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Zusammenfassung auf Deutsch

Ziel und Aufgabenstellung dieser Diplomarbeit ist es, Möglichkeiten der Visualisierung
in der Allgemeinen Relativitätstheorie zu finden. Das Hauptaugenmerk liegt dabei
auf der Visualisierung geometrischer Eigenschaften einiger akausaler Raumzeiten, d.h.
Raumzeiten, die geschlossene zeitartige Kurven erlauben.

Die benutzten und untersuchten Techniken umfassen neben den gängigen Möglichkeiten
(Vektorfelder, Hyperflächen) vor allem das Darstellen von Geodäten und Lichtkegeln.
Um den Einfluss der Raumzeitgeometrie auf das Verhalten von kräftefreien Teilchen
zu untersuchen, werden in der Diplomarbeit mehrere Geodäten mit unterschiedlichen
Anfangsbedinungen abgebildet. Dies erlaubt es zum Beispiel, die Bildung von Teilchen-
horizonten oder Kaustiken zu analysieren. Die Darstellung von Lichtkegeln wiederum
ermöglicht es, eine Vorstellung von der kausalen Struktur einer Raumzeit zu erlangen.
Ein „Umkippen“ der Lichtkegel deutet beispielsweise oft auf signifikante Änderungen in
der Raumzeit hin, z.B. auf die Möglichkeit von geschlossenen zeitartigen Kurven.

Zur Implementierung dieser Techniken wurde im Rahmen der Diplomarbeit ein Ma-
thematica-Paket namens GeodesicGeometry geschrieben, das die Anwendung der be-
schriebenen Visualisierungen auf beliebige Raumzeiten erlaubt. In der Arbeit werden die
technischen Details zur numerischen Lösung der Geodätengleichungen und der Darstellung
von Lichtkegeln erläutert.

Schließlich beschreibt die Arbeit die Anwendung dieser Techniken auf verschiedene
Raumzeiten und die entsprechenden Resultate. Zunächst wird die Raumzeit von K. Gö-
del untersucht. Dabei werden verschiedene bekannte Erkenntnisse über die Struktur
dieser interessanten Raumzeit graphisch dargestellt. Daran anschließend wird eine von
M. Scherfner und M. Plaue entwickelte Erweiterung der Gödel-Raumzeit untersucht, die
eine nichtverschwindende Expansion aufweist und damit realistischer ist. Ziel dabei ist
vor allem die Darstellung des Einflusses der Expansion auf das Verhalten von Geodäten
und auf die Bildung von geschlossenen zeitartigen Kurven. Den Abschluss bildet der
Versuch, mittels der entwickelten Techniken eine Anschauung der verschiedenen von
A. Ori vorgestellten „Zeitmaschinen“-Raumzeiten zu erlangen.

Die selbständige und eigenhändige Ausfertigung versichert an Eides statt

Unterschrift Berlin, den 14. Januar 2009
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1 Preface

This diploma thesis deals with visualizing certain properties of spacetimes, particularly of
acausal spacetimes. Inspiration and starting point for this are provided by a picture of the
Gödel spacetime in Hawking and Ellis’ book The Large Scale Structure of Space-Time:

The goal is to find possibilities to visualize other spacetimes in a similarly helpful way
so as to aid understanding. Care was taken to make it easy to apply the developed
techniques to arbitrary spacetimes.

To this end, the outline of this work is as follows. First, the necessary mathematical
machinery is introduced and the physical background is explained. Then the used
visualization techniques are described, including details of their implementation. Finally,
these techniques are applied to particular acausal spacetimes.

Special thanks are due to Mike Scherfner for supervising the writing of this diploma
thesis and to him and Matthias Plaue for answering all questions that came up.
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2 Differential Geometry

This chapter introduces the mathematical preliminaries needed to understand those parts
of spacetime geometry that are used in this diploma thesis. In particular, two very
different yet related frameworks for studying spacetimes are detailed: semi-Riemannian
geometry and the Ricci calculus.

Semi-Riemannian geometry is a generalization of the usual Euclidean geometry.
Whereas Euclidean geometry deals with Rn and objects embedded in it, semi-Riemannian
geometry makes the geometric properties of certain entities, called manifolds, accessible
without the need for them to be embedded in any Rn. This is crucial for dealing with
spacetime geometry.

Ricci calculus, on the other hand, is a set of rules for describing and, more importantly,
for handling computations with spacetime quantities like the metric or curvature. It is
very important for doing actual calculations—for finding the values of quantities or for
solving differential equations, for example.

2.1 Semi-Riemannian Geometry

This section describes the basics of semi-Riemannian geometry. It starts by introducing
the general theory of manifolds and then proceeds to semi-Riemannian manifolds and
their properties. Finally, the attained mathematical machinery is employed to explain
geodesics and a few quantities used to describe their behavior. The whole section is
largely based on Pinkall and Peters (2006/2007) (which in turn is based on Hitchin
(2003)) and Jänich (2005), and occasionally on Hawking and Ellis (1973).

2.1.1 Manifolds and Maps

An n-dimensional differentiable manifold is a paracompact Hausdorff space together
with an associated atlas {(Uα, φα)}α consisting of charts (Uα, φα) which:

• cover the whole manifold:
⋃
α Uα = M ;

• map every chart neighborhood Uα homeomorphically to the open set φα(Uα) ⊂ Rn;
• and provide smooth transition functions φβ ◦φ−1

α : φα(Uα ∩Uβ)→ φβ(Uα ∩Uβ)
between chart overlaps.

In the remainder, the term manifold will always mean a differentiable manifold.
A chart (U, φ) about a point p ∈M provides us with coordinates on a neighborhood

of p. Since φ maps to Rn, it can be written as φ = (φ1, . . . , φn) where φi : M → R are the
coordinate functions. For p ∈ U , the numbers (φ1(p), . . . , φn(p)) denote the coordinates
of p with respect to the chart (U, φ).
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2 Differential Geometry

M

Uα
Uβ

Uα ∩ Uβ

φα(Uα ∩ Uβ) φβ(Uα ∩ Uβ)
φβ ◦ φ−1

α

φα φβ

M N
U V

φ(U) ψ(V )

f

φ ψ

ψ ◦ f ◦ φ−1

Figure 2.1: Part of an atlas {(Uα, φα)} on
the manifold M . The transition function
φβ ◦ φ−1

α maps φα(Uα ∩ Uβ) smoothly to
φβ(Uα ∩ Uβ).

Figure 2.2: Map f : M → N between
manifolds M and N and its pulled down
variant. f is said to be smooth if the
pulled down map ψ ◦ f ◦ φ−1 is smooth.

The definition of an atlas ensures that its charts overlap in a smooth way, i.e. that the
change from one chart to another is always smooth. See figure 2.1 for an illustration of
part of an atlas and the corresponding transition function.

A set O ⊂ M is said to be open if for all charts (U, φ) of an atlas for M , the set
φ(O ∩ U) ⊂ Rn is open. A map f : M → N between M and another manifold N is
said to be continuous if for all open sets A ⊂ N the preimage f−1(A) ⊂ M is open.
A map f : M → N is said to be smooth at p ∈ M if for a chart (U, φ) about p and a
chart (V, ψ) about f(p) the function ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) is smooth. Notation:
C∞(M,N) := {f : M → N | f smooth} and C∞(M) := C∞(M,R). For an illustration
of these definitions, see figure 2.2.

On first sight, the definition of smoothness might seem to depend on the chosen chart
in areas where two charts overlap. But the pulled down map in one chart will only differ
from the pulled down map in another chart by the prepended transition function, which
is defined to be smooth. So the concept does not depend on the chosen chart.

2.1.2 Tangent Spaces

Now that we have smooth maps on manifolds, we would also like to be able to differentiate
them, i.e. approximate them with linear ones. The obvious idea of using the differential
dx(ψ ◦ f ◦ φ−1) of the pulled down map turns out to be unusable: it depends on the
chosen charts. Instead, we will linearly approximate the manifolds themselves at every
point with vector spaces TpM called tangent spaces. The differential will then be a linear
map dpf : TpM → Tf(p)N between the tangent spaces. There are multiple equivalent
ways to define the tangent space. We will use one of them here, and introduce another
one in section 2.2.

A tangent vector at p is a derivation, i.e. a linear map v : C∞(M) → R which
satisfies the Leibniz rule v(λ ·µ) = v(λ) ·µ+λ · v(µ) for all λ, µ ∈ C∞(M). The tangent
space TpM is the vector space of all tangent vectors at p.
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M
p TpM

M N

v dpf(v)
f

dpf

Figure 2.3: The tangent space TpM at the
manifold M is a vector space that linearly
approximates M at p.

Figure 2.4: The differential dpf of a map
f : M → N maps vectors in TpM to vec-
tors in Tf(p)N .

For a map f ∈ C∞(M,N) the differential dpf at p ∈ M is the map dpf : TpM →
Tf(p)N, v 7→ v ◦ f∗, where the pullback function f∗ is defined by f∗λ = λ ◦ f for all
λ ∈ C∞(N). That is, the tangent vector dpf(v) acts on a λ ∈ C∞(N) as(

dpf(v)
)
(λ) = v(λ ◦ f).

See figures 2.3 and 2.4 for illustrations.
As can be seen easily, the differential of the identity map is the identity map on the

tangent space: dp id = idTpM . A bit more involved but still easy to show is that the
differential satisfies the chain rule: dp(g ◦ f) = df(p)g ◦ dpf for all f ∈ C∞(M1,M2),
g ∈ C∞(M2,M3). These two relations provide an indication that the above definition of
a differential actually makes sense.

When we choose a chart (U, φ) about p ∈M , the coordinate functions {φi} induce a
set of tangent vectors {∂pi } in TpM :

∂pi λ :=
∂
(
λ ◦ φ−1

)
∂φi

(
φ(p)

)
for every λ ∈ C∞(M).

That is, ∂pi acts on a map λ by differentiating its coordinate representation λ ◦ φ−1 with
respect to the i-th coordinate φi. It can be shown1 that the n coordinate vectors {∂pi }
constitute a basis of TpM called the canonical basis with respect to the chart (U, φ).
Every tangent vector v ∈ TpM can then be written as

v =
n∑
i=1

vi∂
p
i with vi = vφi.

Thus, we see that the tangent spaces of an n-dimensional manifold are n-dimensional as
well.

2.1.3 Vector Bundles

We now have vectors and differentials defined at points of manifolds. Often, it is useful
to have structures that are defined globally, on the whole manifold. We will define these
new structures in the framework of vector bundles. A vector bundle of rank n over M

1See Lovelock and Rund (1975, pages 332ff) for a proof.

11



2 Differential Geometry

M

E

p

Ep

ψ(p)

ψ

π ψ

M N

TM TN

f

f∗

df

Figure 2.5: A vector bundle E over the
manifold M is a manifold which assigns
to each point p ∈ M the fibre Ep. The
projection map π maps each fibre Ep to
its base point p. A cross section ψ ∈ Γ(E)
maps to each point p ∈M a vector in Ep.

