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Abstract

We discuss actions of Lie n-groups and the corresponding action Lie
n-groupoids; discuss actions of Lie n-algebras (L∞-algebras) and the cor-
responding action Lie n-algebroids; and discuss the relation between the
two by integration and differentiation.

As an example of interest, we discuss the BRST complex that appears
in quantum field theory. We describe it as the Chevalley-Eilenberg al-
gebra of the Lie n-algebroid which linearizes the action n-groupoid (the
homotopy quotient) of a gauge n-group acting on the space of fields. This
identifies the ghosts-of-ghosts of degree k as the cotangents to the space
of k-morphisms of this action n-groupoid.

Several separate aspects of what we say here are essentially “well
known” to those who know it well. But a coherent description as at-
tempted here is certainly missing in the literature and deserves to be
better known.
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1 Plan

Unreasonable effectiveness of differential N-graded algebra? In vari-
ous applications of differential geometry – notably in quantum field theory –
(super) differential graded-commutative algebras – “(s)DGCA”s – play a cen-
tral role. The BRST-BV complex [31, 15, 18] is the prominent and also to some
extent the universal example.

But why? What do DGCAs mean?

(s)DGCAs

why?

Part of the answer has a nice explanation in terms of supergeometry (com-
pare also the discussion in section 2.3). As observed maybe first in [19] and
emphasized for instance in [33], an action of AutSupermanifolds(R0|1) on any su-
permanifold X is the same as a differential N-graded structure on C∞(X).

DGCAs from smooth spaces: differential forms. These algebras are
usually N-graded (or Z-graded but then with trivial cohomology in negative
degrees), or N × Z2-graded if in the context of super-geometry. A source of
N(×Z2)-graded commutative (super) algebras are algebras of differential (super)
forms on smooth (super) spaces

(s)SmoothSpaces
Ω•(−) // (s)DGCAs

why?

.

Notice that differential forms on a manifold X are the function algebra on the
supermanifold called the odd tangent bundle ΠTX of X. This, in turn, is the
mapping space from R0|1 into X

Ω•(X) ' C∞(ΠTX) ' C∞(homSupermanifolds(R0|1, X))

and hence naturally comes with an action of Aut(R0|1), which indeed corre-
sponds precisely to the N-graded differential deRham structure on Ω•(x).

In a way this is already the universal example: the functor Ω• has an adjoint

(s)SmoothSpaces
Ω•(−) //

oo
S

(s)DGCAs

why?

which sends each (s)DGCA A to a smooth (super) space whose (s)DGCA of
forms approximates A:

A ↪→ Ω•(S(A)) .
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DGCAs from L(ie)∞-algebras. We can understand S(A) as the classifying
space of “A-valued” differential forms, in the following sense [25]:

another source of (s)DGCAs are (super) L(ie)∞-algebras. These generalizes
Lie algebras as ∞-group (“∞-categorical groups”) generalize groups, which in
turn follows the generalization of groupoids to ∞-groupoids:

categorical dimension n = 1 n =∞

infinitesimal Lie algebra L∞-algebra

finite smooth group smooth ∞-group

The most natural incarnation of a (super) L∞-algebra g is in terms of its
Chevalley-Eilenberg (s)DGCA which we denote CE(g):

an finite dimensional (super) L∞-algebra is a N+-graded (super) vector space
g∗ together with a degree +1 graded derivation (the “dual (higher) brackets”)

dCE(g) : ∧•g∗ → ∧•g∗

such that d2 = 0 (the (dual of the) coherently weakened / strong homotopy
Jacobi identity [20]);

CE(g) := (∧•g∗, dCE(g)) .

Hence

(s)SmoothSpaces
Ω•(−) //

oo
S

(s)DGCAs (s)L∞
CE(−)oo

why?

.

L∞-algebra valued differential forms. The following cocept turns out to
be of importance: Given a smooth (super) space Y the notion of flat (super)
Lie-algebra valued forms on Y generalizes to (super) L∞-algebras g [25] by
setting:

Ω•flat(Y, g) := Hom(s)DGCA(CE(g),Ω•(Y )) .

A simple important class of examples are the L∞-algebras bn−1u(1):

Ω•(Y, bn−1u(1)) = Ωnclosed(Y ) .

Another important class of examples are Chern-Simons (super) L∞-algebras
csP (g) coming from transgressive (super) L∞-algebra invariant polynomials P
[25]:

Ω•(Y, csP (g)) =

 A ∈ Ω•(Y, g)
B ∈ Ωn(Y )
C = CSP (A) + dB

 .

These come from the “String-like” extensions [25] which we will mention in a
moment.

The fact that S(−) is adjoint to Ω•(−) says that S(CE(g)) is the classifying
space for such forms:

Hom(s)DGCA(CE(g),Ω•(Y )) ' Hom(s)SmoothSpaces(Y, S(CE(g))) .

4



Path n-groupoids. Using this fact one can work out what the smooth (super)
∞-groupoids associated to an L∞-algebra are: to any smooth space X we can
associate its fundamental path n-groupoid Πn(X)

(s)SmoothnGrpd oo
Πn(−)

(s)SmoothSpaces
Ω•(−) //

oo
S

(s)DGCAs (s)L∞
CE(−)oo

why?

.

For instance we can model smooth (super) ∞-groupoids by Kan simplicial
smooth (super) spaces, in which case Π∞(−) is just the simplicial space of
singular simplices:

(Π∞(X))n = HomSmoothSpaces(∆n, X) ,

where ∆n is the standard n-simplex.
The map from (s)DGCAs to smooth (super) ∞-groupoids thus obtained

(s)SmoothnGrpd oo
Πn(−)

(s)SmoothSpaces
Ω•(−) //

oo
S

(s)DGCAs

Sullivan model

jj
(s)L∞

CE(−)oo

is the construction of Sullivan models in rational homotopy theory [14].
Notice for the following that if X = S(CE(g)) happens to be the classifying

space for flat g-valued forms, then the space of n-simplices of Π∞(S(CE(g))) is
that of flat g-valued k-forms on ∆n.

(Π∞(S(CE(g))))n = HomSmoothSpaces(∆n, S(CE(g))) ' Ω•flat(∆
n, h) .

Integration of L∞-algebras. While Sullivan models have been a standard
tool for decades, it was only in [13] that it was noticed that – since the image
of the Sullivan construction is not just a simplicial space, but actually a Kan
simplicial space, hence an ∞-groupoid – this can be read as the process of
integrating L∞-algebras to ∞-groups

(s)SmoothnGrpd oo
Πn(−)

(s)SmoothSpaces
Ω•(−) //

oo
S

(s)DGCAs (s)L∞
CE(−)oo

integration

gg
.

