^2 - \frac{1}{2}(\text{Tr}_\gamma)^2 = 0 \]

easy calculation \(\dot{\gamma} = -\frac{1}{2} \text{second-fundamental-form} \)

and there is the momentum constraint:

\[C_{\text{momentum}} = -2 \text{div}_\gamma \pi \]

the constraints have to hold at every point \(x \in \Sigma \).

remember in gauge theories: constraints are the momenta of the action of the gauge group

first parameterize constraints by a vector space

\[C(x, \phi) = \int_\Sigma \{ \gamma(X, C_{\text{momentum}}) + \phi C_{\text{energy}} \} \text{vol}_g \]

where \((X, \phi) \in \Gamma(T\Sigma) \times C\Sigma\)

now from [Katz 1962] and [deWitt 1967] we get the Poisson brackets

\[\{ C(x, \phi), C(y, \psi) \} = C([X, Y] + \phi \text{grad}_\gamma \psi - \psi \text{grad}_\gamma \phi, X \cdot \phi - Y \cdot \psi) \]

so there is something strange about these brackets: index on the right depends on bracket
one good aspect: the constraint surface is coisotropic
bad aspect: the brackets do not close (since on the right we are pluggin in a vector field that depends on \(\gamma \), which is not what the vector fields on the left are like)
so why not fix \(\gamma \)? that would seem to yield a bundle of Lie algebras parameterized by \(\gamma \) ...
but then the Jacobi identity is no longer satisfied:
so this is *not* a bundle of Lie algebras!

conclusion: the constraints are not the momenta of a group action

since this is joint work with Weinstein and Fernandes one can guess what the conclusion will be:

the constraints are moments of a groupoid action

2 Solution

idea: Cauchy surfaces

\[\mathcal{E}(\Sigma, X)\{ i : \Sigma \to X \text{embedding} \} \]

\[\text{Diff}(\Sigma) \xrightarrow{\text{Diff}(\Sigma)} \mathcal{E}(\Sigma, X) \]

\[\mathcal{H}(\Sigma, X) \]

the bottom is hypersurfaces diffeomorphic to \(\Sigma \)

\[\mathcal{D} \mathcal{H} = (\mathcal{E}(\Sigma, X) \times \mathcal{E}(\Sigma, X))/\text{Diff}(\sigma) \]

observations:

- \(\text{Diff}(X) \leftarrow \text{Bisections}(\mathcal{D} \mathcal{H}) \)
- by conjugation we get \(\text{Diff}(X) \)-action on \(\mathcal{E}(\Sigma, X) \) descends to groupoid

big question: how does this groupoid act:

- how does \(\mathcal{D} \mathcal{H} \) act on “metric information”
- locally: push-forward of metric \(\Rightarrow \) no action
- globally: assume \(g \) on \(X \)
both make no good sense here, so let’s consider “middle ground”

Definition: A \(\Sigma \)-blink (“Augenblick”, “clin d’ oeil”) is the isometry class of a germ of a metric in a neighbourhood of a hypersurface.

let \(B \Sigma \) be the “space” of blinks

Proposition: (fix embedded Cauchy hypersurface then) Every blink has a unique Gaussian representative on \(\Sigma \times [-\tau, \tau] \)
meaning that \(g = \gamma(t) - dt^2 \) notice that if everything is analytic then these blinks are just the infinity-jets of the path \(\gamma(t) \)
how do we equip the space of blinks with a manifold structure?
extend \(\phi; S \to S' \) to \(\tilde{\phi} \)

\[\tilde{\phi} \circ \Phi^n \simeq \Phi'^n \circ \tilde{\phi} \]

“condition of gaussian extendability” here \(\Phi^n \) is the flow of the vector field \(n \)
what’s the Lie algebroid equivalence?
Element of Lie algebroid is given by \((X_0, \phi_0) \in \Gamma T(\Sigma) \times C\Sigma \)

Proposition: for \(v \) a vector field on \(U = \Sigma \times [-\tau, \tau] \)

\[\iota_v \mathcal{L}_v \gamma = 0 \]
then:

every vector field \(X_0 + \phi_0 n \) supported on \(\Sigma \times \{0\} \) has a unique extension to a vector field \(v = X + \phi n \) satisfying the condition of gaussian extension

let \(X + \phi n, Y + \psi n \) be two gaussian vector fields satisfying gaussian extension property
then
\[[X + \phi n, Y + \psi n] = ([X, Y] + \phi \text{grad}, \psi - \psi \text{grad}, \phi) + (X \cdot \phi - Y \cdot \psi) n \]

so now we have a geometric interpretation of the original constraint brackets!

Definition: extrinsic Lie algebroid

\[\mathcal{A}_{\text{ex} \Sigma} = \Gamma(TX) \times C\Sigma \times B\Sigma \]
anchor is:

\[\rho(X_0, \phi_0, \gamma) = \mathcal{L}_{X + \phi n} g = \mathcal{L}_X \gamma = \mathcal{L}_X \gamma + \phi \gamma \]
left summand in last term is the *shift* the other one is the *lapse*

so **answer**: the strange brackets are the Lie brackets of this Lie algebroid.

constraints:

view the Euler-Lagrane equations \(\simeq \) as vector fields on \(T\text{Met}\Sigma \)

\[\Phi^{\text{EL}} : T\text{Met}\Sigma \to B\Sigma \]
\[(\gamma_0, \dot{\gamma}_0) \mapsto \text{solution of EL equations} \]
observation:
\(\Phi^{EL} \) is an injective immersion

Theorem: The anchor \(\rho_{ex} \) of \(\mathcal{A}_{ex} \Sigma \) is tangent to
\[
\Phi^{EL}(T\text{Met}\Sigma)
\]

\[
(\Phi^{EL})^{*} \mathcal{A}_{ex} \Sigma =: \mathcal{A}_{in} \Sigma \simeq \Gamma TX \times C \Sigma \times T\text{Met}(\Sigma)
\]
is a Lie algebroid

Main result: theorem:
let \((X, \phi) \in \Gamma TX \times C \Sigma \) be viewed as a constant section of \(\mathcal{A}_{in} \Sigma \)
then the anchor \(\rho_{in}(X, \phi) \) is a hamiltonian vector field generated by \(C(X, \phi) \)