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A GEOMETRIC CONSTRUCTION OF THE
FIRST PONTRYAGIN CLASS

JEAN-LUC BRYLINSKI
Math. Dept., The Pennsylvania State University
University Park, PA. 16802, USA

and
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A new obstruction theory for principal bundles is developed, which leads to an integer-valued
formula for the first Pontryagin class of a bundle with compact structure group. A geometric
representative of this class is given, in terms of a glueing problem for gerbes. The upshot is
that there is a natural sheaf of bicategories over the base manifold. Analogous constructions are

discussed for finite groups, leading to a proof of the reciprocity theorem of Segal and Witten.

Introduction

In the past few years, there has been a renewal of interest in degree 4 charac-
teristic classes. The inspiration has come mainly from physics.

For a compact simple Lie group G, the inverse transgression in the universal
bundle H4(BG) — H?(G) gives the natural correspondence between 3-dimensional
Chern-Simons gauge theory and 2-dimensional Wess-Zumino-Witten theories [13].

If G is connected, there are related results concerning the transgression for the
free loop space H4(BG) — H?(LBG). The image of this map corresponds to those
central extensions of the loop group LG which have the reciprocity property [24].

Perhaps the most relevant development from our point of view has been the
discovery that the first Pontryagin class p; is the obstruction to defining the spinor
bundle on loop space [20] [22] [26]. This means that p; plays a role in string theory
analogous to that played by the second Stiefel-Whitney class w; in point particle
physics.

In the case of the tangent bundle of a smooth manifold, there is a well-known
formula for an explicit cocycle representing ws [9], as well as formulas for p; [15] [23].
In this paper, for any principal bundle over any space, we construct geometrically
a degree 4 integral Cech cocycle representing the first Pontryagin class. The basic
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data in this “formula for p,” are the transition cocycles themselves and tetrahedra
in the group which have them as vertices. Our approach to p; may be viewed as
a generalization of the theory of line bundles with connections, due to A. Weil [25]
and Kostant [21].

One proof of the formula involves the lifting of the Z-valued Cech cocycle to a
cocycle with values in a smooth version of the Deligne complex of sheaves, using a
connection on the principal bundle. However, this is not the way the formula was
found. We were thinking about the geometrical meaning of p; in connection with
the theory of gerbes and gauge theory, and we found a canonical geometric object
corresponding to p;, which recasts classical obstruction theory in the language of
categories. We then realized that, using the holonomy of a gerbe around the bound-
ary of a tetrahedron, we could write down an explicit formula for a representative
of p;. The geometric construction appears in fact to have a deeper meaning, as
the origin of the Chern-Simons topological quantum field theory of Witten. For
compact Lie groups, this is still a conjecture, presented in [8], but for a finite group
G and a class in H3(G,C*), an analog of the conjecture can be established, as is
explained in §3.

1. Statement of the main result

Let G be a connected compact almost simple Lie group, with m1(G) = Z/N - Z,
a finite number. Then Hy(G,Z) = 0 and H3(G,Z) = Z. Suppose that P — M is a
principal G-bundle over M. We define p; € H*(M,Z) to be the class obtained by
transgression of N times the generator of H3(G, Z).

Choose an open covering of M by contractible open sets U;, indexed by the set
I, such that all non-empty intersections of these open sets are contractible. Choose
sections s; : U; — P, and let g;; be the associated transition cocycles. So g;; is the
continuous function from U; N U; to G, characterized by s; = s; - gij.

For y € U; N Uj, choose a path 7;j(y,t) in G, from the identity to g;;(y).
We require that v;; be a continuous function of (y,t) € (Ui NU;) x [0,1], and a
smooth function of ¢. For y € U; NU; N Uy, denote by vijx(y) the loop given by the
composition v;j * gijvjk * 7 (Figure 1).

n

9ij

.

*y
1 y:q T3k
Yok

Jik

Figure 1

The loop 7;;x may not be a boundary, but N - ;;x will bound a 2-simplex o; j&.
Again one chooses 0;ji(y, z) to be a continuous function (U; NU; N Uy) x Ay = G,
and a smooth function on the 2-simplex A;. For y € U; N U; N Ui N Uy, the linear
combination g;jojx — oiri + 0iji — 0ijx is a singular cycle. We think of this as.a
singular 2-cycle on Map(U; N U; NUx N Uy, G); it is then the boundary of a 3-chain
Tijui(y), which we symbolically draw as a tetrahedron in Figure 2 (note that if
N =1, we may choose Tjjz to consist of just one 3-simplex). .