We can use various models for higher groupoids, depending on taste and on con-
venience in certain applications. Remarkably, it is sufficient to probe a smooth
space already by strict path n-groupoids [4, 29]: we write Πn(X) for the strict
n-groupoid whose (k < n)-morphisms are HomSmoothSpaces(Dk, X) modulo thin
homotopy, and whose n-morphisms are HomSmoothSpaces(Dn, X) modulo homo-
topy (details for N = 2 are in [29], the higher versions can be defined iteratively
using paths-of n-paths).
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Remark: Nonabelian differential cohomology: ∞-bundles with con-
nection Working with strict smooth (super) n-groupoids throughout has the
big advantage that it allows us to use Ross Street’s theory of descent for ω-
category valued presheaves [27], thus using the ∞-Lie theory we are discussing
here in a theory of nonabelian differential cohomology [28, 30, 26].)

Examples for intgration of Lie n-algebras. In particular, if g is an ordi-
nary Lie algebra, then the integation procedure

g 7→ Π1(S(CE(g))) = BG

reproduces the “path method” for integration of Lie algebras [12] and produces
the 1-object groupoid

BG :=
{
• g // • |g ∈ G

}
coming from the simply connected Lie group G integrating g.

If instead we take the universal example of a semisimple Lie 2-algebra, the
String Lie 2-algebra gµ, we find [16] that

gµ 7→ Π2(S(CE(gµ))) = BString(G)

is the strict String Lie 2-group [3] (whose realized nerve models the topological
String group [34]) arising here in the form secretly appearing in [8, 9].

Gradings and categorical dimension. For our purposes, one important
phenomenon to notice here is:

Observation. The degree k generators in CE(g) encode the degree k-morphisms
in the integrating n-groupoid Πn(S(CE(g))).

To some extent this is an implication of the Dold-Kan theorem in the form
[5, 6, 7] which says that strict ∞-categories (aka ω-categories) internal to A-
modules are equivalent to complexes of A-modules

ωCat(A) ' Ch•+(A) ;

namely L∞-algebras can be regarded as ω-categories internal to vector spaces
and equipped with a coherently Jacobi bracket ω-functor. Under this equiva-
lence the A-module of k-morphisms maps to the degree k part of the cochain
complex.

This is the context in which to understand that all L∞-algebras with their
underlying N+-graded vector spaces integrate to one-object ∞-groupoids, and
hence to ∞-groups.
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L∞-algebroids. The way to generalize to the many-object versions is indi-
cated by the concept of Lie-Rinehart pairs [22], see [17], which model Lie al-
gebroids [12]: in a Lie-Rinehart pair a Lie algebra g is accompanied by an
associative commutative algebra A, with both being modules over each other in
the obvious compatible way modeled on the archetypical example of the tangent
Lie algebroid

(g, A) = (Γ(TX), C∞(X))

of a smooth space X.
From the nature of the Chevally-Eilenberg algebra of a Lie-Rinehart pair we

deduce the general definition of CE-algebra for “homotopy Lie-Rinehart pairs”
[17] or, as we shall say: L∞-algebroids.

single object many object

finite:
Lie ∞-groupoids

Gr = BG, G an ∞-group
C∞(Obj(BG)) = R

Gr arbitrary
C∞(Obj(Gr)) = A

infinitesimal:
Lie ∞-algebroids

g = (g,R) a Lie ∞-algebra,
CE(g) = (∧•g∗, d)

(g, V ) a Lie ∞-algebroid,
CEA(g) = (∧•Ag∗, d)

Definition. A Lie (super) ∞-algebroid (g, A) consists of

• a commutative, associative, unital (super) algebra A;

• an N-graded (or possibly Z-graded) A-module g∗ such that V0 = A;

• on ∧∞A g∗ regarded as a graded commutative algebra over the ground field
(!) a graded degree +1 derivation

d : ∧∞A g∗ → ∧∞A g∗

such that d2 = 0. We address

CEA(g) := (∧•Ag∗, d)

as the Chevalley-Eileneberg (s)DGCA of (g, A). If we demand all A-modules
to be not just of finite rank but also projective, then this reproduces the notion
of differential graded (super) manifold (DG manifold), sometime also called
an “NQ-supermanifold” (N-graded supermanifolds equipped with a degree +1
graded nilpotent derivation), e.g. [32].

Lie (1-)algebroids: Lie-Rinehart pairs. Lie-Rinehart pairs are the n = 1
examples (g∗ concentrated in degree 0 and 1) with

(dω)(x, y) = ρ(x)ω(y)− ρ(y)ω(x) + ω([x, y])

for all ω ∈ g∗, for all x, y ∈ g and ρ : g⊗A→ A the action of g on A.
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Plugging in the tangent Lie algebroid Lie-Rinehart pair (Γ(TX), C∞(X))
with Γ(TX) regarded as being in degree 1 and C∞(X) in degree 0, we find that
the Chevalley-Eilenberg algebra of the tangent Lie algebroid of a smooth space
X is nothing but the deRham complex:

CE(Γ(TX), C∞(X)) = Ω•(X) .

For interpreting ∞-Lie theory it is helpful to notice that the tangent Lie alge-
broid of X integrates to the fundamental groupoid of X

(Γ(TX), C∞(X)) 7→ Πn(S(CEC∞(X)(Γ(TX)))) = Πn(X) ,

simply because the contravariant functor Ω• is full and faithful [?].
Conversely, we have a systematic way to differentiate smooth n-groupoids

by making use of the functor S on the left of

(s)SmoothnGrpd oo
Πn(−)

S // (s)SmoothSpaces
Ω•(−) //

oo
S

(s)DGCAs (s)L∞
CE(−)oo

integration

gg

which probes any n-groupoid Gr with path groupoids:

S(Gr) : U 7→ HomSmoothnGrpd(Πn(U),Gr) .

Differentiation of smooth ∞-groupoids. The composite morphism from
(super) smooth n-groupoids to (s)DGCAs we get this way is differentiation in∞-
Lie theory sending smooth n-groupoids to the CE-algebras of the L∞-algebroids
linearizing them.

(s)SmoothnGrpd oo
Πn(−)

S //

differentiation

$$
(s)SmoothSpaces

Ω•(−) //
oo

S
(s)DGCAs (s)L∞

CE(−)oo

integration

gg

This can be read as essentially being the procedure given in [33].
As an example of this, notice that an aspect of the central result of [28, 29]

says that for G is a strict Lie 2-group and g the corresponding strict Lie 2-algebra
we have

HomSmooth2Grpd(Π2(X),BG) = Ω•flat(X, g) = HomDGCA(CE(g),Ω•(X)) = HomSmoothSpaces(X,S(CE(g))) .
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But this means that
S(BG) = S(CE(g))

for G a strict Lie 2-group with strict Lie 2-algebra g. More general cases should
work analogously.