Figure 2.6: The map f : M → N and
its related maps f∗ : C∞(N) → C∞(M)
and df : TM → TN . f∗ maps functions
defined on N to functions defined on M .
df maps tangent vectors at p ∈ M to
tangent vectors at f(p) ∈ N .

is a tuple (E, π) of a manifold E and a smooth projection map π : E →M such that the
following holds:

1. For every point p ∈ M there is a bundle chart, i.e. a neighborhood Uα ⊂ M
containing p and a smooth map Φα : π−1(Uα)→ Uα × Rn such that Φα maps the
fibre Eq := π−1(q) to the vector space {q} × Rn for every q ∈ Uα. Thus, π−1(p)
has the structure of an n-dimensional vector space for every p ∈M .

2. For Uα, Uβ ⊂M the transition function Φα ◦ Φ−1
β is of the form

Φα ◦ Φ−1
β : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

(p, v) 7→
(
p,Gαβ(p)v

)
,

where Gαβ : Uα ∩ Uβ → GL(n,R) is smooth. That is, in areas where bundle charts
overlap, vectors that belong to the same point only differ by a linear and invertible
transformation.

A cross section of a vector bundle E is a smooth map ψ : M → E such that π◦ψ = idM .
The set of all cross sections of E form the vector space Γ(E).

Intuitively speaking, a vector bundle over a manifold assigns to each point of the
manifold a real vector space in such a way that the vector spaces of different points do
not overlap. A cross section then assigns to every point of the manifold a vector in the
corresponding vector space of the vector bundle. These cross sections will provide the
global structures we seek. For an illustration of these concepts, see figure 2.5 and the
following two examples.

Example 1: Consider the trivial bundle E = M ×Rn. The projection map π is
simply (p, v) 7→ p for p ∈ M and v ∈ Rn, and a bundle chart is given by (E, idE).
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On this vector bundle, every smooth map f : M → Rn defines a cross section
ψ : M → E, ψ(p) = (p, f(p)).

Example 2: The tangent bundle E = TM :=
⋃
p∈M TpM is perhaps the most

important vector bundle. The projection map π uses the tangent vectors’ “knowledge”
(which we usually suppress in the notation) of the point on the manifold they are
attached to: π(vp) = p for vp ∈ TpM . The bundle atlas {(Uα,Φα)} is constructed
from the atlas {(Uα, φα)} of M by

Φα(vp) =
(
p,

(
vp

(
φ(1)
α

)
, . . . , vp

(
φ(n)
α

)))
for every vp ∈ π−1(Uα) = TUαM.

To see that item 2 of the definition of a vector bundle is fulfilled, let p ∈M,vp ∈ TpM
and let (Uα, φα) and (Uβ, φβ) both be charts about p. Then one can show that the
coordinate representations of vp obey the following relation2:(

vp
(
φ(1)
α

)
, . . . , vp

(
φ(n)
α

))
= dφβ(p)

(
φα ◦ φ−1

β

)
·
(
vp

(
φ

(1)
β

)
, . . . , vp

(
φ

(n)
β

))
.

Thus we have
Φα ◦ Φ−1

β (p, vp) =
(
p,dφβ(p)

(
φα ◦ φ−1

β

)
· vp

)
,

which satisfies the definition. A cross section ψ ∈ Γ(TM) of TM is called vector
field. To each point p ∈ M , it maps a vector v ∈ TpM . Additionally, ψ can also
be interpreted as ψ : C∞(M)→ C∞(M), f 7→ ψf with (ψf)(p) :=

(
ψ(p)

)
(f). The

Leibniz rule holds for ψ then: ψ(f · g) = (ψf) · g + f · (ψg). All this enables us to
define the differential of a map f : M → N globally: df : TM → TN,ψ 7→ df(ψ)
with

(
df(ψ)

)
(p) := dpf(ψ(p)). See figure 2.6 for an illustration of the maps df and

f∗.
Just like for tangent vectors, a chart (U, φ) also induces a bundle basis {∂i} for

vector fields:

∂iλ :=
∂
(
λ ◦ φ−1

)
∂φi

◦ φ for every λ ∈ C∞(M).

Every ψ ∈ Γ(TM) can thus be written as

ψ =
n∑
i=1

ψi∂i with ψi = ψφi.

2.1.4 Tensors

To conclude the discussion of general manifolds, we introduce the concept of tensors
on manifolds. We will do this in multiple steps. First, we define the vector space of
multilinear forms on tangent vectors. The union of all these vector spaces will form a
vector bundle. Then, we introduce differential forms as cross sections on this vector

2For a proof, see Jänich (2005, pages 33ff).
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2 Differential Geometry

bundle. Finally, tensors are defined as those multilinear maps on vector fields which are
built from a differential form.

A multilinear k-form ωp at p ∈M on a vector bundle E over M is a map

ωp : TpM × · · · × TpM︸ ︷︷ ︸
k

→ Ep

which satisfies

ωp(v1, . . . , ρ(vj + wj), . . . , vk) = ρωp(v1, . . . , vj , . . . , vk)
+ ρωp(v1, . . . , wj , . . . , vk)

for all ρ ∈ R and v1, . . . , vk, wj ∈ TpM . The vector space of all these multilinear k-forms
is called J k(TpM). The union J k(TM) :=

⋃
p∈M J k(TpM) forms a vector bundle over

M . A differential k-form over M is a cross section ω ∈ Ωk(M) := Γ(J k(TM)), i.e. a
map which assigns to every p ∈M a multilinear k-form ωp ∈ J k(TpM).

A multilinear map
ω̃ : Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸

k

→ Γ(E)

is called a tensor of rank k if there is an ω ∈ Ωk(M) with(
ω̃(ψ1, . . . , ψk)

)
(p) =

(
ω(p)

)
(ψ1(p), . . . , ψk(p))

for all ψ1, . . . , ψk ∈ Γ(TM).
In other words, a tensor is a map which takes k vector fields ψ1, . . . , ψk and yields a

cross section whose value at p ∈M only depends on the values of ψ1, . . . , ψk at p. The
following theorem provides a more convenient criterion to test if a given map is a tensor.

Theorem 1: Let M be a manifold and E a vector bundle over M . A multilinear map
ω̃ : Γ(TM)× · · · × Γ(TM)→ Γ(E) is a tensor if and only if

ω̃(ψ1, . . . , λψj , . . . , ψk) = λω̃(ψ1, . . . , ψk)

for all λ ∈ C∞(M) and ψ1, . . . , ψk ∈ Γ(TM). In other words: ω̃ is a tensor if and only if
it is C∞(M)-linear.

Proof. ⇒: Let ω̃ be a tensor. Then there is an ω ∈ Ωk(M) with(
ω̃(ψ1, . . . , λψj , . . . , ψk)

)
(p) =

(
ω(p)

)
(ψ1(p), . . . , λ(p)ψj(p), . . . , ψk(p))

= λ(p)
(
ω(p)

)
(ψ1(p), . . . , ψk(p))

= λ(p)
(
ω̃(ψ1, . . . , ψk)

)
(p).

⇐: For p ∈M choose a chart (U, φ) about p. Without loss of generality, we can confine
ourselves to U . Let {∂i} be the canonical basis field of TM induced by (U, φ). We can
then express every ψj ∈ Γ(TM) as

ψj =
∑
i

ψji∂i with ψji ∈ C∞(M).
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Now define ω ∈ Ωk(M) by(
ω(p)

)(
∂i1(p), . . . , ∂ik(p)

)
=

(
ω̃(∂i1 , . . . , ∂ik)

)
(p).

Then we have(
ω̃(ψ1, . . . , ψk)

)
(p) =

∑
i1,...,ik

ψ1i1(p) · · ·ψkik(p)
(
ω̃(∂i1 , . . . , ∂ik)

)
(p)

=
∑
i1,...,ik

ψ1i1(p) · · ·ψkik(p)
(
ω(p)

)(
∂i1(p), . . . , ∂ik(p)

)
=

(
ω(p)

)(
ψ1(p), . . . , ψk(p)

)
.

2.1.5 The Metric

Now that we know what tangent vectors are, we would like to be able to measure some
of their properties. It will also be useful to know how a given vector field varies in
the direction of another vector field. This and the next section introduce the concepts
necessary for the above and describes some important new structures arising from these
concepts. We start with the metric.

A semi-Riemannian metric on a manifold M is a map g : Γ(TM) × Γ(TM) →
C∞(M) where (

g(ψ, χ)
)
(p) := gp

(
ψ(p), χ(p)

)
is smooth for all p ∈ M and ψ, χ ∈ Γ(TM) and where gp(·, ·) is a non-degenerate
symmetric and possibly indefinite scalar product in TpM . A tuple (M, g) is called a
semi-Riemannian manifold if M is a manifold and g is a semi-Riemannian metric
on M .

So a semi-Riemannian metric g assigns to two vector fields a smooth map. This
map in turn assigns to every point on the manifold the scalar product of the values of
the vector fields at this point. Since C∞(M) can be thought of as the space of cross
sections on the trivial bundle M × R, g is actually a tensor with g·(·, ·) ∈ Ω2(M) as the
corresponding differential form. The length of a vector v ∈ TpM is then simply defined
as ‖v‖ =

√
gp(v, v).

The type of a metric g can be succinctly summarized by what is called its signature.
This is a tuple of plus and minus signs denoting the signs of the eigenvalues of the metric.
By a suitable choice of coordinates, g can at any point of the manifold be brought into the
form diag(λ1, . . . , λn) with λi = ±1. This form makes it easy to read off the signature.
There are two basic types that are interesting. In what is called the Riemannian case,
g is positive definite and its signature therefore is (+, . . . ,+).

In the Lorentzian case, g has signature (+,−,−,−)3 which means that g is indefinite,
i.e. for any tangent vector v ∈ TpM its length as measured by gp might be negative, null,

3Or (−, +, +, +) depending on personal preferences. The two choices are basically equivalent except for
annoying sign differences in various expressions.
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2 Differential Geometry

∂0

∂1

∂2 spacelike

timelike lightlike

Figure 2.7: The three types of tangent vectors in the coordinate system {∂0, ∂1, ∂2}. The
coordinate ∂3 has been suppressed. Timelike vectors lie inside the light cones spanned by
lightlike vectors. Spacelike vectors lie outside the light cones.

or positive. These three possibilities are used to classify the vectors in every tangent
space TpM :

v ∈ TpM is called


spacelike if gp(v, v) < 0,
lightlike if gp(v, v) = 0,
timelike if gp(v, v) > 0.

When we choose the basis {∂µ} of TpM that brings g into the form diag(+1,−1,−1,−1),
gp(v, v) can be expressed in terms of the projections of v onto {∂µ}:

gp(v, v) = 〈v, ∂0〉 − 〈v, ∂1〉 − 〈v, ∂2〉 − 〈v, ∂3〉.

So we see that v is spacelike, lightlike, or timelike if the component 〈v, ∂0〉 is, respectively,
smaller than, equal to, or bigger than the sum of the other components. The lightlike
vectors form cones in the tangent space which separate timelike from spacelike vectors.
See figure 2.7 for an illustration. As we will see later, Lorentzian manifolds are the ones
that are used to model spacetime.

2.1.6 The Levi-Civita Connection

The next item on the wish list is a directional derivative for vector fields, or more
generically for cross sections. It is instructional to first consider how this might be defined
on known ground.

Example 3: Let M be a manifold and let E = M × R be the trivial bundle.
Let v ∈ Γ(TM) and ψ ∈ Γ(E) and let λ ∈ C∞(M) be the generator of ψ, i.e.
ψ(p) = (p, λ(p)). How would the directional derivative ∇vψ of ψ in the direction
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v look like? We would like it to yield a new cross section, so ∇vψ ∈ Γ(E). One
natural definition would then be the following:(

∇vψ
)
(p) :=

(
p,

(
v(p)

)
(λ)

)
.