Gioiy

1 Gigis

Gioiz

Figure 2
Finally, for y € U; NU; N U N Uy, let Vijkim be the 3-cycle

Tijkt — Tijkm + Tijim — Titim + 935 Tjkim.

Theorem 1. Let v be the closed, bi-invariant integral 3-form on G whose coho-
mology class generates H3(G,Z). Define

Bijkim(y) = \ .

Viiktm(y)
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Then f is a Z-valued Cech cocycle of degree 4 which represents —p, .

Remarks.

1. The formula is combinatorial in nature, since if M is the underlying topo-
logical space of a simplicial complex, we may take a covering by the stars of the
vertices. A Cech cocycle for this cover will then give a simplicial cocycle. It would
be interesting to relate our approach with the combinatorial formula for p1 of the
tangent bundle of a smooth manifold, due to Gabrielov, I. Gel’fand, Losik, and to
MacPherson [15] [23]. The formula for p; may be generalized to all Chern classes
and Pontryagin classes. We also point out other formulas for characteristic classes,
due to Gel'fand and MacPherson [17] and to Goncharov [19).

2. Volumes of tetrahedra also appear in the work of Cheeger and Simons [10]
on differential characters. Their tetrahedra are geodesic tetrahedra in the fibers of
a sphere bundle associated to a flat vector bundle.

2. Holonomy of gerbes and the proof of the formula

There is available a direct proof of the formula [6], which however does not shed
light on its geometric significance. We will focus here on obstruction theory for a
principal bundle. First we recall the geometrical meaning of low degree cohomology
with Z coefficients.

For X a paracompact space, the boundary map in the exponential exact se-
quence induces an isomorphism: H?(X,T)>HP+!(X,Z). It is well-known that, for
X a smooth manifold, the sheaf cohomology group H(X,T) classifies line bun-
dles over X. There is a similar interpretation of H2(X,T) as equivalence classes
of gerbes bound by the sheaf T [18] [4] [5]. Such a gerbe C is a sheaf of categories
over X, in the sense that for U open in X, there is given a category Cy, and for
V C U, there is a “restriction functor” Cy — Cy. This functor will be denoted by
P — Pjy. Each category Cy is to be a groupoid, which means that every morphism
is invertible. It is assumed that two objects P, and P; of Cy are locally isomorphic,
in the sense that any z € U has an open neighborhood V such that the restrictions
of P, and P, to V are isomorphic. Also X is covered by open sets over which the
category is not empty. However, it may (and will often) happen that the global
category Cx is empty.

A glueing axiom must be satisfied, which allows one to obtain an object of Cx
from an open cover (U;), objects P; of Cy,, and isomorphisms (P;) yuinu; =(Pj) juinu;
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which mmam@.ﬁuo natural cocycle condition. With all these conditions, one has a
gerbe over X. We say that the gerbe C is bound by T if the sheaf of automorphisms
of any local object is isomorphic to T. A typical example is: Cy is the category of
hermitian line bundles over U, a morphism L; — L is an isomorphism of line bun-
dles, the restriction functors are the obvious ones. This example is indeed typical
in the sense that any gerbe bound by T is locally equivalent to this one.

We now turn to the question of differentiable structures. For line bundles, there
is the Weil-Kostant theory of line bundles with connection and their curvature [25]
[21], and the relation with so-called “smooth Deligne cohomology”, due to Deligne
(see [12] for the holomorphic case). We recall this briefly. The smooth Deligne
complex of sheaves Z(p)3 may be described as the complex of sheaves

H@wmz\ll.p.hwn oo /TTL AR,

where T is placed in degree 1. Given a hermitian line bundle with hermitian connec-
tion (L, V), one derives a class in the hypercohomology group H?(X,Z(2)%), which
is the total cohomology of the double complex of Cech cochains with coefficients
in Z(2)3. Let (U;) be a nice open covering of X, and let s; be a non-vanishing
section of L over U;. Set g;; = m“. and a; = H«WN Then (gij, —a;) is a Cech cocycle
with coefficients in Z(2)% . In this way, Deligne identifies the group of isomorphism
classes of pairs (L, V) with H%(X, Z(2)%).