Actions and their homotopy quotients. Finally, we want to understand
actions of L∞-algebras. Such actions have been defined in [20] and used in
[17, 18] in our sense here, but in terms of codifferential coalgebras. We can
reformulate this somewhat more conceptually by noticing the concept of action
n-groupoids and their relation to universal bundles:

as a synthesis of [23] and [10] we observe that given an action of a group G
in a set V , which is a functor

ρ : BG→ Set

we can pull back the “universal Set bundle” to obtain

V � _

��

// s−1(pt)� _

��
V//G

����

// TptSet

����
BG

ρ // Set

,

where the sequence of groupoids on the left characterizes the action groupoid

V//G := ( G× V
p1 //
ρ

// V ) ,

which can be regarded as the weak quotient or homotopy quotient of V by the
action of G. In particular, if ρ is the fundamental representation of G on itself,
or of a subgroup of G, we get

H
� � //

� _

��

G� _

��

// s−1(pt)� _

��
G//H

� � //

����

G//G

����

// TptSet

����
BH � � // BG

ρfund // Set

.

which, due to an old result of Segal (reviewed in [23]) is the groupoid incarnation
of the universal G-bundle over BG, or its pullback to BH.

This diagrammatics straightforwardly generalizes to higher n. In [23] this
situation was studied for 2-groups. (More details on the relation to universal
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2-bundles are in preparation [24].) We can go further and think of action ∞-
groupoids arising this way.

The important aspect for our purpose of this is that actions of G on V come
from extensions

V
� � // V//G // // BG .

Action L∞-algebroids. This has an obvious analog for L∞-algebras:

Definition. For A an algebra as above, V ∗ a complex of finite rank A-modules
such that V0 = A and g an L∞-algebra, an action of g on V is a Lie∞-algebroid
with CE-algebra CEA(g, V ) such that there is an exact sequence of DGCAs

CE(V ) CE(g, V )oooo CE(g)? _oo

0

ee
.

Example: the BRST complex. We claim that if V is a Koszul-Tate res-
olution (a “space of fields”) and g the corresponding (“gauge”) L∞-algebra,
then the action L∞-algebroid of g acting on V CE(g, V ) is the BRST complex
[31, 15, 18].

Here the degree k generators of CE(g) are what are called the k-fold “ghosts
of ghosts”. But we have a more geometrical and less ghostly interpretation of
these generators now:

the k-fold ghosts-of-ghosts are the cotangents to the space of k-morphisms
of the action n-groupoid abtained from the action of the gauge n-group on the
space of fields. This action groupoid, in turn, is the weak quotient of the space
of fields by the gauge group action.

1.1 Content

The heart of our discussion is definition 3 of the Chevalley-Eilenberg differential
algebras CE(g, V ) of “action Lie ∞-algebroids” which encode the action of a
L(ie) ∞-algebra g on a complex V of A-modules, for A an associative algebra.
This generalizes the action of Lie algebras on vector spaces to higher categorical
dimension and can be thought of as an ∞-zation of Lie-Rinehart pairs [22].

We motivate and apply this definition in the context of “∞-Lie theory”: the
relation between smooth ∞-groupoids and L∞-algebroids by integration and
differentiation. Various aspects of this have appeared in the literature. We give
a unified description in terms of adjunctions between

• differential graded commutative algebras (DGCAs)

• smooth spaces

• smooth n-groupoids
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in section 5.
Actions of L∞-algebras on complexes of vector spaces have been defined

before [20], as have their extension to what we we call here action L∞-algebroids
[17, 18]. Our definition is supposed to reproduce that, and add the aspect of
actions on complexes of A-modules, for A any associative algebra; and add the
dual aspect of the “∞-Chevalley-Eilenberg algebra”, such that an important
differential graded commutative algebra becomes an example of an action L∞-
algebroid: the BRST complex [15, 31] in quantum field theory.

Our definition 3 is of a different flavor than that in [20]: we do not define an
L∞-action in the “direct” way, but in terms of the corresponding weak or ho-
motopy quotient that it induces on the thing being acted on – the corresponding
L∞ “action algebroid”.

This construction is best illuminated by first considering it for the “finite”
(as opposed to “infinitesimal”) objects which integrate the “infinitesimal” Lie
n-algebras: smooth n-groups. In section 3 we first look at action groupoids
induced by actions of groups and discuss how they arise as groupoid-incarnations
of (universal) principal bundles, an observation arising as a synthesis of [23] and
[10].

The generalization to action n-groupoids induced by actions of n-groups is
then conceptually straightforward. (**but at the moment only indicated very
briefly).

The main point of this discussion is that it shows that for any action of
an n-group G on an (n − 1)-groupoid V we obtain a short exaxt sequence of
n-groupoids

V
� � // V//G // // BG

with the action n-groupoid V//G arising as an “extension” of the one-object
groupoid version BG = •//G of the n-group G by the (n− 1)-groupoid V that
it acts on.

Such sequences are nicely amenable to the passage from smooth n-groupoids
to Lie∞-algebroids. The latter we conceive, as described in section 4, in terms of
their dual Chevalley-Eilenberg algebras CE(−,−). The (CE-algebra of the) ac-
tion L∞-algebroid corresponding to the action of the L∞-algebra g on a cochain
complex V is then essentially defined to be the middle piece in a sequence

CE(V ) CE(g, V )oooo CE(g)? _oo

of DGCAs.
In section 4.3 we list examples. In a sense, the most general example of

CE(g, V ) is what is known as the BRST complex in “higher gauge” quantum
field theory (such as the quantum field theory of gauge fields that are locally
given by differential n-forms, for some n ∈ N): these QFTs have a “gauge n-
group” and their space of fields is, in general, a complex of A-modules, where
A is the algebra of functions on some space of field configurations. The BRST
complex is nothing but the action L∞-algebroid of the L∞-algebra linearizing
the gauge n-group acting on the “space” of fields. From roughly this point of
view the BRST complex has also been considered in [18].
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A special phenomenon here is that the BRST complex is in general generated
not in non-negative but in arbitrary degree. This is noteworthy, since the degree
k of a generator in the CE-algebra of an L∞-algebroid corresponds to the degree
k of morphisms in the n-groupoid integrating it – but there are no morphisms
of negative degrees in n-groupoids.

But one important point about the BRST complex is that, while it has in
general generators in negative degrees, it does not have nontrivial cohomology in
negative degrees: the generators in negative degrees just serve to conventiently
express a (weak) quotient in degree 0.

We show that after applying our integration procedure to the BRST complex,
the result is a smooth n-groupoid whose smooth space of objects is that given
by this weak quotient and which is otherwise the action n-groupoid of the gauge
n-group acting on the fields.

1.2 Statement of the main differential algebraic point

We define an L∞-algebroid to be

• an algebra A = C∞(X);

• and a finite rank Z-graded A-module g;

• together with a degree +1 graded derivation

dCEA(g) : ∧∞A g∗ → ∧∞A g∗

required to be linear over the ground field (not necessarily A-linear(!))
and such that

(dCEA(g))2 = 0 .