That is, we use v(p) ∈ TpM to differentiate λ. For µ ∈ C∞(M), this definition
satisfies the following rules:

∇µvψ = µ∇vψ,
∇v(µψ) = µ∇vψ + v(µ)ψ.

Additionally we have

∇[v,w]ψ = ∇vw−wvψ
=

(
·, (vw − wv)(λ)

)
=

(
·, v(w(λ))

)
−

(
·, w(v(λ))

)
= ∇v

(
·, w(λ)

)
−∇w

(
·, v(λ)

)
= ∇v

(
∇wψ

)
−∇w

(
∇vψ

)
.

(2.1)

With the motivation provided by this example, we define a connection on the vector
bundle E over the manifold M as a linear map ∇ : Γ(TM)× Γ(E)→ Γ(E) such that for
all v ∈ Γ(TM), ψ ∈ Γ(E), and λ ∈ C∞(M) the following holds:

1. ∇λvψ = λ∇vψ,
2. ∇v(λψ) = λ∇vψ + v(λ)ψ.

An affine connection on M is a connection on TM . The curvature tensor of ∇ is
the map

R : Γ(TM)× Γ(TM)× Γ(E)→ Γ(E)
R(v, w)ψ = ∇v

(
∇wψ

)
−∇w

(
∇vψ

)
−∇[v,w]ψ.

(2.2)

∇ is said to be flat if R(v, w)ψ = 0 for all v, w ∈ Γ(TM), ψ ∈ Γ(E). Note that, due to
(2.1), the expression (2.2) vanishes for the previous example, so the connection described
there is flat. The torsion tensor T of ∇ is the map

T : Γ(TM)× Γ(TM)→ Γ(TM)
T (v, w) = ∇vw −∇wv − [v, w].

∇ is said to be torsion-free if T (v, w) = 0 for all v, w ∈ Γ(TM). It is easy to show that
the curvature and the torsion tensor are actually tensors by using theorem 1.

An affine connection ∇ on M is said to be metric preserving or just metric for the
semi-Riemannian metric g on M if for all u, v, w ∈ Γ(TM) the following holds:

u
(
g(v, w)

)
= g

(
∇uv, w

)
+ g

(
v,∇uw

)
.

Now it turns out that there is exactly one torsion-free metric affine connection on
every semi-Riemannian manifold. This is sometimes called the fundamental theorem of
semi-Riemannian geometry.
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Theorem 2: Let (M, g) be a semi-Riemannian manifold. Then there is exactly one
torsion-free metric affine connection ∇ on M . ∇ is called the Levi-Civita connection
of (M, g).

Proof. Uniqueness: Let ∇ be an affine connection on M that is torsion-free and metric.
Let u, v, w ∈ Γ(TM). Then we have:

u
(
g(v, w)

)
= g

(
∇uv, w

)
+ g

(
v,∇uw

)
(2.3)

v
(
g(w, u)

)
= g

(
∇vw, u

)
+ g

(
w,∇vu

)
(2.4)

w
(
g(u, v)

)
= g

(
∇wu, v

)
+ g

(
u,∇wv

)
. (2.5)

Forming (2.3) + (2.4)− (2.5) we get:

u
(
g(v, w)

)
+ v

(
g(w, u)

)
− w

(
g(u, v)

)
= g

(
∇uv +∇vu,w

)
+ g

(
∇uw −∇wu, v

)
+ g

(
∇vw −∇wv, u

)
= g

(
∇uv +∇uv − [u, v], w

)
+ g

(
[u,w], v

)
+ g

(
[v, w], u

)
.

Thus, ∇uv is determined by the Koszul formula :

2g
(
∇uv, w

)
= u

(
g(v, w)

)
+ v

(
g(w, u)

)
− w

(
g(u, v)

)
+ g

(
[u, v], w

)
− g

(
[u,w], v

)
− g

(
[v, w], u

)
.

(2.6)

Existence: Let u, v ∈ Γ(TM). Define ∇uv by (2.6). Then we need to show that this ∇
is a torsion-free metric connection.

• Making use of the tensorial character of g, of the Leibniz rule for vector fields, and
of [λu, v] = λ[u, v]− (vλ)u, we can show:

g
(
∇λuv, w

)
= g

(
λ∇uv, w

)
,

g
(
∇u(λv), w

)
= g

(
λ∇uv, w

)
+ g

(
(uλ)v, w

)
.

Thus ∇ is a connection.
• We have g(∇uv, w)− g(∇vu,w) = g([u, v], w), so ∇ is torsion-free.
• Finally, we have g(∇uv, w) + g(∇uw, v) = ug(v, w), so ∇ is metric.

The curvature tensor R of the Levi-Civita connection satisfies what are called the
symmetries of the curvature tensor which we note here without proof:

1. 0 = R(u, v)w +R(w, u)v +R(u, v)w,
2. R(u, v)w = −R(v, u)w,
3. g

(
R(u, v)w, t

)
= −g

(
R(u, v)t, w

)
,

4. g
(
R(u, v)w, t

)
= g

(
R(v, u)t, w

)
,

for all t, u, v, w ∈ Γ(TM).
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γ(t)γ′(t)

Figure 2.8: A curve γ : [a, b]→M on the manifold M , and its derivative γ′. The latter
is a vector field which assigns to every t ∈ [a, b] a tangent vector γ′(t) ∈ Tγ(t)M .

2.1.7 Geodesics

A curve on a manifold M is a smooth map γ : [a, b]→M with a, b ∈ R. The derivative
γ′ ∈ Γ(TM) of γ is given by γ′ = dγ(d/dt). That is, for t ∈ [a, b], the tangent vector
γ′(t) ∈ Tγ(t)M acts on f ∈ C∞(M) as:

(
γ′(t)

)
(f) =

(
dtγ

(
d
dt

∣∣∣∣
t

))
(f) =

d
dt

∣∣∣∣
t

(f ◦ γ).

See figure 2.8 for an illustration of a curve and its derivative.
The derivative γ′ is an example of the more general notion of a vector field v along

γ, defined as a smooth map v : [a, b] → TM with v(t) ∈ Tγ(t)M . Given a vector field
ψ ∈ Γ(TM), a curve γ : [a, b] → M is called integral curve of ψ if γ′(t) = ψ

(
γ(t)

)
for all t ∈ [a, b]. Finally, given a semi-Riemannian manifold (M, g) and its Levi-Civita
connection ∇, γ : [a, b]→M is called a geodesic if γ′′ := ∇γ′γ′ = 0.

Note that “∇γ′γ′” is just a heuristic, and technically not completely correct. ∇ can only
operate on vector fields that are defined globally, but γ′ is defined only on {γ(t) | t ∈ [a, b]}.
This incompatibility can be worked around with some effort.4 This effort does not provide
any new insight, however. The intuition provided by “∇γ′γ′” as the acceleration of γ
is good enough. As an indication for this, we can show that a geodesic γ has constant
velocity:

d
dt
‖γ′(t)‖ =

d
dt
gγ(t)

(
γ′(t), γ′(t)

)
= 2gγ(t)

(
γ′′(t), γ′(t)

)
= 0.

In R2, the length L(γ) of a curve γ : [a, b]→ R2, γ(t) = (x(t), y(t)) is derived from the
distance formula d =

√
∆x2 + ∆y2 by taking the limit ∆x→ dx and integrating:

L(γ) =
∫ b

a

√
dx2 + dy2 =

∫ b

a

√(
dx
dt

)2

+
(

dy
dt

)2

dt =
∫ b

a

√〈
γ′(t), γ′(t)

〉
dt.

Thus, on a semi-Riemannian manifold (M, g) we define the length L(γ) of a curve

4See Gallot, Hulin, and Lafontaine (2004, pages 75ff.) for example.
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a b
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ε

∂
∂t

∂
∂s

M

α

γ′v

Figure 2.9: A variation α : (−ε, ε) × [a, b] → M of the curve γ : [a, b] → M and its
variation vector field v. The latter is a vector field along γ which “points” to the
neighboring curve of the variation.

γ : [a, b]→M by

L(γ) =
∫ b

a

√
gγ(t)

(
γ′(t), γ′(t)

)
dt.

Note that when the metric is indefinite, as in the Lorentzian case, this notion of length
can be misleading: a curve whose tangent vectors are lightlike always has zero length.
For simplicity, we will concentrate in the following on timelike curves or, equivalently, on
metrics with Riemannian signature. For details on how to deal with the Lorentzian case,
see Hawking and Ellis (1973, pages 102ff.) or O’Neill (1983, pages 288ff.).

The definition of length is independent of the choice of parametrization of γ, as can be
shown easily with the usual substitution rule. So when a curve has constant non-zero
velocity, this allows us to reparametrize it so that ‖γ′‖ = 1, i.e. we can assume that such
a curve is parametrized by arc length.

To show that geodesics are curves with extremal length, we need to look at variations
of curves. A variation of γ is a smooth map α : (−ε, ε)× [a, b]→M with α(0, t) = γ(t)
for all t ∈ [a, b]. Notation: γs(t) := α(s, t), so γ0 = γ. The vector field defined by

v(t) =
∂α(s, t)
∂s

∣∣∣∣
s=0

= d(s,t)α

(
∂

∂s

)∣∣∣∣
s=0

∈ Tγ(t)M

is called variation vector field of α. See figure 2.9 for an illustration of this concept.

Theorem 3: Let (M, g) be a semi-Riemannian manifold, ∇ its Levi-Civita connection,
γ : [a, b] → M a curve with ‖γ′‖ = 1, α : (−ε, ε) × [a, b] → M a variation of γ, and
v ∈ Γ(TM) the variation vector field of α. Then:

dL(γs)
ds

∣∣∣∣
s=0

= gγ(·)
(
v(·), γ′(·)

)∣∣∣b
a
−

∫ b

a
gγ(t)

(
v(t), γ′′(t)

)
dt.

Proof. For ease of notation, we will use
〈
v, γ′

〉
:= gγ(·)

(
v(·), γ′(·)

)
. With this, the assertion

reads
dL(γs)

ds

∣∣∣∣
s=0

=
〈
v, γ′

〉∣∣∣b
a
−

∫ b

a

〈
v, γ′′

〉
.
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Using the definition of the length and ‖γ′‖ = 1, we get

dL(γs)
ds

∣∣∣∣
s=0

=
∫ b

a

∂

∂s

∣∣∣∣
s=0

√
〈γ′s, γ′s〉

=
1
2

∫ b

a

∂
∂s

∣∣
s=0
〈γ′s, γ′s〉√
〈γ′, γ′〉

=
∫ b

a

〈
∂

∂s

∣∣∣∣
s=0

γ′s, γ
′
〉
.

To simplify the notation further, define

∂

∂t
γs := dγs

(
∂

∂t

)
,

∂

∂s
γs := dγs

(
∂

∂s

)
,

∂

∂s

∂

∂t
γs := ∇ ∂γs

∂s

∂γs
∂t

,
∂

∂t

∂

∂s
γs := ∇ ∂γs

∂t

∂γs
∂s

.