As regards gerbes, two levels of differentiable structures on gerbes bound by
T were introduced in [4], where they were baptized “connective structure” and
“curving”. A “connective structure” associates to each object P of Cy a sheaf
Co (P) of “connections” on P, which is a principal homogeneous space under
vV—1-A4%. A “curving” associates to each connection V € Co (P) its curvature
K(V), which is an honest purely imaginary 2-form on X. The conditions satisfied
by these notions are explained in [4]. Note in particular that K(V+a) = K(V)+da,
for a € /=1- A% a 1-form on X.

The equivalence classes of gerbes on X with connective structure and curving
are classified by the smooth Deligne cohomology group H2(X,T “$% /=T Ay -
V=T1-A4%), i.e. the group H*(X,Z(3)%). The 3-curvature  of such an object is
the 3-form which is equal to dK(V), for V a connection on an object of C defined
locally. It is deduced from a morphism of complexes of sheaves from Z(3)%¥ to
V-1 qxww,? put in degree 3.

Now we turn to a compact Lie group G, which we assume to be simply-
connected. A concrete example of a gerbe on G can be found from the path-loop
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fibration PG — G (see also [5] [7]). This is the universal QG-bundle. Locally on
G, it is possible to lift the structure group to mmq an extension of G by the circle
T. These local liftings are the objects of a category, in which the morphisms are
constrained to induce the identity on PG. This sheaf of categories is a gerbe bound
by the sheaf T. The corresponding obstruction in H?(G,T)->H?(G,Z) is the ob-

struction to finding the global lift. For G simply-connected, this obstruction class
is a generator of H3(G,Z).

As G is 2-connected, one easily checks that H3(G,Z(3)%) is wmoBon.an to the
group A*(G) of closed 3-forms on G with integral periods. Now consider a G-bundle
P — M as in §2. To prove Theorem 1, we take the gerbe Q on G with 3-curvature
Q:=2r-/=1-v, and we try to glue it all over M. To analyze the glueing problem,
one may look at gerbes on P, bound by T, which are equipped with a connective
structure “along the fibers of #”, and a relative curving which assigns a relative
2-form to each connection. Such gerbes are classified by the cohomology group
HX(P,T d log V=1- AL P/M = NASRY'L: P/Mm ), Where hw\E is the sheaf of germs of
real relative j-forms.

One has an exact sequence of complexes of sheaves on P:

olaL.__.ElAa.l/\ Ay — V- \»EEV = V=1 4%/p,al-2] = 0,

where A% Ap/m,c denotes the sheaf of germs of closed relative 3-forms, and for K*
a complex, K*[j] denotes the complex obtained by translating K*® by j steps to
the left. The obstruction & to constructing a class in H?(P,T — /=1 - A} Apim —
V=1 A}/y) mapping to 2rv/=1 - v belongs to H3(M,T) C H}(P,x~! T,,), and
it maps to p; under the exponential isomorphism H3(M,T)>H4(M,Z).

We can explicitly write down a cocycle representing . Over the open set U;, we
have: al_.AQ...vIJQ.. X G, so from Q one obtains by pull-back a gerbe C; on U; x G, with
relative connective structure and curving. Over U;N Uj, we may find an equivalence
between the restrictions of the gerbes C; and C;. In fact, such an equivalence is
naturally obtained from the choice of a path v;;(y) from 1 to 9ij(y), which depends
smoothly on y € U; N Uj, as this path gives a path in the group of diffeomorphisms
of (UiNU;) x G, from Id to the diffeomorphism (y, g) — (y, 9ij(y) - ), and one has
a notion of “parallel transport” for a gerbe Q along such a path of diffeomorphisms
(see [5, Chapter 6]).
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Over U; NU; NUi, the composition of three equivalences gives rise to an equiv-
alence of C; with itself, hence to a hermitian line bundle £;;jx. The choice of the
two-simplex o;;; with boundary v;;i produces a section u;jx(y) of norm 1 of this
line bundle. One verifies from monon& principles that over U; NU; NUx N Uy, the line
bundle £ ® L37" ® Liji® LS is canonically trivialized. Hence &;jz; := = mw_m'....ww

is a smooth function from U; N U; N U N U; to T, which gives a a..<m,_:om Cech
cocycle.