Here
∧∞A g∗ := colimn∈N ∧nA g∗ = A︸︷︷︸

deg=0

⊕ g∗1︸︷︷︸
deg=1

⊕ g∗1 ∧ g∗1 ⊕ g∗2︸ ︷︷ ︸
deg=2

⊕ · · ·

The duals and all graded symmetric tensor products are over A. We address

CEA(g) := (∧∞A g∗, dCEA(g))

as the corresponding Chevalley-Eilenberg DGCA.
This essentially reproduces the notion of CE-algebras for homotopy Lie-

Rinehart pairs in [17, 18].
Notice that for X = pt and g∗ in non-negative degree this is an L∞-algebra

whose CE-algebra we write CE(g) as in [25].
Given just a finite rank complex of A-modules V with V0 = A we write

CEA(V ) := ∧∞A V .
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We say that an action of an L∞-algebra g on V is an L∞-algebroid CE(g, V )
which sits in an extension

CEA(V ) CEA(g, V )oooo CE(g)? _oo

0

ff

and we address CE(g, V ) as the CE-algebra of the action L∞-algebroid of g
acting on V .

In the case that V is a Koszul-Tate resolution and g a compatible L∞-algebra
we claim that CE(g, V ) is the corresponding BRST complex, also essentially
reproducing [18].

The details are in section 4. The reader not interested in the smooth ∞-
groupoids corresponding to L∞-algebroids should just look at section 4.

1.3 Statement of the main ∞-categorical point

What should be called “∞-Lie theory” – the relation between smooth ∞-
groupoids and L∞-algebroids – is, at its core, the transport back and forth
across two adjunctions that relate smooth spaces X with

• finite paths in these spaces – Πn(X)

on the one hand and

• infinitesimal paths in these spaces – Ω•(X)

on the other:

(s)SmoothSpaces

Πn(−)

xxrrrrrrrrrrrrrrrrrrrrrrrrrr
88

S

rrrrrrrrrrrrrrrrrrrrrrrrrr
Ω•(−)

((QQQQQQQQQQQQ
hh

S QQQQQQQQQQQQ

(s)DGCAs

(s)SmoothnGrpds
differentiation //

oo
integration

(s)L∞

CE(−)
eeLLLLLLLLLL

.

This gives us a “geometric” or “space-wise” interpretation of differential alge-
braic structures. In particular, it identifies the N-grading prevalent in many
contexts with the categorical dimension of higher morphisms.

Of course, as we discuss, saying so is essentially saying “Sullivan model” and
saying “Dold-Kan theorem”, but it deserves to be said this explicitly.

2 Space and quantity

Since we want to talk about smooth (“Lie”) n-groups and their Lie n-algebras,
we need a suitably general notion of “smooth spaces”.
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Our attitude is: find a large enough nice category SmoothSpaces of suffi-
ciently general “smooth spaces” such that all operations in our application that
ought to exist do exist. Then after the formalism is up and running the way it
should, it is time to ask whether any given generalized smooth space appearing
in an application is “particularly nice”, for instance a quasi-representable sheaf
on S, also known as a diffeological space, or even a Fréchet manifold, or even a
finite dimensional manifold

Manifolds � � // FréchetManifolds � � // DiffeologicalSpaces � � // SmoothSpaces

here abstract nonsense
gives prescriptions

for all desired operations

labour is involved in going in this direction
oo

.

For instance, as discussed in section 5.3, the abstract nonsense gives a pre-
scription for integrating a Lie algebra to a group internal to SmoothSpaces.
That prescription happens to reproduce the known “method of integration by
paths”. For this one proves, see [12], that the resulting group internal to smooth
spaces is actually even a group internal to manifolds.

For Lie 1-algebroids abstract nonsense still gives a 1-groupoid internal to
smooth spaces by a prescription which coincides with the known integration
of Lie algebroids by “A-paths”. But now, as also discussed in [12], one finds
that not all of the smooth 1-groupoids obtained this way are actually groupoids
internal to manifolds.

Similarly, the bulk of the work in [13] is to restrict the abstract integration
procedure for L∞-algebras to those for which the result is an∞-groupoid inter-
nal to manifolds. Alternatively, [16] tries to realize the result internal to Banach
spaces.

2.1 Smooth spaces

So we take “smooth spaces” to be sheaves on the “abstract” site S (abstract in
that it is not a site of open subsets of a fixed space) whose objects are Rns for
all n ∈ N, and whose morphisms are all smooth maps between these. Covers
in S are the obvious covers of Euclidean spaces by smooth images of Euclidean
spaces.

Obj(S) = N

S(n,m) = SmoothManifolds(Rn,Rm) .

One could take various slightly different sites (for instance open subsets of
Euclidean spaces) and still get an equivalent category of sheaves. But using full
Euclidean spaces has a certain conceptual economy to it and nicely generalizes
to the case of super -smooth spaces:
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We take sS to tbe the site whose objects are super-Euclidean spaces and
whose morphisms are all smooth maps of supermanifolds between these

Obj(sS) = N× N

sS(n|n′,m|m′) = SmoothSuperManifolds(Rn|n
′
,Rm|m

′
) .

The category sSmoothSpaces of smooth superspaces is taken to be that of
sheaves on sS. Here a cover in sS is a collection of morphisms of Rp|qs such
that the underlying morphisms of Rps is a cover.

Of central importance is the smooth (super) space Ω• of (super) differential
forms, given by the sheaf which assigns

Ω• : U 7→ Ω•(U)

for U any test domain, i.e. any object in S or sS. Here Ω•(U) on the right
is the set of (super)differential forms on U . But of course this set carries the
structure of a differential super N-graded commutative algebra (hence N-graded
in the ordinary and N×Z2-graded in the super case, with the signs coming from
the total degree degN + degZ2

: N × Z2 → Z2). This makes Ω• an ambimor-
phic object: it is both a smooth (super) space as well as a differential (super)
graded-commutative algebra ((s)DGCA). As such it gives rise to a (contravari-
ant) adjunction between smooth spaces and DGCAs:

(s)SmoothSpaces
Ω•(−) //

oo
S

(s)DGCAs . (1)

Here the top morphism sends any (super) smooth space X to the set Ω•(X) :=
(s)SmoothSpaces(X,Ω•) which is naturally equipped with the structure of a
(super) DGCA.

The lower morphism sends any DGCA A to the (super) smooth space

A 7→ (S(A) : U 7→ HomDGCAs(A,Ω•(U))) .

The fact that we have a (contravariant) adjunction means that

Hom(s)SmoothSpaces(X,S(A)) ' Hom(s)DGCAs(A,Ω•(X)) . (2)

In section 5.1 we use this in the case that A = CE(g) is the Chevalley-Eilenberg
algebra of an L∞-algebra to interpret S(CE(g)) as the smooth classifying space
for smooth g-valued forms.