Since ∇ is torsion-free and since [∂/∂s, ∂/∂t] = 0, we can switch the order of the
derivations:

∂

∂s

∣∣∣∣
s=0

γ′s =
∂

∂s

∣∣∣∣
s=0

∂

∂t
γs =

∂

∂t

∂

∂s

∣∣∣∣
s=0

γs =
∂

∂t
v = ∇γ′v = v′.

Thus:

dL(γs)
ds

∣∣∣∣
s=0

=
∫ b

a

〈
∂

∂s

∣∣∣∣
s=0

γ′s, γ
′
〉

=
∫ b

a
〈v′, γ′〉

=
∫ b

a

(
〈v, γ′〉′ − 〈v, γ′′〉

)
=

〈
v, γ′

〉∣∣∣b
a
−

∫ b

a

〈
v, γ′′

〉
.

(Note that this proof is a bit sloppy again with ∇ and the kind of vector fields it can
operate on.)

This result holds for general variations of a curve. We want to show that geodesics
are curves of extremal length between two fixed points. So we need to fix the endpoints
of the variation. A variation with fixed endpoints α : (−ε, ε)× [a, b]→M of γ is a
variation of γ with α(s, a) = γ(a) and α(s, b) = γ(b) for all s ∈ (−ε, ε). The variation
vector field v of such a variation with fixed endpoints satisfies v(a) = v(b) = 0. Now we
can finally show the desired result.

Theorem 4: Let (M, g) be a semi-Riemannian manifold, and γ : [a, b] → M a curve
with ‖γ′‖ = 1. Then γ is a geodesic if and only if

dL(γs)
ds

∣∣∣∣
s=0

= 0
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for all variations with fixed endpoints γs of γ.

Proof. ⇒: Let γ be a geodesic. Let γs be a variation with fixed endpoints of γ, v its
variation vector field. Then we have

dL(γs)
ds

∣∣∣∣
s=0

=
〈
v, γ′

〉∣∣∣b
a︸ ︷︷ ︸

0

−
∫ b

a

〈
v, γ′′

=

0

〉
= 0.

⇐: Let γ be a curve with ‖γ′‖ = 1. We know that γ is a critical point of the length
for all variations with fixed endpoints. So it is also a critical point of the length for the
variation with fixed endpoints γs which comes from the variation vector field v = fγ′′ for
f ∈ C∞(M) with f ≥ 0 and f(a) = f(b) = 0.5 Then we have

0 =
dL(γs)

ds

∣∣∣∣
s=0

=
〈
v, γ′

〉∣∣∣b
a︸ ︷︷ ︸

0

−
∫ b

a

〈
v, γ′′

〉
= −

∫ b

a
f
〈
γ′′, γ′′

〉
.

Since f ≥ 0 this can only be satisfied if γ′′ = 0. So γ is a geodesic.

2.1.8 The Lie Derivative and Killing Fields

In addition to the derivative provided by connections, there is another interesting
derivative that is built of the integral curves of vector fields. For a vector field X ∈ Γ(TM)
denote by φt : M →M the flow of X, i.e. the family of maps which take every p ∈M
a distance t along the unique integral curve of X at p. The Lie derivative LXT of a
tensor field T on M then is

LXT :=
d
dt

∣∣∣∣
t=0

(
dφt(T )

)
.

So LXT is a measure for how much T changes when moved infinitesimally along the
integral curves of X. From this definition and the properties of flows, one can find another
representation of the Lie derivative of a tensor. Take, for simplicity, a tensor field g of
rank 2 (like the metric) and vector fields ψ, v, w ∈ Γ(TM). Then one finds:6(

Lψg
)
(v, w) = ψ

(
g(v, w)

)
− g

(
Lψv, w

)
− g

(
v,Lψw

)
. (2.7)

One key difference between the Lie derivative and the Levi-Civita connection is that
the Lie derivative LXT |p depends not only on the value of X at p but also on its value at
neighboring points. The Levi-Civita connection depends only on the value at the point,
which makes it the preferred derivative in most cases. If we are interested in finding
symmetries of the metric tensor, however, the Levi-Civita connection is of no help since
the right-hand side of (2.7) vanishes identically when we replace L with ∇.

5This assumes that for every vector field along a curve there always is a variation with that vector field
as its variation vector field. See Gallot, Hulin, and Lafontaine (2004, page 138) for a proof.

6See Hawking and Ellis (1973, pages 27ff.) or O’Neill (1983, pages 250ff.) for details. The technique for
proving this is identical to that used in section 2.2.4 below.
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A vector field ψ ∈ Γ(TM) is called Killing field if it leaves the metric invariant under
Lie derivation, i.e. if Lψg = 0. Due to (2.7), Lψg = 0 is equivalent to

ψ
(
g(v, w)

)
= g

(
Lψv, w

)
+ g

(
v,Lψw

)
for all v, w ∈ Γ(TM).

As a consequence of this and of ∇ being torsion-free there is also a local equivalent for
Lψg = 0:

gp(∇vψ,w) + gp(v,∇wψ) = 0 for all v, w ∈ TpM and for all p ∈M.

Killing fields ψ denote symmetries of the metric in the sense that their flows φt leave the
metric unchanged:

0 = Lψg =
d
dt

∣∣∣∣
t=0

(
dφt(g)

)
= lim

t→0

1
t

(
dφt(g)− g

)
⇒ dφt(g) = g.

2.2 Ricci Calculus

While semi-Riemannian geometry is important for forming an understanding of spacetime
physics, it is not very well suited for doing actual computations. This is where the
Ricci calculus comes in. This section explains enough of the Ricci calculus to do
basic computations with tensors. It first introduces the abstract index notation for
multidimensional objects and describes how tensors are represented. It then details the
metric tensor and related concepts, including the two important kinds of derivatives.
Finally, this section details how geodesics are defined and handled in the context of the
Ricci calculus. Most of this is based on von Borzeszkowski and Chrobok (2005/2006),
Jänich (2005), and Lovelock and Rund (1975).

2.2.1 The Abstract Index Notation

The abstract index notation is a way to represent multidimensional objects such as
vectors or matrices. This representation’s main feature is that it deals directly with the
components of the concerned objects in some arbitrary but fixed coordinate system. That
is, with the abstract index notation, there is always some agreed upon coordinate system
and all objects are represented by their components with respect to this coordinate
system. The big advantage of this is that we are then dealing with numbers only.
Multidimensional objects like matrices can be difficult to deal with in computations: they
might not commutate for example. Plain numbers, on the other hand, are very easy to
handle.

Example 4: A familiar example is the multiplication of vectors and matrices.
Suppose we deal with R3. Choose a basis {e1, e2, e3} of R3. Then any vector v ∈ R3

is completely characterized by its components vi ∈ R with respect to this basis:

vi := v · ei ⇒ v =
3∑
i=1

viei.
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Similarly, a 3-by-3 matrix A can be characterized by its components A k
i . The column

vectors Ai of A are given by the images of the basis vectors, and the components of
these column vectors determine A completely.

Ai := Aei A =

 | | |
A1 A2 A3

| | |


Aki := Ai · ek = (Aei) · ek Ai =

3∑
k=1

Akiek.

The product of the matrix A and the vector v will be a new vector w whose
components we can express as a function of the components of A and v:

wi = (Av)i =
3∑

k=1

Akivk.

Here the advantages of the Ricci calculus start to shine through: while in general
vA 6= Av, we are free to rearrange the order of Aki and vk on the right side since
they are just numbers. The information about whether Av or vA is represented is
contained in the position of the summation index.

The product of two matrices A and B is represented in a similar way:

(AB)ki =
3∑
l=1

AklB
l
i .

Again, the order of the terms on the right does not matter. The distinction between
AB and BA is conveyed by the position of the summation index.

To simplify the kind of expressions that occurred in the last example, one usually
introduces the summation convention. It says that indices which appear in pairs of one
lower and one upper index are automatically summed over. Latin indices conventionally
range from 1 to 3, while Greek indices range from 0 to 3. So for example, we have:

AklB
l
i =

3∑
l=1

AklB
l
i ,

Fµν v
ν =

3∑
ν=0

Fµν v
ν ,

W ρ
κ v

κuρ =
3∑
ρ=0

3∑
κ=0

W ρ
κ v

κuρ.
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2.2.2 Tensors and their Transformation

In Ricci calculus, tensors are thought of as multilinear maps that operate on vector
fields and their duals. In contrast to the tensor concept of section 2.1.4, there are now
different kinds of tensors taking different numbers of vector fields and dual vector fields.
Nevertheless, tensors in Ricci calculus are still cross sections of certain fibre bundles
called tensor bundles. The following will explain all this in more detail.

As we saw in section 2.1.2, a chart (U, x) about a point p of a manifold M induces
a coordinate system in a neighborhood of p and a basis of the tangent space TpM . In
the notation of Ricci calculus, the coordinate functions {xµ} of x provide us with the
canonical basis {∂pµ} of TpM and we can write every v ∈ TpM as

v = vµ∂pµ with vµ = v(xµ) ∈ R.

With respect to another chart (Ũ , x̃) about p, we can use the chain rule to get

v = ṽµ∂̃pµ = ṽµ
∂

∂x̃µ

∣∣∣∣
p

= ṽµ
∂xν

∂x̃µ
∂

∂xν

∣∣∣∣
p

= vν∂pν ,

where
vν = ṽµAνµ(p) := ṽµ

∂xν

∂x̃µ

∣∣∣∣
p

.

So under a change of charts (U, x)→ (Ũ , x̃), the components of a tangent vector transform
with the Jacobian Aνµ(p) = ∂xν/∂x̃µ|p of the coordinate functions. In Ricci calculus,
quantities that satisfy this transformation law are called contravariant tensors. In
fact, contravariance is often used to define tangent vectors and thus tangent space. This
is an equivalent approach to the one described in earlier sections.

Vector fields ψ ∈ Γ(TM) can be treated in a similar way to get ψ = ψµ∂µ where
ψµ = ψ(xµ) ∈ C∞(M) and where {∂µ} are the canonical basis fields induced by a chart.
Under a change of charts (U, x) → (Ũ , x̃), the components ψµ are found to transform
with the Jacobian Aνµ = ∂xν/∂x̃µ too.

The same general approach can also be applied to the dual space T ∗pM of TpM . This
is the space of all linear maps ω : TpM → R. In section 2.1.2 we already encountered one
such map: dpf for f ∈ C∞(M). It maps v ∈ TpM to dpf(v) = v(f) ∈ R. Now choose a
chart (U, x) about p and set f = xµ and v = ∂pν . Then we see that

dpxµ(∂pν) = ∂pν(x
µ) =

∂xµ

∂xν

∣∣∣∣
x(p)

= δµν .

So {dpxµ} is dual to {∂pµ} and therefore {dpxµ} is a basis of T ∗pM . Any ω ∈ T ∗pM can
now be written as ω = ωµdpxµ with ωµ = ω(∂pµ) ∈ R. A similar computation to the one
done above shows that, under a change of charts (U, x) → (Ũ , x̃), the components ωµ
transform in the following way:

ωµ = ω̃νĀ
ν
µ(p) := ω̃ν

∂x̃ν

∂xµ

∣∣∣∣
p

.
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2 Differential Geometry

That is, under a change of charts, the components of elements of the dual space T ∗pM
transform with the inverse Jacobian Āνµ(p) of the coordinate functions. In Ricci calculus,
quantities that satisfy this transformation law are called covariant tensors.

