Simplical \(n \)-categories to \(n \)-categories

Urs

March 14, 2008

Fix some notion of “space” and some notion of path \(n \)-groupoid \(P_n(X) \) of a space \(X \). For instance “space” could mean manifold and \(P_n(X) \) could denote the strict \(n \)-groupoid of thin homotopy classes of globular \(n \)-paths. But the precise details do not matter for the following discussion.

If a surjection

\[
\pi : Y \rightarrow X
\]

is regular, then all the fiberwise products

\[
Y^{[n]} := \underbrace{Y \times_X \cdots \times_X Y}_n
\]

exist again as spaces, and we get get the simplicial space

\[
Y^\bullet := (\cdots Y^{[3]} \rightarrow Y^{[2]} \rightarrow Y).\]

This happens to be the nerve of a category, namely the Čech groupoid over \(Y \) whose objects are the points of \(Y \), and which has a unique morphism for every ordered pair of points in the same fiber of \(Y \).

Now we can apply \(P_n : \text{Spaces} \rightarrow n\text{Cat} \) to \(Y^\bullet \) to obtain the simplicial \(n \)-category

\[
P_n(Y^\bullet) := (\cdots P_n(Y^{[3]}) \rightarrow P_n(Y^{[2]}) \rightarrow P_n(Y)).\]

What is the analog of the Čech groupoid now? It should be an \(n \)-groupoid whose \(k \)-morphisms are \(l \)-morphisms \(P_l(Y^{[k-l+1]}) \) of \(P_n(Y^{[k-l+1]}) \).

Hence from the bisimplicial set obtained by passing to the nerve of all our \(n \)-groupoids

\[
\cdots \rightarrow P_2(Y^{[3]}) \rightarrow P_2(Y^{[2]}) \rightarrow P_2(Y) \\
\cdots \rightarrow P_1(Y^{[3]}) \rightarrow P_1(Y^{[2]}) \rightarrow P_1(Y) \\
\cdots \rightarrow P_0(Y^{[3]}) \rightarrow P_0(Y^{[2]}) \rightarrow P_0(Y)
\]

we want to, somehow, obtain a mere simplicial set.
whose set of 0-simplices is

\[P_0(Y), \]

whose set of 1-simplices is generated from

\[P_1(Y), P_0(Y^[2]), \]

modulo some relations, whose set of 2-simplices is generated from

\[P_2(Y), P_1(Y^[2]), P_0(Y^[3]) \]

modulo some relations. And so on.

Question: What, if any, is the name of the abstract construction achieving this?