This relation between L∞-algebras and the classifying spaces of the differen-
tial forms with values in them, together with the analogous adjunction between
smooth spaces and smooth n-groupoids discussed in section 2.2, is seen in sec-
tion 5 to be at the heart of n-Lie theory: the relation between L∞-algebras and
Lie ∞-groups.
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(s)SmoothnGrpd
S //

oo
Πn(−)

differentiation

''
(s)SmoothSpace

Ω•(−) //
oo

S
(s)DGCAs oo CE(−) (s)L∞

integration

gg

Figure 1: The heart of n-Lie theory. The two ambimorphic objects Ω•

(the infinitesimal paths) and Πn (the finite paths) induce adjunctions between
(super) smooth spaces on the one hand and (super) DGCAs respectively smooth
(super) n-groupoids on the other. Integration of (super) Lie n-algebras is passing
along these adjunctions from right to left. Differentiation is passing from left to
right. This is discussed in section 5.

2.2 Smooth n-categories

By n-category we mean, throughout, strict n-categories. Strict ∞-categories
are usually called ω-categories. A strict n-category is an ω-category with only
identity k-morphisms for k > n.

Definition 1 A smooth (super) ω-category is an ω-category internal to smooth
(super) spaces.

We write (s)SmoothωCat for the ωCat-category of smooth (super) n-categories
[11].

Remark. The concept of a super n-groupoid as an n-groupoid internal to
superspaces is immediate, but apparently has not been considered much in the
literature (except for n = 1 and a single object, in which case we have a super
group). 1-Groupoids internal to supermanifolds have been considered in [21].

The central examples are fundamental n-groupoids

Πn : SmoothSpaces→ SmoothnCategories

of smooth spaces: the (k < n)-morphisms of Πn(X) are thin homotopy classes
of smooth images of the standard k-disk in X, the n-morphisms are homotopy
classes of the n-disk in X.

The fundamental path n-groupoid Πn is also an ambimorphic object: the
assignment

Πn : U 7→ Πn(U)
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is a smooth n-groupoid valued co-presheaf. It hence [**URS: need to check
this, careful here] induces an adjunction between smooth spaces and smooth
n-groupoids

(s)SmoothnGrpd
S //

oo
Πn(−)

(s)SmoothSpace .

Here the map from smooth n-groupoids to smooth spaces is obtained by
probing a given smooth n-groupoid by path n-groupoids.

S : (s)SmoothnGrp S // (s)SmoothSpace

C
� // (U 7→ (s)SmoothnGrpd(Πn(U), C))

2.3 Categorification and superification

There is a curious similarity between supermanifolds and L∞-algebroids. In
fact, in a big part of the literature what we address as L∞-algebroids here are
addressed as ”NQ-supermanifolds”.

A very popular definition of supermanifolds is as topological spaces together
with a sheaf of Z2-graded algebras. One then derives that every supermanifold
X can be identified with a smooth vector bundle E → |X| over the underly-

ing manifold |X| and every morphism of supermanifolds X
f // X ′ with a

morphism
∧•C∞(|X|) Γ(E)︸ ︷︷ ︸

deg=odd

oo f∗ ∧•C∞(|X|) Γ(E)︸ ︷︷ ︸
deg=odd

between the Z2-graded commutative algebras of exterior powers of sections of
this vector bundle. The main point here being that there are more such GCA
morphism than morphisms of the underlying vector bundles.

We can reformulate this by saying that the algebras of functions on a super-
manifold are the Z2-graded-commutative algebras of the form

C∞(X) = ∧∞A ( A︸︷︷︸
deg=even

⊕ V︸︷︷︸
deg=odd

) = ∧•A V︸︷︷︸
deg=odd

= A⊕ V ⊕ V ∧A V ⊕ · · · ,

where A = C∞(|X|) for some manifold |X| and where V is a projective module
of finite rank over A.

If the projective A-module V is N+-graded, we can form the N-graded com-
mutative algebra

∧∞A (A⊕ V ) = ∧•AV .

This is often addressed as (the algebra of functions on) an “N-supermanifold”.
If, furthermore, there is a degree +1 derivation, linear over the ground field

on this N-graded commutative algebra ∧•AV

d : ∧•AV → ∧•AV
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categorification superification

combinatorially algebraically algebraically geometrically

higher morphisms N-grading Z2-grading

composition differential Aut(R0|1)-action odd flow

many objects underlying algebra A underlying manifold

Table 1: Categorification and superification have, while different, striking
similarities.

this structure is often addressed as a differental graded supermanifold or “NQ-
supermanifold”.

But this is then also the same structure that deserves to be addressed as
(the Chevalley-Eilenberg algebra of) an L∞-algebroid, our definition 2: the
infinitely categorified (higher morphisms) and oid-ified (many objects) version
of a Lie algebra.

The main point connecting the two parts of table 1 is the observation, re-
viewed in [33] that differential N-graded manifolds are Diff(R0|1)-modules.

3 Lie n-group actions and action Lie n-groupoids

We make some observations on the nature of the familiar elementary concept
of group actions that will be helpful for understanding the generalization to
actions of n-groups and for the passage from smooth n-group actions to L∞-
algebra actions.

When a group G has an action ρ on a set V , the quotient V/G is the set
of orbits: the collection of equivalence classes under the equivalence relation
s ∼V/G s′ ⇔ ∃g ∈ G.s′ = ρ(g)(s).

This set of orbits is the decategorification of the weak quotient,

V//G :=

(
V ×G

p1 //
ρ

// V

)
,

called the action groupoid of G acting on V : the objects of V//G are the
elements of V , but instead of two different elements on the same orbit being
equal in V//G, they are just isomorphic:

s ∼V/G s′ ⇔ ∃ s
g // s′ ∈ Mor(V//G) .

A nice introduction to action groupoids is in [1].
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The following characterization of action groupoids will be useful when pass-
ing to Lie n-algebras in section 4. It combines an insight from [23] with an
observation in [10].

For G any group, regarded as a set equipped with a product, we write BG for
the corresponding groupoid with a single object and one morphism per element
of G.

BG :=
{
• g // •|g ∈ G

}
.

Note that BG is the action groupoid of the trivial action of G on the singleton
set:

BG = •//G .

The B-notation here is such that it commutes with the operation

| · | : Cat→ Top

of geometric realizations of nerves of categories: we have

|BG| = B|G| = BG .

With this notation, an action ρ of a group G on a set V is a functor

ρ : BG→ Set

( •
g // • ) 7→ ( V

ρ(g) // V ) .

The action groupoid V//G turns out to be a pullback of something along this
functor.