To compute this function «;jii, one interprets it as the inverse of the holonomy
of the gerbe @ on G around the boundary of the tetrahedron T;jk;. This holonomy
H(X) is defined for any closed oriented surface ¥ mapping to G; it is computed
from an object P of the restriction of @ to I, with connection V and curvature K.
Then we have H(X) = ezp(— [ .sm K) € T; this is easily seen to be independent of
the choice of (P, V).

In case ¥ = OT, an application of Stokes’ theorem shows that H(X) equals
exp(— [ ). Hence k;jxi(y) = exp(2mv/—1 - _\.ﬂt;s v), which proves Theorem 1.

3. Conclusion

Recently, Breen [3] has constructed the geometric objects classified by
H3(X,T). He calls them 2-gerbes bound by the sheaf T. Such an object is a
sheaf of bicategories [2], where the 1-arrows between two objects form a gerbe, and
the 2-arrows between given l-arrows form a T-torsor. We have actually encoun-
tered this structure in the above discussion of obstruction theory for gerbes, and
we record it in the following

Theorem 3. Assume 71(G) = 0. Let v be a closed left-invariant 3-form on G,
with integral periods, and © : P — M a principal G-bundle. The bicategory over
U, whose objects are gerbes bound by T over n~}(U), with relative connective
structure and curving such that the 3-curvature is Q = 2m/=1 - v, gives a 2-gerbe
on M, bound by T. The cohomology class in H¥(M,T) defined by this 2-gerbe is
the transgression of 0 in the fibration P — M.

This 2-gerbe gives a geometric interpretation of the corresponding “holonomy”
gerbe on LM and of the reciprocity law it satisfies (see the introduction), which
involves constructing an object of a gerbe over the space of mappings ¥ — M, for
¥ a surface with boundary. Details will be forthcoming,.
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Bicategories are also implicit in the Chern-Simons field theory of Witten [27].
This is a 2+1-dimensional topological quantum field theory associated to a charac-
teristic class o € H*(BG;Z), for G a compact Lie group. It has several layers of
geometric structure which are completely unexpected from the viewpoint of classi-
cal topology. Our observation is that all this structure falls naturally into place if
one represents a by a 2-gerbe B. We will illustrate this in the case where G is a
finite group [13]. To a finite group G and a class in H3(G, C*), Dijkgraf and Witten
associate a TQFT in 2+1 dimensions; this has been studied also by mathematicians
[14].

Our first task is to construct the vector space V() associated to a surface T
without boundary. For a space X, let Mx = Map(X; BG) denote the “moduli
space” of (necessarily flat) G-bundles on X. Beilinson has given a purely cohomo-
logical construction of a flat line bundle £ on Ms. The procedure is to pull back
a € H3(BG;C*) & H*(BG;Z) by the evaluation ev : Mg x £ — BG and then
integrate over the fiber X. This produces a class [;ev*a € H!(Mg;C*) and £
is the corresponding flat line bundle. The vector space V(X) is defined to be the
space of horizontal global sections of L. The transgression a — [ ev*a is realized
geometrically by mapping B to the C*-torsor p,ev*B, where p: Mg x & — My, is
the projection. This C*-torsor is described in the following statement.

Theorem 4. Let S be the set of triples (¢, A, 2), where ¢ is a point of Mg, A is
an object of the restriction of ev*B to p~!(¢) and z € C*. Define an equivalence
relation on S by setting

(6, A1,21) = (8, A2, 22)
if Ay = A; ® Q for Q a C*-gerbe on T and z, = ([;[Q])z1, where [Q] denotes the
cohomology class of Q.

Then the quotient of S by this relation is a principal homogeneous space for
the action of C* defined by w - (¢, A, z) = (¢, A, wz). The cohomology class of this
C*-bundle in H'(Mg; C*) is exactly [, ev*a.

The assignment ¢ +— [(¢, A, z)] defines a typical section of L. From this point
of view it is clear that reversing the orientation of T changes V(Z) to its dual.