A very important relation emerges when we apply a covariant tensor ω ∈ T ∗pM to a
contravariant tensor v ∈ TpM :

ω(v) = ωµdpxµ
(
vν∂ν

)
= ωµv

νdpxµ
(
∂ν

)
= ωµv

νδµν = ωµv
µ

So to get ω(v) we just need to sum the products of their components. How does the
value of ω(v) = ωµv

µ change under a change of charts (U, x)→ (Ũ , x̃)?

ωµv
µ =

(
ω̃νĀ

ν
µ(p)

) (
ṽλAµλ(p)

)
= ω̃ν ṽ

λĀνµ(p)A
µ
λ(p) = ω̃ν ṽ

λδνλ = ω̃ν ṽ
ν .

So, since µ on the left side and ν on the right side are just summation indices and therefore
interchangeable, ω(v) = ωµv

µ does not depend on the chosen chart. Quantities like this
that are invariant under coordinate transformations are called scalars or invariants in
Ricci calculus.

With T ∗pM defined as the dual of TpM , it is natural to wonder what the dual T ∗∗p M
of T ∗pM is. Any τ ∈ T ∗∗p M maps a covariant tensor ω ∈ T ∗pM to a number. As we have
seen above, a covariant tensor ω maps a contravariant tensor v ∈ TpM to a number.
This viewpoint can also be reversed, however. We can simply define v(ω) := ω(v).
Thus v ∈ T ∗∗p M and TpM ⊂ T ∗∗p M . In fact, it can be shown that TpM and T ∗∗p M
are isomorphic, i.e. TpM =̃ T ∗∗p M , provided that the dimension of M is finite. So a
contravariant tensor can be thought of as operating on a covariant tensor.

We will often need quantities that operate on more than one tensor, possibly on different
kinds of tensors. These kinds of objects can be described with the tensor product. Given
a map f : TpM × · · · × TpM → R that is linear in every of its s arguments, and a map
g : T ∗pM × · · · × T ∗pM → R that is also linear in every of its r arguments, the tensor
product f ⊗ g is defined by

f ⊗ g :
s︷ ︸︸ ︷

TpM × · · · × TpM ×
r︷ ︸︸ ︷

T ∗pM × · · · × T ∗pM → R(
f ⊗ g)(v1, . . . , vs, ω1, . . . , ωr) = f(v1, . . . , vs) g(ω1, . . . , ωr).

So f ⊗ g operates on s+ r tensors by passing the first s contravariant tensors to f and
the other r covariant tensors to g.

The space T rs (M,p) of all those multilinear functions is called tensor space at p
and is given by

T rs (M,p) =

s︷ ︸︸ ︷
T ∗pM ⊗ · · · ⊗ T ∗pM ⊗

r︷ ︸︸ ︷
TpM ⊗ · · · ⊗ TpM

= C∞(TpM × · · · × TpM︸ ︷︷ ︸
s

×T ∗pM × · · · × T ∗pM︸ ︷︷ ︸
r

).
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So T 0
1 (M,p) = C∞(TpM) = T ∗pM is the space of all covariant tensors, and T 1

0 (M,p) =
C∞(T ∗pM) = TpM is the space of all contravariant tensors. If {∂pµ} and {dpxν} denote
the bases of TpM and T ∗pM induced by the chart (U, x) about p, then

{dpxν1 ⊗ · · · ⊗ dpxνs ⊗ ∂pµ1
⊗ · · · ⊗ ∂pµr

}

forms a basis of T rs (M,p). That is, every T ∈ T rs (M,p) can be written as

T = Tµ1...µr
ν1...νs

dpxν1 ⊗ · · · ⊗ dpxνs ⊗ ∂pµ1
⊗ · · · ⊗ ∂pµr

,

where Tµ1...µr
ν1...νs ∈ R are called components of T with respect to the chart (U, x).

They are given by

Tµ1...µr
ν1...νs

= T (∂pν1 , . . . , ∂
p
νs
,dpxµ1 , . . . ,dpxµr).

With this in mind, it is easy to see that the elements of T rs (M,p) satisfy the following
transformation law:

Tµ1...µr
ν1...νs

= T̃ ρ1...ρr
σ1...σs

Aµ1
ρ1 . . . A

µr
ρr
Āσ1

ν1 . . . Ā
σs
νs

∣∣
p

Consequently, Ricci calculus calls elements of T rs (M,p) tensors of type (r, s), where r
denotes the contravariant and s the covariant rank.

When we collect the T rs (M,p) for all p ∈M , we get the tensor bundle T rs (M):

T rs (M) :=
⋃
p∈M
T rs (M,p).

The cross sections Γ(T rs (M)) of T rs (M) are called tensor fields. They assign to every
p ∈M a tensor of type (r, s) at p. And thus we have finally reached the point where we
can marry the tensor concept of semi-Riemannian geometry and that of Ricci calculus.
Recall that in section 2.1.4, tensors were defined as cross sections ω which assign to every
p ∈M a multilinear k-form ωp : TpM × · · · × TpM → Ep where E is a vector bundle over
M . Choose E = TM and we see that

ωp ∈ T ∗pM ⊗ . . . T ∗pM ⊗ TpM = T 1
k (M,p).

Thus ω ∈ Γ(T 1
k (M)). So the tensors of semi-Riemannian geometry are the tensor fields

of rank (1, k) of Ricci calculus.
Since there is such a close connection between a tensor T ∈ T rs (M,p) and its com-

ponents Tµ1...µr
ν1...νs , it is conventional to use both symbols interchangeably. Thus,

the collection of components Tµ1...µr
ν1...νs is identified with T . Similarly, a tensor field

S ∈ Γ(T rs (M)) is identified with its components Sµ1...µr
ν1...νs .

2.2.3 The Metric

In section 2.1.5, we defined a metric g to be a tensor which assigns to every p ∈ M
an inner product gp : TpM × TpM → R. Thus, in Ricci calculus, g ∈ Γ(T 0

2 (M)) is
represented by the components gµν :

g = gµν dxµ ⊗ dxν for some chart (U, x).
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2 Differential Geometry

So the metric gµν assigns to every p ∈M a tensor gµν(p) ∈ T 0
2 (M,p) of type (0, 2) which

in turn maps two covariant tensors vµ(p), wν(p) ∈ T 0
1 (M,p) to a number. Or, more

conventionally, we can think of gµν as operating on tensor fields vµ, wν ∈ Γ(T 0
1 (M))

and yielding a function gµνv
µvν ∈ C∞(M). This point of view makes it easy to see how

exactly gµν relates to g:

g(v, w) =
(
gµν dxµ ⊗ dxν

)
(v, w)

= gµν dxµ(vρ∂ρ)dxν(wσ∂σ)
= gµνv

ρwσ δµρ δ
ν
σ

= gµνv
µwν .

The symmetry of g in its arguments translates to the symmetry of gµν in its indices:

g(v, w) = g(w, v)⇐⇒ gµν = gνµ.

Since gµν has rank (0, 2), its application to two tensors vµ, wν of rank (1, 0) yields
a quantity gµνv

µwν which is invariant under coordinate transformations. We have
encountered another invariant quantity before: ωµvµ where ωµ is a tensor of rank (0, 1).
It turns out that there is a connection between these two kinds of expressions. Consider
gµνv

µ, i.e. leave one argument of gµν empty. Since it takes another contravariant tensor,
we have gµνvµ ∈ Γ(T 0

1 (M)). So gµνvµ gives us a tensor field of rank (0, 1). In fact, the
following is true: there always is exactly one vµ ∈ Γ(T 1

0 (M)) for every ων ∈ Γ(T 0
1 (M))

with ων = gµνv
µ. So the metric gµν induces an isomorphism

Γ(T 1
0 (M)) = Γ(TM)←→ Γ(T ∗M) = Γ(T 0

1 (M))
vµ ←→ gµνv

µ.
(2.8)

This is known as the Riesz representation theorem.
Due to the close relation between a covariant tensor ωµ and its representing contravari-

ant tensor vν , Ricci calculus uses the same symbol for both entities: vν = gµνv
µ. So,

graphically speaking, the metric can be used to “pull down indices” of contravariant
tensors and turn them into covariant tensors.

What about the inverse of this operation? It would assign to a covariant tensor
ωµ = gµνv

ν its representing contravariant tensor vν . It turns out that this is achieved by
the tensor gµν defined as the matrix inverse of gµν :

gµνgνλ = δµλ . (2.9)

Because then we have
gµνωµ = gµνgµσv

σ = vν .

The tensor gµν is often called the dual or inverse metric. This is not to be confused
with the inverse of the metric: the metric gµν is not injective, so it does not even have
an inverse. Instead, gµν can be thought of as the map that gives rise to the ← part of
the isomorphism (2.8).
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Due to the close connection between ωµ and its representing contravariant tensor vν ,
both are assigned the same symbol: gµνωµ = ων . Hence we see that gµν can be used
to “pull up indices”. From the definition (2.9) we also have gµν = gµρgνσgρσ. So the
previous definitions are indeed consistent and gµν is obtained by pulling up the indices
of gµν .

2.2.4 The Derivatives

We already know one kind of derivative: the partial derivatives ∂µ that are induced by a
chart (U, x) and that form a basis for contravariant tensors. We can apply ∂µ to vν to
obtain a new quantity ∂µvν with two indices. For brevity, a new syntax is often used for
these kinds of expressions:

vν,µ := ∂µv
ν .

How does this quantity transform under a change of coordinates?

vν,µ =
∂

∂xµ
vν

=
∂x̃σ

∂xµ
∂

∂x̃σ

(
∂xν

∂x̃ρ
ṽρ

)
=
∂x̃σ

∂xµ

(
∂2xν

∂x̃σ∂x̃ρ
ṽρ +

∂xν

∂x̃ρ
∂

∂x̃σ
ṽρ

)
=
∂x̃σ

∂xµ
∂2xν

∂x̃σ∂x̃ρ
ṽρ +

∂x̃σ

∂xµ
∂xν

∂x̃ρ
ṽρ,σ .

(2.10)

This shows that vν,µ are not the components of a tensor, due to the first term on the
last line. In order to define a derivative that yields a tensor, we need to amend the bare
vν,µ in such a way that this first term does not occur when changing coordinates.

It turns out that this can be achieved with the concept of connections introduced in
section 2.1.6. There, a connection was defined as a linear map ∇ : Γ(TM)×Γ(E)→ Γ(E)
for some vector bundle E. Choose E = TM . Then we can think of ∇ as a map
∇ : Γ(TM)× Γ(TM)× Γ(T ∗M) → R. Note that ∇ 6∈ T 2

1 (M) since ∇ is not C∞(M)-
linear in its second argument. When we fix the second argument, however, we do get a
tensor:

v ∈ Γ(TM) = T 1
0 (M)⇒ ∇v ∈ T 1

1 (M).

This new tensor ∇v is called the covariant derivative of v. When we fill in the
first argument of ∇v with w ∈ T 1

0 (M) we get ∇wv, the covariant derivative of
v in the direction w. And filling in the last argument with ω ∈ T 0

1 (M), we get
(∇wv)(ω) = ω(∇wv).