This something is the category of pointed sets (sets with basepoint), which
we denote TptSet: its objects are sets with a chosen element and its morphisms
are maps of sets repsecting the basepoint. The obvious forgetful functor

TptSet

����
Set

(3)

simply forgets the choice of basepoint. One sees that the action groupoid V//G
is the strict pullback

V//G //

����

TptSet

����
BG

ρ // Set
.

The vertical morphism on the left forgets the elements on an orbit and just
remembers the group action on them.

There is a sense in which (3) is the “universal Set-bundle” (compare the
discussion in [23]). In that sense, the fiber of this bundle is the set of (small)
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pointed sets (no morphisms between them). This we write s−1(pt). Then we
have a sequence of categories

s−1(pt)� _

��
TptSet

����
Set

.

Forming pullbacks along an action ρ : BG → Set we obtain the sequence of
groupoids

V
� � // V//G // // BG , (4)

where the set V is regarded as a groupoid with only identity morphisms, as the
left column of

V � _

��

// s−1(pt)� _

��
V//G

����

// TptSet

����
BG

ρ // Set

.

It is useful to consider this for the important special case that ρ = ρfund : BG→
Set is the fundamental representation of G on itself by right multiplication: in
this case the left column

G� _

��

// s−1(pt)� _

��
G//G

����

// TptSet

����
BG

ρ // Set

is the groupoid incarnation of the universal G-bundle, in that it becomes the
universal G-bundle under | · | (this is an old result of Segal, reviewed in [23]):

G� _

��

� |·| // G� _

��
G//G

����

� |·| // EG

����
BG � |·| // BG

.
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Given a subgroup inclusion H ↪→ G we can regard it as the representation of H
on G given by the composite functor

BH � � // BG
ρfund // Set .

The corresponding quotient is G/H, the collection of cosets. The weak quotient
is the action groupoid G//H, which is the groupoid incarnation of the canonical
principal G-bundle over BH

H
� � //

� _

��

G� _

��

// s−1(pt)� _

��
G//H � � //

����

G//G

����

// TptSet

����
BH � � // BG

ρfund // Set

.

All these considerations generalize to higher groups and higher groupoids:
given some notion of n-groupoids, an n-group is just a one-object n-groupoid,
which we always denote BG to indicate that it is the one-object n-groupoid
version of its Hom-object

G := EndBG(•) ,

(usually an (n− 1)-groupoid itself), that has a monoidal structure.
An action of such an n-group then is an n-functor

ρ : BG→ (n− 1)Grpd

and we obtain the corresponding action n-groupoid from this by pulling back
the “universal (n− 1)Grpd-n-bundle

V//G //

��

Tpt(n− 1)Grpd

����
BG

ρ // (n− 1)Grpd

.

And so on.

4 Lie n-algebra actions and action Lie n-algebroids

Lie n-algebras are supposed to be to Lie n-groups as Lie algebras are to Lie
groups. Aspects of a “n-Lie theory” making this precise have begun to appear
in the literature. Aspects of this we shall discuss below.

Under a Lie n-algebra (more properly: “semistrict” Lie n-algebra) we un-
derstand an L∞-algebra whose underlying graded vector space is concentrated
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in degree 1 through n. For a review of the basics of L∞-algebras and pointers
to the literature we refer the reader to section 6.1 of [25].

We will see in section 5 that the generators in degree k of a Lie n-algebra
correspond to the k-morphisms of the one-object Lie n-groupoid integrating it.
The single object of the n-groupoid here is a direct reflection of the absence of
degree 0 elements in the Lie n-algebra.

Therefore an L∞-algebra with concentration in degree 0 through n is to be
addressed as a Lie n-algebroid. Their nature is one of our main concerns here.

4.1 Lie ∞-algebras

Following [25] we think of L∞-algebras almost exclusively in terms of their dual
Chevalley-Eilenberg differential graded commutative algebras:

a finite dimensional L∞-algebra g is a finite dimensional N+-graded vector
space g∗ together with a graded degree +1 derivation

d : ∧•g∗ → ∧•g∗

on the free graded symmetric tensor algebra ∧•g∗, such that d2 = 0.
The differential graded-commutative algebra

CE(g) := (∧•g∗, d)

thus obtained we address as the Chevalley-Eilenberg algebra of g.
An ordinary Lie algebra is the special case with g taken to be concentrated

in degree 1. The derivation is the dual of the Lie bracket, extended as a graded
derivation by the graded Leibnitz rule. In this case CE(g) is the ordinary
Chevalley-Eilenberg algebra of a Lie algebra.

Let G be a Lie group with Lie algebra g. The fact that an ordinary Lie
algebra g is taken to be in degree 1 in the above is directly related to the fact
that G is the collection of (1-)morphisms in the groupoid BG.

4.2 Lie ∞-algebroids

Similarly, as further discussed below, the degree k-part of an L∞-algebra g
controls the space of k-morphisms in the one-object Lie n-group BG integrating
it.

This makes it clear that generalizing the above definition of L∞-algebras
from N+-graded to N-graded vector spaces corresponds to passing from Lie n-
groups to Lie n-groupoids.

To amplify this point, we notice that with R denoting the ground field (the
tensor unit of vector spaces) we have

∧•g∗ = ∧∞(R⊕ g∗) := colimn∈N ∧n (R⊕ g∗) .

So instead of thinking as an L∞-algebra as a structure on a N+-graded vector
space, we can think of it as a structure on a N-graded vector space which is
restricted to have the ground field in degree 0.
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This should remind us strongly of the situation for n-groups: an n-group is
best thought of as an n-groupoid that is restricted to have a single element in
degree 0.

Indeed, in section 5 we will find that the n-groupoid integrating an L∞-
algebra g has as space of objects a space whose algebra of functions is CE(g)0 =
R. Hence the n-groupoid integrating an L∞-algebra has a single object, as it
should be.

Therefore, we expect the many object version, an L∞-algebroid, to have a
CE algebra which in degree 0 has the algebra A = C∞(X) of functions over the
space X of objects. That is what the following definition formalizes.

Definition 2 (Lie ∞-algebroids) A Lie ∞-algebroid (g, A) consists of

• a commutative, associative, unital algebra A;

• a N-graded A-module g∗ such that V0 = A;

• on ∧∞A g∗ regarded as a graded commutative algebra over the ground field
(!) a graded degree +1 derivation

d : ∧∞A g∗ → ∧∞A g∗

such that d2 = 0.

Remark. No harm is done to this definition by allowing Z-grading instead
of N-grading. But N-grading is “natural”, compare the remark Grading and
categorical dimension in section 1. The point is that it may be convenient to
have N-graded g∗ being resolved by a Z2-graded g∗, i.e. with the latter having
generators in negative degree, but no cohomology there. This is what happens
in the example of the BRST complex.

