
Arbeitsgemeinschaft mit aktuellem
Thema:

ALGEBRAIC COBORDISM
Mathematisches Forschungsinstitut Oberwolfach

WEEK 4/8 April 2005

Organizers:

Marc Levine Fabien Morel
Northeastern University LMU
marc@neu.edu morel@mathematik.uni-muenchen.de

Introduction:

Over the years, many different types and flavors of cohomology the-
ories for algebraic varieties have been constructed. Theories like étale
cohomology or de Rham cohomology provide algebraic versions of the
topological theory of singular cohomology. The Chow ring and alge-
braic K0 are other (partial) examples, more directly tied to algebraic
geometry.

The partial theory Kalg
0 was extended to a full theory with the advent

of Quillen’s higher algebraic K-theory. It took considerably longer for
the Chow ring to be extended to motivic cohomology. In the process of
doing so, Voevodsky developed his category of motives, and this con-
struction was put in a more general setting with the development by
Morel-Voevodsky of A1 homotopy theory. This enabled a systematic
construction of cohomology theories on algebraic varieties, with alge-
braic K-theory and motivic cohomology being only two fundamental
examples.

These two cohomology theories have in common the existence of a
good theory of push-forward maps for projective morphisms. Not all
cohomology theories have this structure, those that do are called ori-
ented. In the Morel-Voevodsky stable homotopy category, the universal
oriented theory is represented by the P1-spectrum MGL, an algebraic
version of the classical Thom spectrum MU . The corresponding coho-
mology theory MGL∗,∗ is called higher algebraic cobordism.

In an attempt to better understand the theory MGL∗,∗ and strongly
influenced by Quillen ideas on complex cobordism, Levine and Morel
constructed a theory of algebraic cobordism Ω∗. This is (conjecturally)
related to MGL∗,∗ as the classical Chow ring CH∗ is to motivic coho-
mology and also as the geometric cobordism of manifolds is related to
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the cohomology theory associated to the Thom spectrum. Like CH∗,
Ω∗ has a purely algebro-geometric description. In addition to giving
some insight into MGL∗,∗, Ω∗ gives a simultaneous presentation of both
CH∗ and K0, exhibiting K0 as a deformation of CH∗. Ω∗ has also been
used to give conceptually simple proofs of various very general “degree
formulas” first formulated by Rost: these are directly obtained by prov-
ing for Ω∗ the analogue of Quillen’s theorem on complex cobordism.
Some of these degree formulas have been used in the study of Pfister
quadrics and norm varieties, properties of which are used in the proofs
of the Milnor conjecture and the Bloch-Kato conjecture.

In this workshop, we will describe aspects of the topological theory of
complex cobordism which are important for algebraic cobordism (Lec-
tures 1-3) and give the construction of Ω∗ and proofs of its fundamental
properties (Lectures 4-7). In lectures 8-11, we show how K0 and CH∗

are described by Ω∗, how Ω∗ recovers the universal formal group law,
give the proof the generalized degree formula for Ω∗ and use this to
proof the degree formula for the Segre class. Additional applications
to Steenrod operations, further degree formulas and the use of these
in the study of quadrics and other varietes is given in lectures 12 and
13. Lectures 14 and 15 concern the construction of funtorial pull-backs
in algebraic cobordism. The two concluding lectures (16 and 17) give
a quick sketch of the Morel-Voevodsky A1 stable homotopy category
and describe what we know about MGL and its relation to motivic
cohomology and Ω∗.

Talks:

(1) Introduction to classical cobordism [11][9]
This talk will give an introduction to the fundamental works
on cobordism by Thom and then also by Milnor, Novikov on
complex cobordism.
(a) Definition of unoriented ΩO, oriented cobordism ΩSO and

complex cobordism ΩU rings.
(b) Thom’s results: the computation of ΩO and of ΩSO ⊗Q).
(c) Thom’s method using Thom spaces and Serre’s theory of

homotopy groups modulo a class of abelian groups.
(d) Milnor and Novikov computation of ΩU .
(e) Cobordism and characteristic numbers, divisibility [9].

(2) Quillen’s work on cobordism [10]
(a) Cobordism as a cohomology theory
(b) Structure as an oriented theory
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(c) Chern classes and the formal group law
(d) Quillen’s main theorem and the fundamental isomorphism

ΩU(pt) = L.
(e) Quillen’s theorem in the unoriented case.

(3) Oriented theories over a base field k [4, 5, 6] This talk
introduces the notion of oriented cohomology theory for smooth
varieties over a field k. This definition is directly inspired by
Quillen’s ideas in (2)(b).
(a) Definition
(b) Examples: CH∗, H∗

ét, other ordinary theories, K0[β, β−1],
MGL2∗,∗, etc...

(c) The formal group law of an oriented theory

(4) Algebraic cobordism: basic properties This is a summary
of the basic properties and structures of algebraic cobordism [6,
Introduction].
(a) Algebraic cobordism as the universal oriented theory
(b) Extra structure: localization sequence
(c) Ω∗(k) = L∗

(d) Conner-Floyd and Ω∗ ⊗ Z = CH∗.
(e) The analogue of Quillen’s theorem: degrees and generalized

degree formulas. Examples.

(5) The construction of algebraic cobordism
This talk gives the construction of algebraic cobordism as a

Borel-Moore functor Ω∗. Cf [6] Part 1 §1 and §2

(6) Basic properties: localization
Cf [6] Part 2 §6. This lecture proves the fundamental local-

ization sequence for a closed subscheme i : Z → X with open
complement j : U → X

Ω∗(Z)
i∗−→ Ω∗(X)

j∗−→ Ω∗(U) → 0.