On a chart (U, x), the connection is determined by its components Γµνλ on the basis
{∂µ} and its dual {dxµ}:

Γµνλ :=
(
∇∂ν∂λ

)
(dxµ)⇔ ∇∂λ = Γµνλdx

ν ⊗ ∂µ.
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2 Differential Geometry

The components Γµνλ are called Christoffel symbols of ∇. The relation ∇u(fv) =
u(f)v + f∇uv from the definition of a connection can be expressed as

∇(fv) = df ⊗ v + f∇v

for all f ∈ C∞(M), v ∈ T 1
0 (M). Thus, for any v ∈ T 1

0 (M), we have

∇v = ∇(vµ∂µ) = dvµ ⊗ ∂µ + vµ Γλνµdx
ν ⊗ ∂λ.

So we see that the components vµ;ν of ∇v = vµ;νdxν ⊗ ∂µ are given by

vµ;ν =
∂vµ

∂xν
+ Γµνλv

λ = vµ,ν + Γµνλv
λ.

In Ricci calculus, vµ;ν is called the covariant derivative of the contravariant tensor
vµ. The covariant derivative∇wv of v in the direction w is given by wνvµ;ν in this notation.

Under a change of coordinates with Jacobian Aνµ := ∂xν/∂x̃µ and inverse Jacobian
Āνµ := ∂x̃ν/∂xµ, we can use the properties of the connection to obtain

Γ̃µνλ =
(
∇∂̃ν

∂̃λ
)
(dx̃µ)

=
(
∇Aρ

ν∂ρ
Aσλ∂σ

)
(Āµκdx

κ)

= ĀµκA
ρ
ν

[(
∂ρA

σ
λ

)
∂σ +Aσλ∇∂ρ∂σ

]
(dxκ)

= ĀµκA
ρ
ν

[
∂ρA

κ
λ +AσλΓ

κ
ρσ

]
= Āµκ

[
∂̃ρA

κ
λ +AρνA

σ
λΓ

κ
ρσ

]
=
∂x̃µ

∂xκ

[
∂2xκ

∂x̃ρ∂x̃λ
+
∂xρ

∂x̃ν
∂xσ

∂x̃λ
Γκρσ

]
.

(2.11)

Comparing this with equation (2.10), we see that vµ;ν does indeed transform like a tensor
of rank (1, 1):

vµ;ν =
∂xµ

∂x̃κ
∂x̃ρ

∂xν
ṽκ;ρ.

We can define the covariant derivative of tensors of arbitrary rank by demanding the
following rules:

1. If T ∈ T rs (M), then ∇T ∈ T rs+1 (M).
2. ∇ commutes with contraction. This means that any tensor equation involving ∇

still holds when we contract ω ⊗ v → ω(v) for any ω ∈ T 0
1 (M), v ∈ T 1

0 (M).
3. The Leibniz rule holds for arbitrary tensors T, S:

∇(S ⊗ T ) = (∇S)⊗ T + S ⊗ (∇T ).

4. For any function f ∈ C∞(M), we have ∇f = df .
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We can use these rules to find the covariant derivative of a covariant tensor ω. First, use
the Leibniz rule for ω ⊗ ∂µ:

∇(ω ⊗ ∂µ) = (∇ω)⊗ ∂µ + ω ⊗ (∇∂µ).

Then apply the contraction ω ⊗ v → ω(v):

∇
(
ω(∂µ)

)
=

(
∇ω

)
(∂µ) + ω

(
∇∂µ

)
.

Solve for
(
∇ω

)
(∂µ) and insert ∂ν for the free argument:(

∇∂νω
)
(∂µ) = ∇∂ν

(
ω(∂µ)

)
− ω

(
∇∂ν∂µ

)
= ∂ν

(
ω(∂µ)

)
− ω

(
Γλνµ∂λ

)
= ∂ν

(
ω(∂µ)

)
− Γλνµω(∂λ).

Thus, the covariant derivative ωµ;ν of a covariant tensor ωµ is given by

ωµ;ν = ωµ,ν − Γλνµωλ.

It should be clear from the derivation of this expression that ωµ;ν is indeed a tensor, but
it can also be checked manually by using the transformation properties (2.11) of the
Christoffel symbols.

The same procedure can be used to find the covariant derivative of an arbitrary tensor
T ∈ T rs (M). We arrive at

Tα...βµ...ν;λ = Tα...βµ...ν,λ

+ ΓαλρT
ρ...β

µ...ν + · · ·+ ΓβλσT
α...σ

µ...ν

− ΓκλµT
α...β

κ...ν − · · · − ΓξλνT
α...β

µ...ξ .

Up to now we have dealt with general connections on a manifold independent of any
metric that might also be present. But remember from section 2.1.6 that for every metric
g there is exactly one torsion-free connection that is metric preserving: the Levi-Civita
connection ∇ of g. A connection is metric preserving if

u
(
g(v, w)

)
= g

(
∇uv, w

)
+ g

(
v,∇uw

)
for every u, v, w ∈ T 1

0 (M). With what we have shown above, this is equivalent to:

∇g = 0 and gαβ;γ = 0.

That is, a connection is metric preserving if the corresponding covariant derivative of
the metric vanishes. When a metric is present, the tensor contraction mentioned above
is given by the isomorphism (2.8). So the rules 2 and 3 which we demanded from a
connection above are satisfied by the Levi-Civita connection in a natural way.

31
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In section 2.1.6 we also showed that the Levi-Civita connection is determined by the
Koszul formula (2.6):

2g
(
∇uv, w

)
= u

(
g(v, w)

)
+ v

(
g(w, u)

)
− w

(
g(u, v)

)
+ g

(
[u, v], w

)
− g

(
[u,w], v

)
− g

(
[v, w], u

)
.

Upon choosing basis tensors for u, v, w we can use this to obtain the Christoffel symbols
for ∇:

2g
(
∇∂µ∂ν , ∂λ

)
= ∂µ

(
g(∂ν , ∂λ)

)
+ ∂ν

(
g(∂λ, ∂µ)

)
− ∂λ

(
g(∂µ, ∂ν)

)
+ g

(
[∂µ, ∂ν ]︸ ︷︷ ︸

0

, ∂λ
)
− g

(
[∂µ, ∂λ]︸ ︷︷ ︸

0

, ∂ν
)
− g

(
[∂ν , ∂λ]︸ ︷︷ ︸

0

, ∂µ
)

= ∂µ
(
g(∂ν , ∂λ)

)
+ ∂ν

(
g(∂λ, ∂µ)

)
− ∂λ

(
g(∂µ, ∂ν)

)
.

Or, in coordinates:

2gρλΓρµν = gνλ,µ + gλµ,ν − gµν,λ ⇔ Γτµν =
1
2
gτλ

(
gνλ,µ + gλµ,ν − gµν,λ

)
.

Given the metric gµν we can now calculate any covariant derivative of any tensor.
In section 2.1.6, we defined the curvature tensor R of a connection as

R(v, w)u = ∇v
(
∇wu

)
−∇w

(
∇vu

)
−∇[v,w]u

for v, w ∈ Γ(TM) and u ∈ Γ(E). With E = TM , this yields a tensor R ∈ T 3
1 (M).

If ∇ is the Levi-Civita connection, it is torsion-free: [v, w] = ∇vw − ∇wv. Thus, in
coordinates, we can write R as

Rαβγδv
βwγuδ =

(
uα;µw

µ
)
;ν
vν −

(
uα;λv

λ
)
;ρ
wρ −

(
wσ;ξv

ξ − vσ;χwχ
)
uα;σ

=
(
uα;µ;ν − uα;ν;µ

)
vνwµ.

And since v, w are arbitrary:

Rαβγδu
δ = uα;γ;β − uα;β;γ .

2.2.5 Geodesics and Killing Fields

In section 2.1.7 we defined geodesics as those curves γ ∈ C∞(M) which satisfy ∇γ′γ′ = 0,
i.e. curves whose tangent vector is parallel-transported. As always in Ricci calculus, we
choose some chart (U, x) of M and then consider the components {γµ = xµ ◦ γ} of γ
with respect to that chart. With vµ = γµ′, the condition for γ to be a geodesic reads

0 = vµ;νv
ν

= vµ,νv
ν + Γµνλv

λvν

=
(

d
dxν

dγµ(τ)
dτ

)
dγν(τ)

dτ
+ Γµνλ

dγλ(τ)
dτ

dγν(τ)
dτ

=
d2γµ(τ)

dτ2
+ Γµνλ

dγλ(τ)
dτ

dγν(τ)
dτ

.

(2.12)

32



This is the geodesic equation in Ricci calculus, consisting of n ordinary differential
equations for the n components of γ.

One of the defining equations of Killing fields, as was shown in section 2.1.8, is

gp(∇vψ,w) + gp(v,∇wψ) = 0 for all v, w ∈ TpM and for all p ∈M.

In coordinates, this is known as the Killing equation and takes the remarkably simple
form

ψµ;ν + ψν;µ = 0.
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3 General Relativity

The theory of General Relativity asserts that our universe can be thought of as a four
dimensional entity called spacetime. This spacetime is a Lorentzian manifold, a special
case of a semi-Riemannian manifold as described in section 2.1.5. So in this chapter, we
use the formalisms developed in the previous chapter to describe the structure of the
universe. We also look at the field equations of General Relativity which specify how
the matter distribution in the universe determines its metric. This chapter is mostly
based on von Borzeszkowski and Chrobok (2005/2006), Hawking and Ellis (1973), and
occasionally on Beem, Ehrlich, and Easley (1996).

3.1 Spacetime as a Lorentzian Manifold

In General Relativity the strict distinction between space and time as we know it from
everyday life is abandoned in favor of the four dimensional spacetime which subsumes
space and time. The spacetime is described by a Lorentzian manifold, i.e. a tuple
(M, g) of a differentiable manifold M together with an indefinite, non-degenerate metric
g which gives rise to the Levi-Civita connection and its curvature tensor. The key insight
in General Relativity is that the curvature of a spacetime is what creates gravitation.
Gravitational forces result from curvature. And the field equations, which we will come
to soon, tell us that matter determines the metric and thus the curvature. So matter in
a spacetime creates curvature, and curvature in turn determines how matter moves on a
large scale.

Another fundamental axiom of General Relativity is the equivalence principle.
Greatly simplified, it says that all frames of reference should be equivalent, i.e. that
every physical law needs to be covariant under arbitrary coordinate transformations.
When we formulate the physical laws as tensor equations on a Lorentzian manifold, this
requirement is automatically fulfilled.

A popular way to specify the metric g of a spacetime M is to give its components
in a particular chart (U, x). This is often done by specifying the line element ds2 =
gµνdxµdxν , where the tensor product sign ⊗ is omitted for convenience. Reinstating ⊗,
we see that ds2 = gµνdxµ ⊗ dxν and thus ds2 = g. So ds2 is just another name for g.
As an example of this syntax, consider the Minkowski spacetime in the coordinates
(t, x, y, z):

ds2 = dt2 − dx2 − dy2 − dz2

gµν = diag(1,−1,−1,−1).
(3.1)
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3 General Relativity

Another example, the Schwarzschild spacetime in the coordinates (t, r, θ, φ):

ds2 =
(
1− rs

r

)
dt2 −

(
1− rs

r

)−1
dr2 − r2

(
dθ2 + sin2 θdφ2

)
gµν = diag

((
1− rs

r

)
,−

(
1− rs

r

)−1
,−r2,−r2 sin2 θ

)
,

(3.2)

where t, r ∈ R, θ ∈ [0, π], and φ ∈ [0, 2π] and where θ = 0 and θ = π are identified just
like φ = 0 and φ = 2π. For fixed t and r, the metric describes ordinary spheres. The
metric degenerates when θ = 0 or θ = π (since sin2 θ = 0 there), so these slices would
have to be cut out if we want to have a proper manifold. There are similar problems
with r = 0 or r = rs.