Definition 3 (action Lie ∞-algebroid) For A an algebra as above, V ∗ a
complex of finite rank A-modules such that V0 = A and g an L∞-algebra, an
action of g on V is a Lie ∞-algebroid with CE-algebra CEA(g, V ) such that
there is an exact sequence of DGCAs

CE(V ) CE(g, V )oooo CE(g)? _oo

0

ee
.

Remark. Notice how we generate the GCAs freely over A, but then regard the
result as GCAs over the ground field and in particular demand the derivations
to be linear over the ground field, not over A. The following examples will
clarify the point of this.
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V // // V//G � � // BG action Lie n-groupoid

CE(V ) CE(g, V )oooo CE(g)? _oo action Lie n-algebroid

Table 2: Actions in terms of their weak/homotopy quotients in integral (i.e.
finite) and differential (i.e. infinitesimal) incarnation.

Remark. This definition is supposed to provide the linearized version of the
sequence of action Lie n-groupoids (4), compare table 2. The precise relation is
the topic of section 5.

4.3 Examples

Lie 1-algebroids: Lie-Rinehart pairs. For n = 1 Lie algebroids are the
same as Lie-Rinehart pairs [22]. The definition can be found reviewed for in-
stance as Def. 1.1 in [17].

Definition 4 (Lie-Rinehart pair) A Lie-Rinehart pair (A, g) is a pair con-
sisting of an associative algebra A and a Lie algebra g, such that both are mod-
ules over each other in the obvious compatible way modeled on the archetypical
example (A, g) = (C∞(X),Γ(TX)), for X any manifold.

If we denote the Lie action of g on A by

ρ : g⊗A→ A

and regard A itself as a complex of A-modules concentrated in degree 0, we get
the DGCA

CE(g, V ) =

∧∞A ( A︸︷︷︸
deg=0

⊕ g∗︸︷︷︸
deg=1

), dCE(g,A)


with

(dCE(g,A)ω)(x, y) = ρ(x)(ω(y))− ρ(y)(ω(x)) + ω([x, y])

for all ω ∈ g∗ and x, y ∈ g; and

dCE(g,A)f = ρ(·)(f) ∈ g∗

for all f ∈ A.
Beware that the dual g∗ of g is the dual over A.
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The tangent Lie algebroid. The archetypical examples of Lie algebroids
are tangent Lie algebroids. We will see in section 5 that they correpond to the
fundamental Lie groupoids of spaces. See exercise 30 in [12].

Consider the archetypical Lie-Rinehart pair (A, g) := (C∞(X),Γ(TX)). We
have

∧•A(Γ(TX)∗) = Ω•(X) ,

as graded commutative algebras and

CE(∧•A(Γ(TX)∗), dCE(Γ(TX),C∞(X))) = Ω•(X)

as DGCAs. So the deRham DGCA is nothing but the Chevalley-Eilenberg
algebra of the action Lie algebroid of the Lie algebra of vector fields on X
acting on functions on X. This point of view is originally due to Rinehart.

Adjoint representation of L∞-algebras on themselves Given an L∞-
algebra g consider the DGCA

CEad(g, g) :=
(
∧•(g∗[−1]⊕ g∗), dCEad(g,g)

)
with

dCEad(g,g)|g∗ = dCE(g)

and
dCEad(g,g)|g∗[−1] = σ ◦ dCE(g) ◦ σ−1 ,

where
σ:g∗[−1]→ g∗

is the canonical isomorphism of vector spaces that just shifts the grading, ex-
tended as a degree +1 graded derivation.

For g an ordinary Lie algebra this is the ordinary CE-algebra of the adjoint
representation of g on itself.

Notice that CEad(g, g) is related to the Weil algebra W(g) essentially (but
not quite) by replacing the degree -1 shift with a degree +1 shift. This will be
relevant for the interpretation of the BRST complex in terms of physical phase
space (**to be discussed somewhere, sometime)

5 n-Lie theory: integration and differentiation

The integration method from Lie n-algebroids to Lie n-groupoids which we
present is based on the same general idea as [13, 16], but uses strict smooth (su-
per) n-groupoids instead of the weak n-groupoids conceived as Kan complexes
used in [13, 16].

Similarly, the differentiation method from Lie n-groupoids to Lie n-algebras
which we present is analogous to the basic idea of [33], but is formulated in
terms strict smooth (super) n-groupoids instead of in terms of Kan complexes.
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We observe that the basic underlying mechanism made us of in [13, 16, 32, 33]
is the general situation described in section 2:

(s)SmoothnGrpd
S //

oo
Πn(−)

differentiation

''
(s)SmoothSpace

Ω•(−) //
oo

S
(s)DGCAs oo (−)∗ (s)L∞

integration

gg
.

This relation between (super) DGCAs and smooth (super) n-groupoids is essen-
tially the basic idea of Sullivan models in rational homotopy theory [14]. While
in the theory of Sullivan models one has only be interested in turning DGCAs
into simplicial spaces, the observation that these simplicial spaces actually hap-
pen to be Kan complexes and hence qualify as weak∞-groupoids is the starting
point of [13]. The only difference here is that we replace weak ∞-groupoids by
strict n-groupoids.

The preference of strict n-groupoids over weak∞-groupoids here is purely for
practical, not for conceptual reasons: strict n-groupoids are convenient, useful
and sufficient for our purposes. In particular, their usage allows to plug our
constructions here into the theory of nonabelian differential cohomology [26]
based on Ross Street’s descent theory.

For n = 1 our integration procedure reproduces on the nose the integration
of Lie (1-)algebroids (and hence in particular of Lie (1-)algebras) to smooth (1-
)groupoids (Lie groups, in particular) in terms of the “A-path method” which
is very nicely reviewed in [12].

5.1 L∞-algebra valued forms and their classifying spaces

For g any (super) L∞-algebra and Y any smooth (super) space, we say that

Ω•flat(Y, g) := HomDGCAs(CE(g),Ω•(Y ))

is the collection of flat g-valued forms on Y . For g an ordinary (super) Lie
algebra this coincides with the ordinary notion of flat g-valued 1-forms. More
details and examples can be found in [25]. There also non-flat g-valued forms
are discussed, which however shall not concern us here.

Using the adjunction (1) and hence the bijection (2) we find that the smooth
(super) space S(CE(g)) is the classifying space for flat g-valued forms

Ω•flat(Y, g) = Hom(s)SmoothSpaces(Y, S(CE(g))) .
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5.2 Integration

Given a Lie n-algebra g, we say that the Lie n-group G universally integrating
it is that given by the fundamental n-path groupoid of the classifying space of
flat g-valued forms:

BG := Πn(S(CE(g))) .

Similarly, given any Lie n-algebroid (g, V ), we say that the Lie n-groupoid V//G
universally integrating it is

V//G := Πn(S(CE(g, V ))) .