As a preliminary step, the class of a normal crossing divisor is
constructed.

(7) Basic properties: homotopy invariance and the projec-
tive bundle formula
Cf [6] Part 2 §7 and [6] Part 2 §8 . It should be nice to mention
also here the extended homotopy property [6] Part 2 §9.



4

(8) Ω∗ ⊗ Z[β, β−1] = K0[β, β−1]
Cf [6] Part 3 §11

(a) results on projective bundles [6, Section 11.1]
(b) universality of K0[β, β−1] [6, Section 11.2]
(c) the indentification Ω∗ ⊗L Z[β, β−1] ∼= K0[β, β−1] [6, Corol-

lary 11.9]
(d) Grothendieck-Riemann-Roch theorem.

(9) Ω∗(k) and the Lazard ring
The main theorem: Ω∗(k) = L∗. Cf [6] Part 3 §12 The injec-

tivity is rather easy, either by relying on topology or by using
characteristic numbers.

The surjectivity reduces to showing that the additive theory
Ω∗ ⊗L Z on X = Spec k is just Z. One starts by using the
computations of the classes of projective space bundles from
8(a) to reduce to a birational statement, and then using the
generic projection of a smooth projective variety to reduce to
the case of hypersurfaces, then finally deforming to a union of
hyperplanes.

(10) Degree formulas
Mainly a discussion of [6] Part 3 §13.3 and §13.4. The main

results are the “generalized degree formula” in algebraic cobor-
dism and its application to Rost’s degree formula for the char-
acteristic numbers constructed from the Newton class.

(11) Ω∗ and CH∗
Cf [6] Part 3 §14. This lecture shows that CH∗ is the universal

additive theory, thus identifying CH∗ with Ω∗ ⊗ Z. Additional
computations and a discussion of the topological filtration on
Ω∗ are discussed.
(a) Ω∗ ⊗ Z = CH∗ [6, Section 14.1]
(b) The topological filtration [6, Section 14.2]
(c) Computations [6, Section 14.3]

(12) Steenrod operations and other degree formulas
Cf. [3], see also [1], [8].
Use the basic properties of algebraic cobordism and the method

of twisting an oriented theory following [3] to give a construction
of Steenrod operations on the mod p Chow groups (constructed
by different methods by Voevodsky [12] and by Brosnan [1]).
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The same ideas give a large number of degree fomulas for cer-
tain mod p characteristic classes, redoing a construction due to
Merkurjev [8].

(13) Some applications
This lecture discusses a number of interesting applications of

various degree formulas given in [8].
(a) Rigidity. The main consequence of the degree formula in

this context gives strong restrictions on varieties related by
a prime to p correspondence [8, Theorem 7.2].

(b) Consequences. the rigidity results have interesting con-
sequences for Brauer-Severi varieties, hyupersurfaces and
quadratic forms, including new proofs of results of Hoff-
mann, Izhboldin and Karpenko ([8, Section 7]).

(14) Construction of pull-backs in algebraic cobordism, part
1 The main task in [7] is to define functorial pull-back maps on
Ω∗. In principle, this is done following Fulton’s method of de-
forming to the normal bundle, which reduces to the case of
intersection with a Cartier divisor. For algebraic cobordism,
built out of smooth varieties, the construction needs to go fur-
ther. Rather than requiring a smooth intersection, we use the
classes of normal crossing divisors constructed in the proof of
localization. This allows one to intersect a modified algebraic
cobordism group, designed so that all intersections with the
given divisor are normal crossing. Finally one proves a moving
lemma, which shows that the modified cobordism group is the
same as the usual one.
(a) Refined algebraic cobordism [7, Section 2]
(b) Intersection with divisors [7, Section 3,4]

(15) Construction of pull-backs in algebraic cobordism, part
2
(a) The moving lemma [7, Section 5]
(b) Pull-back for l.c.i. morphisms [7, Section 6]

(16) A1-homotopy approach to algebraic cobordism
Part one: an overview of A1-homotopy theory. [2]. This lec-
ture gives a quick overview of the Morel-Voevodsky A1-stable
homotopy category of P1-spectra over k, discussing the con-
struction of the categories of spaces over k, S1-spectra over k
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and P1-spectra over k, as well as the corresponding homotopy
categories.

In each of these sections, concentrate on giving just the defi-
nitions of the relevant categories, and some key examples.
(a) Homotopy theory of spaces over k [2, section 2, 3]
(b) S1-spectra over k [2, section 4]
(c) P1-spectra over k [2, section 5]

(17) A1-homotopy approach to algebraic cobordism
Part two: the Thom spectrum
(a) Towards the identification Ωd(X) = MGl2d,d(X)
(b) Thom spectrum, K-theory spectrum and motivic cohomol-

ogy spectrum. Atiyah-Hirzebruch spectral sequence.
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Participation:

The idea of the Arbeitsgemeinschaft is to learn by giving one of the
lectures in the program.

If you intend to participate, please send your full name and full postal
address to

marc@neu.edu

or

morel@mathematik.uni-muenchen.de

by February 10 at the latest.
You should also indicate which talk you are willing to give:

First choice: talk no. . . .
Second choice: talk no. . . .
Third choice: talk no. . . .

You will be informed shortly after the deadline if your participation
is possible and whether you have been chosen to give one of the lectures.

The Arbeitsgemeinschaft will take place at Mathematisches Forschungsin-
stitut Oberwolfach, Lorenzenhof, 77709 Oberwolfach-Walke, Germany.
The institute offers accomodation free of charge to the participants.
Travel expenses cannot be covered. Further information will be given
to the participants after the deadline.