These so called “singularities” are points in the spacetime where a particular coordinate
representation of a metric is singular. This means that at those points, the metric becomes
degenerate or ill-defined due to some component vanishing or diverging. For example,
the Schwarzschild spacetime (3.2) is singular at r = 0 and r = rs. These singularities
can be of two basic types: they can be coordinate singularities or physical singularities.

Coordinate singularities are singularities that are due to an inadequate choice of
coordinates. They have no direct physical effect, the spacetime is perfectly regular there.
Coordinate singularities can be removed by switching to another set of coordinates. As
an example of this type of singularity, consider the Euclidean plane (M = R2, g) in polar
coordinates (r, φ):

ds2 = dr2 + r2dφ2.

At r = 0, this coordinate representation becomes singular. But from the Cartesian
representation

ds2 = dx2 + dy2

with x = r cosφ and y = r sinφ, we know that the plane is perfectly regular at the origin
(r = 0, φ) = (x = 0, y = 0). The r = rs singularity of the Schwarzschild spacetime is
another example of a coordinate singularity.

Note that while coordinate singularities do not have immediate physical consequences,
they do sometimes signify interesting features. The Schwarzschild singularity just men-
tioned is an example: r = rS denotes the hypersurface beyond which no light can escape
from the black hole. Rosen (1985) provides more interesting arguments why coordinate
singularities should not be dismissed easily.

Physical singularities are points of a spacetime where some physically relevant
scalar quantity diverges. Recall that scalars are built from tensors in such a way that
they are invariant under arbitrary coordinate transformations. So a physical singularity
cannot be “transformed away”. A famous example of such a singularity is r = 0 in
the Schwarzschild spacetime. The scalar RµνσρRµνσρ ∝ r−6 diverges at r = 0 and,
consequently, the Schwarzschild spacetime looses its validity there.
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3.2 The Field Equations

The field equations of General Relativity, sometimes also called Einstein equations,
provide the link between the matter in the spacetime and its geometry, i.e. its metric:

Rµν −
1
2
gµνR = 8πTµν . (3.3)

These are 16 coupled partial differential equations for the components gµν of the metric.
The left-hand side contains the Ricci tensor

Rµν := Rσµσν ,

and the Ricci scalar
R := Rσσ.

Both are formed by contracting the curvature tensor, which in turn is entirely determined
by the metric and its first and second partial derivatives. So the left side of the field
equations is a non-linear function of the metric components and its partial derivatives up
to the second order. The right side of (3.3) contains the energy-momentum tensor
Tµν and a coupling constant whose exact value is explained later. The energy-momentum
tensor acts as the source for the gravitation potentials gµν . It is supposed to describe the
distribution of energy and momentum of the matter in the spacetime. The construction
of Tµν is often based on intuition, but if the matter under consideration is governed by a
Lagrangian, Tµν can be derived in a definite way.

Since all the tensors involved are symmetrical, only 10 of the original 16 equations
are actually independent. And since the Ricci tensor satisfies the contracted Bianchi
identities (

Rµν −
1
2
gµν

);ν

= 0, (3.4)

the number of independent equations is reduced to 6, and we automatically get conserva-
tion laws for the energy-momentum tensor:

T ;ν
µν = 0. (3.5)

The 6 independent equations match the number of independent metric components: Of
the original 16, symmetry accounts for 6. And the invariance of the field equations
and all other relevant relations under general 4-dimensional coordinate transformations
can be seen as a “gauge freedom”. Choosing a “gauge” leaves us with 6 independent
components.

The conservation law (3.5) alone does not yield a conserved quantity in the usual sense
since there is no natural way to integrate a tensor like Tµν . If the spacetime admits a
Killing field ψµ, however, we find that

Q ;ν
ν :=

(
Tµνψ

µ
);ν = T ;ν

µν ψµ + Tµνψ
µ;ν = 0.
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3 General Relativity

The first term vanishes due to (3.5), and the second term vanishes because Tµν is
symmetric whereas ψµ;ν is antisymmetric since ψµ is a Killing field. The tensor Qν can
now be interpreted as a conserved quantity with the help of Gauß’ law:∫

∂V
Qν dσν =

∫
V
Q ;ν
ν dv = 0,

where V is some compact region of spacetime.
So where do the field equations (3.3) come from? They are an axiom. They cannot

be derived from other principles, at least currently. There are, however, a couple of
principles that motivate the form of the field equations.

• First and foremost, the field equations need to be equations for tensor components
so that they are invariant under coordinate transformations, as required by the
equivalence principle. Since we want to relate geometry to matter, we need to
find suitable tensor expressions containing the metric on the one hand and tensor
expressions describing the matter on the other.

• Then we demand that matter only enters the field equations via the energy-
momentum tensor, so that different matter fields with the same distribution of
energy and momentum yield the same geometry. The energy-momentum tensor
should also be conserved automatically, which demands that something like the
contracted Bianchi identities (3.4) holds.

• In the limit of weak gravitational fields, i.e. when the metric is just the Minkowski
metric plus a perturbation, Newton’s theory of gravity holds to a high degree of
accuracy. So in this limit, we should recover Newton’s theory of gravity from the
field equations. This requirement fixes the coupling constant.

• And finally, we require that the field equations be of second order in g. That is, the
field equations should not contain derivatives of the metric of order higher than 2.
This requirement is based on the absence of third or higher derivatives in all the
other basic physical laws.

Taken together, these principles can be shown1 to fix the form of the field equations to be
of the kind of (3.3). There is one important possibility to alter the field equations without
violating any of the above requirements, however. Adding a term of the form gµνΛ—with
Λ ∈ R being referred to as the cosmological constant—to the field equations (3.3),
one gets

Rµν −
1
2
gµνR = 8πTµν + gµνΛ.

This change does not violate any of the requirements because the metric is constant with
respect to the covariant derivative: gµν;σ = 0, which is another form of saying that the
Levi-Civita connection of g is metric preserving.

1See Hawking and Ellis (1973, pages 71ff.), for example.
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This new term turns out to be useful to get models of our universe which are in
agreement with experimental data. More concretely, Λ is thought of as providing the
missing amount of energy that is needed to account for the behavior and form of our
universe and for which there is no natural explanation yet. Due to this role, Λ is sometimes
called “dark energy”.
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4 Visualization Techniques

Visualization is the production of a pictorial representation of some abstract information.
Its aim is to facilitate understanding of the depicted knowledge. In General Relativity,
visualization tries to help getting an intuitive grasp of spacetimes and their features.

This is notoriously difficult due to spacetimes usually being four-dimensional. Our
inability to visually process four-dimensional objects prevents us from depicting spacetimes
directly. One simple way out of this is to use three-dimensional sections of spacetimes,
where we hold one coordinate fixed at a specific value and examine the resulting three-
dimensional hypersurface. For those three-dimensional objects, there are techniques
to get good two-dimensional representations which can then be shown on a computer
screen or printed to paper. A good overview of these techniques is given in Carlbom and
Paciorek (1978). With some modern machinery like shutter glasses or polarized glasses
and the corresponding projection apparatus, one can even avoid the need for a projection
to two dimensions. Such setups are for example described in Bryson (1992) and on the
site of the PORTAL1 project.

In this work, we use the projection approach to create pictures of two- and three-
dimensional features of spacetimes. In particular, we depict vector fields, hypersurfaces,
the paths of geodesics, and light cones. These are, of course, not the only ways to visualize
spacetimes: other prominent techniques include embedding diagrams of two-dimensional
hypersurfaces2 and Carter-Penrose diagrams3.

4.1 The Role of Coordinates

Without a coordinate representation of the metric, we cannot completely specify any-
thing interesting like the geodesic equations or vector fields. But without a complete
specification, we cannot visualize. Thus, most visualization techniques, and certainly
those used here, require choosing a coordinate representation for the spacetime.

But in some cases, there is a discrepancy between the spacetime as a Lorentzian
manifold and a particular coordinate representation of it. This frequently occurs when
the chosen coordinates do not cover the whole manifold, producing the coordinate
singularities described in the previous chapter.

In General Relativity, all relevant physical laws are invariant under general coordinate
transformations. So in principle, all coordinate representations are on an equal footing.

1http://www.math.tu-berlin.de/portal/
2For the theory of embedding diagrams, see Giblin (2004); Giblin, Marolf, and Garvey (2004); Jonsson

(2001); Jonsson (2005). For applications to black hole spacetimes, see Davidson (2000); Frolov (2006);
Hledík (2001); Kristiansson (1998); Giblin, Marolf, and Garvey (2004); Marolf (1999); Romano (1995).

3See Carter (1966) or Hawking and Ellis (1973, chapter 5).
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4 Visualization Techniques

Figure 4.1: The vector field (4.1) in the
coordinates {t, x, y, z}. The coordinates y
and z are suppressed in the graphic.

Figure 4.2: The vector field (4.2) in the
coordinates {t, x, y, z}. The coordinates y
and z are suppressed in the graphic.

But it is often the case that a specific set of coordinates is better suited than others for
depicting some feature of a spacetime. For example, one coordinate system might make
it obvious that a particular spacetime has certain symmetries whereas it might be very
hard to see this for another coordinate system for the same spacetime.

4.2 Vector Fields and Hypersurfaces

Some basic features of a spacetime are often described in the form of vector fields. These
might for example be Killing vector fields describing a direction of symmetry of the
metric. Or they might be velocity vector fields or other vector fields associated with
some curves in the spacetime.

A vector field v ∈ Γ(TM) lives in the tangent bundle of the spacetime. To visualize it,
we need the parameter representation of v with respect to a chosen chart (U, x). The
chart provides us with a basis {∂µ} of TM which can be used to obtain this parameter
representation:

v = vµ∂µ with vµ ∈ C∞(M).

The {vµ} can be combined with the chart map x to get maps {vµ ◦x} which are functions
of the coordinates {xµ}.

Take, for example, a spacetime with the coordinates (t, x, y, z) and the vector fields

∂t = (1, 0, 0, 0), and (4.1)
x ∂t + t ∂x = (x, t, 0, 0). (4.2)

These two vector fields are shown in figures 4.1 and 4.2.
Another kind of structure that often arises when examining a spacetime is a hyper-

surface, i.e. a lower-dimensional subset of the spacetime. These might for example be

42



Figure 4.3: The hypersurface (4.3) in the
coordinates {t, x, y, z}. The coordinate z
is suppressed in the graphic. The lines on
the surface denote the coordinate lines
where all but one coordinate are hold
fixed.

Figure 4.4: The hypersurface (4.4) in the
coordinates {t, x, y, z}. The coordinate z
is suppressed in the graphic. Note that the
coordinate lines for y are straight, which
is a manifestation of the absence of y from
the defining equation of the hypersurface.

spacelike surfaces on which two events take place. Or the surface might represent the
border between two regions of the spacetime with different properties.