5.3 Examples

Integration of ordinary Lie (1-)algebras and Lie (1-)algebroids. Lie’s
third theorem, that every Lie algebra comes from a Lie group, is usually proven
by relating everything to matrix Lie algebras using Ado’s theorem.

That there is a more elegant and more conceptual method which identitfies
the simply connected Lie group integrating a given Lie algebra with a certain
quotient of based paths in the Lie algebra, and identifies the product in the Lie
group with compisition of paths has apparently been well known to a chosen few
for a long time (I am being told that Bott taught it his students this way) but
was certainly not widely appreciated. It received renewed attention only when
people started thinking about the more general problem of the integration of
Lie algebroids to Lie groupoids. In that case the more conceptual path method
is the only sensible one.

A beautiful and exhaustive review of the theory of integration of Lie alge-
broids is [12]. In section 3.2 the reader can find a discussion of the path-method
for integrating Lie algebras, which then in section 3.3 is generalized to the inte-
gration of Lie algebroids.

The discussion in [12] is not exactly formulated in the language used here,
but is easily translated into it:

• It is well known that Lie-Rinehart pairs (g, A) for A = C∞(X) are equiv-
alent to Lie algebroids over X. Hence so are our DGCAs CE(g, A) from
definition 4.

• Accordingly, DGCA morphisms

CE(Γ(TX), C∞(X)) = Ω•(U) CE(g, A)oo

are in bijection with Lie algebroid morphisms

TU // (g, A) .

• By the Yoneda lemma, the morphisms of

Π1(S(CE(g, A)))
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are hence precisely Lie algebroid morphisms

TI → (g, A)

– this are the “A-paths” of [12] (see definition 2.13 and exercise 27 there)
– modulo Lie algebra homotopies

T (I × I)→ (g, A)

– this are the “A-homotopies” of [12] (see definition 3.18 there).

Therefore the smooth Lie groupoid Π1(S(CE(g, A))) which we define to be the
smooth Lie groupoid integrating the Lie algebroid (g, A) coincides with the
corresponding groupoid in [12]. In particular, under the integrability conditions
discussed there, it is actually a groupoid internal to manifolds.

All this is essentially indicated, without details, at the beginning of [32].

Integration of the String Lie 2-algebra. The fundamental (and in some
sense the universal) example of a Lie 2-algebra is the String Lie 2-algebra gµ
first considered as such in [2] and considered in the general context of String-like
extensions of L∞-algebras in [25].

Here g is an ordinary semisimple Lie algebra and µ ∈ ∧3g∗ ⊂ CE(g),
dCE(g)µ = 0 is a multiple of the canonical Lie 3-cocycle

µ = 〈·, [·, ·]〉 .

Then gµ is defined to have as Chevalley-Eilenberg algebra that of g, but with
the 3-cocycle µ “killed”:

CE(gµ) :=

∧•( g∗︸︷︷︸
deg=1

⊕ 〈c〉︸︷︷︸
deg=2

)


with

dCE(gµ)|g∗ = dCE(g)

and
dCE(gµ)c = µ .

The (strict) Lie 2-group String(G) integrating gµ was found in [3] by guessing
and then differentiating to reobtain gµ. In its weak (Kan complex) form it was
obtained in [16] by using essentially the integration pocess we are discussing
here. In both cases one shows that, if µ is nowmalized such that it extends left-
invariantly over the compact, simple, simply connected Lie group G integrating
g to the generator of H3(G,Z), the realization of the nerve of Gµ is a topological
group which is a model for the topological String (1-)group [34].

If we don’t worry about the (Fréchet- or Banach-)manifold structure on
String(G) for the time being, the derivation of the strict Lie 2-group String(G)
using our integration procedure proceeds as follows.
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As a warmup, notice that we could have, in the previous example, formed the
2-groupoid Π2(S(CE(g))) instead of the 1-groupoid Π1(S(CE(g))). This yields
a “puffed up” 2-group version of the 1-group G: now 1-morphisms are just thin-
homotopy classes of paths in G, starting at the identity, and 2-morphisms are
homotopy classes of disks in D interpolating between two paths with the same
endpoint.

Here we are using the fact that a flat g-valued 1-form A on a contractible
space Y is the same as a choice of point in Y and a functor g : Y → G, using
A = gdg−1.

Since π2(G) = 1 we get

Π2(S(CE(g))) = B(ΩG→ PG) .

Compare with [3].
In a similar manner the String Lie 2-algebra gµ for g a semisiple Lie algebra

and µ = 〈·, [·, ·]〉 the canonical 3-cocycle is integrated (compare [16]): choose the
normalization of µ such that it yields the integral 3-form representing H3(G,Z)
for the compact, simple, simply connected group G.

Then 1-morphisms in Π2(S(CE(gµ))) are thin homotopy classes of path in
G, starting at the identity. Thin homotopy classes of 2-paths in S(CE(gµ)) are
disks in G as before, but now equipped with a 2-form B on the disk, of which
only the integral

∫
D2 B survises dividing out thin homotopy.

A non-thin homotopy between a pair (g : D2 → G,
∫
B) and a pair (g′ :

D2 → G,
∫
B′) is an extension

g̃ : D3 → G

such that ∫
B −

∫
B′ =

∫
D3
g̃∗µ .

We recognize the construction of the “tautological bundle gerbe on G” which is
the central extension of the loop group. Hence

Π2(S(CE(gµ))) = B(Ω̂G→ PG) =: BString(G) .

This is essentially the integration found in [3], only that the horizontal com-
position is now by concatenation of paths in G. This reproduces actually the
construction in [8, 9]

Integration of quotients. A Lie n-groupoid has morphisms only in non-
negative degree, clearly. But we allowed Lie ∞-algebroids to have generators in
negative degree.

Let A = C∞(X), K an A-module and

V := ( 0 // Kdeg=−1
f // Adeg=0 // 0 )

a complex with an A-module K in degree -1.
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Then notice that for any smooth space U

HomDGCA(CE(V ),Ω•(U))

contains all those maps U → X which hit the zero set of the functions in the
image of f.

5.4 Differentiation

Given any Lie n-group BG, we say that the Lie n-algebra g universally differ-
entiating it is that given by

CE(g) := Ω•(S(BG)) .

Similarly, given any Lie n-groupoid V//G, we say that the Lie n-algebroid uni-
versally differentiating it is that given by

CE(g, V ) := Ω•(S(V//G)) .
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[33] Pavol Ševera, L∞ algebras as 1-jets of simplicial manifolds (and a bit
beyond), [arXiv:math/0612349]

[34] Stephan Stolz and Peter Teichner, What is an elliptic ob-
ject?, Topology, geometry and quantum field theory, London
Math. Soc. LNS 308, Cambridge Univ. Press 2004, 247-343.
[http://math.berkeley.edu/ teichner/Papers/Oxford.pdf]

32