We now show how a 3-manifold M with boundary ¥ determines a vector in
V(Z). Set vm(¥) = [(¥, A, 2)], where now % is a point of My and A is an object
of ev*B on {@#} x M. Then vy defines a section of the pullback of £ to My,.
For another choice of object A’ = A ® Q, where Q is a C*-gerbe on M, we have
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[(, A, 2)] = [(¥, A,(J5[Q))z)]. But the restriction map H?(M;C*) — H*(Z;C*)
is trivial, so that [[Q] = 1. It follows that va is independent of the choice of
object A and therefore defined globally on Mys. Note also that it is constant (i.e.
horizontal) on each component. Now for any space X with basepoint z¢, a point
n of Mx can be represented as a homomorphism 7 € Hom(m (X, o), G). We will
take the basepoint to lie in T and set va(%) = var(), for ¥ € Mas. We now define
a section wys of L. Let ¢ be a point of Mg, corresponding to a homomorphism
¢ : m1(X) - G. Then we put:

wm(4) = > vm(f)

FE{Hom(m1(M),G):f|r, (5)=0}

then gives the required global section of £ on Mj,.

The next step is to consider two oriented manifolds M;, M, with OM; = ¥ and
OM; = —Z. Let M be the manifold obtained by glueing M; and M, along their
common boundary. It follows easily from Van Kampen’s Theorem that

1
(wmy,wmM,) = _lg i M Y*a[M],
YEHom(n1(M),G)

where ( , ) is the pairing between V(Z) and V(Z)* and [M] is the fundamental class
of M. This recovers the invariant Z(M) of Dijkgraaf-Witten [13].

There is another, deeper level of structure associated to a. This reflects the
connection between Chern-Simons theory and conformal field theory discovered by
Witten [27]. We can see this abstractly using the transgression procedure applied to
1-manifolds rather than surfaces. Consider the case of the circle S*. As above, let
ev : Mg1 X ST — BG be the evaluation map and p : Mg1 x ST — Mg the projection.
Pulling back o and integrating over S?, we obtain a class [, ev*a € H2(Mg1;C*).
Geometrically, this corresponds to a C*-gerbe p,ev*B on M. Denote this gerbe
by €. The objects of € over the point ¢ € Mgs: are the global objects of the
restriction of ev*B to p~1(4). Given any two such objects A;, A,, there is an
equivalence A; = 4; ® Q for some well-defined C*-gerbe Q on S'. Then in € we
set Hom( Ay, Ay) = p.ev*Q; here p,ev*Q is a C*-torsor. This describes the fiber of
Cat ¢.°

The gerbe € has several remarkable properties.

Theorem 5. Let £ be an oriented surface whose boundary is a disjoint union of r
parametrized circles Cy, ...,C, and let b; : My — Mg; be the natural restriction.
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(1) There is a canonical global object As, of the pull back gerbe Cg = @ b;C.

(2) Ag is invariant under Dif f*(X).
(3) The object Ay is natural with respect to the operation of glueing surfaces
along boundary circles.

This theorem is one version of the reciprocity law of Segal and Witten [24] [13].
The object Ay may be described pointwise as follows. For each map ¢ : & — BG,
choose a global object A of ¢*B. For any other choice A, we have A' = A®Q where
Q is a gerbe on . But considered as objects of Cx, A and A’ differ by tensoring with

the C*-torsor .mwn b7H(Q), where H(Q) := p.ev*Q is the torsor over Mg: described
=

before Theorem 5. Now this C*-torsor is canonically trivial as ) C; is homologous
J=1

to zero in ¥. Therefore, we obtain a canonical global object of g, which proves

(1). The rest of the Theorem follows easily.

There is a compatibility between this layer of structure and the vector space
V constructed above; Suppose that two surfaces £;,T; are glued together along
their boundary circles giving a new surface ¥ without boundary. For i = 1,2, let
ri : Mg — Mg, be the natural restriction maps. Then the gerbes r}Cs, ®r3Cx, and
Cz on My are canonically equivalent. The canonical global objects r}As, ® r3 Az,
and Ay correspond to each other in this equivalence.

The next (and final) step is to apply the transgression procedure to manifolds
of dimension 0 and interpret the resulting cohomology class geometrically. But this
is exactly the problem of representing a by a 2-gerbe B. Abstractly, we know that
B can be found and that the Dijkgraaf-Witten theory can be recovered as above.
A concrete description of B will be presented in [8].

We conclude from this discussion that 2-gerbes are the fundamental geomet-
ric objects in Chern-Simons theory. A similar observation has been made by D.
Kazhdan.
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