Hypersurfaces are usually given in one of two forms: implicit or parametric. In implicit
form, the hypersurface is given as an equation involving one or more of the coordinates.
This equation removes one degree of freedom for the involved coordinates, and we thus
get the lower-dimensional subset mentioned above. For a spacetime with coordinates
(t, x, y, z), examples for hypersurfaces given in implicit form might be

x2 + y2 + t2 = 1, or (4.3)

x2 − t = 1. (4.4)

These two hypersurfaces are shown in figures 4.3 and 4.4.
The second representation of hypersurfaces is the parametric form in which the

hypersurface is given as a function mapping one or more parameters to a point. Taken
together, these points then make up the hypersurface. Two examples, the first one-
dimensional and the second two-dimensional, are given by

f : [0, 4π]→ R4, f(τ) =
(
cos τ, sin τ,

τ

10
, const.

)
, (4.5)

g : [−π, π]× [−π, π]→ R4, g(τ1, τ2) =
(
τ1, τ2,

3
2

sin(τ1τ2), const.
)
. (4.6)

Disregarding the last component, we can depict these surfaces as is done in figures 4.5
and 4.6.
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4 Visualization Techniques

Figure 4.5: The hypersurface (4.5) with
the last component suppressed.

Figure 4.6: The hypersurface (4.6) with
the last component suppressed.

4.3 Geodesics

Geodesics are curves γ that solve the geodesic equations, i.e. they represent the trajectories
of freely falling particles. To completely determine γ, we need to specify initial conditions
γ(0) and γ′(0). By choosing the length of the initial direction γ′(0) appropriately, we
can select the geodesics’ type: |γ′(0)| = 0 for lightlike geodesics, |γ′(0)| > 0 for timelike
geodesics. The result will then be a parametrized curve γ : I →M mapping some interval
I to the spacetime M . So for the purpose of visualization, geodesics are one-dimensional
hypersurfaces like those described in the previous section. Even though geodesics are a
coordinate-invariant concept, the depicted curves will depend on the choice of coordinates
since the initial conditions are specified with respect to the chosen chart.

To get an overview of how the behavior of geodesics changes when the initial conditions
are changed, it is insightful to depict multiple different geodesics at once. There are two
basic ways to do this.

In the first, we let all geodesics originate from the same point but with different initial
directions. Three examples of this procedure are shown in figure 4.7 for the Schwarzschild
spacetime (3.2). In each of the three pictures, the initial directions are of the form

ψ ∂t + sinα∂θ + cosα∂φ,

where α is chosen from [0, 2π] in steps of π/10 and for each α value, ψ is determined such
that the whole vector has zero length so that we get lightlike geodesics. The difference
between the three pictures is the r value, the distance from the origin, of the initial
position. From left to right, the distance increases from 2.5M via 3.0M to 4.0M . In the
first case the geodesics reach the horizon very soon, in the second case they enter orbits
r = const and are confined to them forever, and in the third case the geodesics recede to
infinity.

Another set of examples for plotting geodesics with the same origin but different initial
directions is shown in figure 4.8. This time, only two coordinates (r, φ) are shown and
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(a) Originating at r = 2.5M (b) Originating at r = 3M (c) Originating at r = 4M

Figure 4.7: Three sets of geodesics in the Schwarzschild spacetime. Only the spatial
components (r, θ, φ) are shown; the time t is suppressed. The dark sphere represents the
event horizon r = 2M of the body with mass M positioned at the origin.

(a) Originating at r = 2.5M (b) Originating at r = 3M (c) Originating at r = 4M

Figure 4.8: Three sets of geodesics in the Schwarzschild spacetime. Only the spatial
components (r, φ) are shown; (t, θ) are suppressed. The dark circle represents the event
horizon r = 2M of the body with mass M positioned at the origin.

45



4 Visualization Techniques

(a) Originating at r = 2.5M (b) Originating at r = 3M (c) Originating at r = 4M

Figure 4.9: Three sets of geodesics in the (r, φ) plane of the Schwarzschild spacetime.
In each graphic, the φ value of the initial position is varied from −π to π whereas its r
component takes a constant value. The initial direction is always ψ ∂t + ∂φ.

the initial directions take the form

ψ ∂t + cosα∂r + sinα∂φ,

with α and ψ like above. So in contrast to the previous examples, the geodesics’ initial
directions now have a radial component. The initial positions are again chosen with
different radial components r.

The second basic way to depict multiple geodesics is to let them start at different
initial positions but with the same initial direction. Talking about the “same” initial
directions, i.e. tangent vectors, at different points in the spacetime is just a heuristic,
of course. Tangent vectors from different tangent spaces cannot be compared directly.
What is meant here is that the parameter representation of the initial directions with
respect to the chosen coordinate system is the same for all selected starting points.

An example will make this clearer. Consider again the Schwarzschild spacetime. Now
we want to visualize geodesics whose initial directions are of the form

ψ ∂t + ∂φ,

where, like above, ψ is always chosen so that the resulting vector is lightlike. We can
plot those geodesics in the (r, φ) plane originating from points with varying φ values. In
figure 4.9 this is done for three different values of r. The results are similar to those
found in figure 4.7.

Another example is given by geodesics originating from points with varying r values
and with initial directions of the form

ψ ∂t ± ∂φ.

This is done in figure 4.10 for r ∈ [−10M, 10M ].
We might want to do the same with the initial positions varying horizontally on a

straight line that does not go through the origin, and with initial directions “pointing
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Figure 4.10: A set of geodesics in the
Schwarzschild spacetime originating from
points with different r values and with ini-
tial directions of the form ψ ∂t ± ∂φ. The
(r, φ) plane is shown.

Figure 4.11: A set of geodesics in the (r, φ)
plane of the Schwarzschild spacetime orig-
inating from points with different x val-
ues and with initial directions of the form
ψ ∂t − ∂y.

down”. In other words, we want initial positions with varying x value and initial directions
of the form −∂y. The Schwarzschild metric uses spherical coordinates, though, so in
order to speak in terms of x and y we need to use the usual transformation laws

x = r cosφ, r =
√
x2 + y2,

y = r sinφ, φ = arctan
(y
x

)
.

The initial direction then turns out to be

ψ ∂t − ∂y = ψ ∂t − sinφ∂r −
cosφ
r

∂φ.

The resulting geodesics are shown in figure 4.11 for x ∈ [−10M, 10M ].

4.4 Light Cones

When talking about light cones different people mean different things. One definition
says that the future light cone of a point in a spacetime is the boundary of the causal
future of that point. The causal future J+(p) of a point is the set of those points of the
spacetime that can be reached by future-directed timelike or lightlike curves:

J+(p) :=
{
q ∈M | ∃γ : [0, 1]→M future-directed timelike or lightlike

with γ(0) = p and γ(1) = q
}
.

So the future light cone Ĉ+(p) of a point p ∈M would be defined by:

Ĉ+(p) := ∂J+(p).

And similarly for the causal past J−(p) and the past light cone Ĉ−(p).
Another definition says that the future light cone of a point is the causal future minus

the chronological future of that point:

C̃+(p) := J+(p) \ I+(p).
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4 Visualization Techniques

Figure 4.12: A light cone C(p) ⊂ TpM of
Minkowski spacetime M . The coordinate
z is suppressed.

Figure 4.13: The light cones of multiple
points in Minkowski spacetime. Since the
Minkowski metric is the same at every
spacetime point, the light cones do not
change their form or orientation.

The chronological future I+(p) is defined very similarly to the causal future:

I+(p) :=
{
q ∈M | ∃γ : [0, 1]→M future-directed timelike

with γ(0) = p and γ(1) = q
}
.

These two definitions for light cones are equivalent when, colloquially speaking, no points
are missing from the spacetime in question.4 Both definitions have in common that they
define light cones to be subsets of the spacetime.

The most common definition for light cones, however, puts them into the tangent space
of a point5:

C(p) := {v ∈ TpM | g(v, v) = 0} .

That is, the light cone C(p) of a point is the set of all tangent vectors at that point with
vanishing length. We will use this definition of the light cone since it is comparatively
easy to handle computationally. As we discussed in section 2.1.5, especially figure 2.7,
the defining equation g(v, v) = 0 yields a hypersurface in the tangent space. For the
Minkowski spacetime (3.1), the light cone C(p) of any point is a perfect double cone
which, upon suppressing one of the spatial coordinates, can be visualized: see figure 4.12.

It is important to keep in mind that C(p) ⊂ TpM . For the purpose of visualization,
however, it is useful to have structures that live directly in M . One way of getting such

4See Hawking and Ellis (1973, pages 182ff.) for details.
5This definition is used by Hawking and Ellis (1973); Beem, Ehrlich, and Easley (1996); Misner, Thorne,

and Wheeler (1973); O’Neill (1983); Sachs and Wu (1977).
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a structure from a light cone is the exponential map:

expp : TpM →M,

expp(v) = γp,v(1),

where γp,v is the unique geodesic curve with γp,v(0) = p and γ′p,v(0) = v. Note that expp
might not be defined for every v ∈ TpM since γp,v(1) may not be defined. But it can be
shown6 that for every point p ∈M there is a neighborhood U ⊂ TpM of 0p ∈ TpM where
expp is not only defined but is even smooth and has a smooth inverse. Due to the way
we defined expp, the image expp(Cp) of the light cone at p will be a circular section of

C̃(p) := C̃+(p) ∪ C̃−(p),

which is the set of points traced out by all lightlike geodesics originating at p. To get the
whole set, we need to scale the parameter range of the geodesic in the definition of expp.
This amounts to considering the set{

v ∈ C(p), t ∈ R
∣∣ expp(tv)

}
. (4.7)

Note that scaling a lightlike vector v like this does not change its lightlike character.
When we restrict our view to the region U where expp is well-mannered, (4.7) is identical
to C̃(p).7

So in this way expp provides us with the means to map C(p) to the corresponding
structure in the spacetime. What we will do for visualizing light cones in the spacetime
is to simply depict C(p) and think of it as “modulo exp(p)”. In other words, this means
that we will regard C(p) as a linear approximation to C̃(p). This resembles the way that
TpM is a linear approximation to M at the point p (see section 2.1.2).

This approach was used in figure 4.13 to show the light cones of multiple points in
the Minkowski spacetime (3.1), drawn at their respective base point. Figure 4.14 gives
some visual justification for the technique: the shown lightlike geodesics lie exactly on
the light cone. This exactness of the approximation is of course due to the simplicity
of Minkowski spacetime. When we depict a combination of lightlike geodesics and light
cones in the Schwarzschild spacetime (3.2) for example, as is done figure 4.15, we see
that after a while the geodesics cease to lie on the light cone.

Depicting multiple light cones at their respective base point is a useful way to investigate
the causal structure of a spacetime. Consider for example figure 4.16a which shows a
few light cones in the Schwarzschild spacetime. Outside the event horizon r = 2M the
light cones are upright which means that ∂t is timelike there. But as one crosses the
horizon, the light cones abruptly tip over so that ∂t becomes spacelike and ∂r takes its
place as a timelike vector field. That the change happens so suddenly is due the choice of
coordinates, just like the coordinate singularity at the horizon. A better set of coordinates

6See O’Neill (1983, pages 70ff.), for example.
7See Hawking and Ellis (1973, page 184).
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4 Visualization Techniques

Figure 4.14: The light cone at some point
p in Minkowski spacetime, together with
some lightlike geodesics emanating from
p. The geodesics lie on the light cone.

Figure 4.15: Two sets of geodesics and the
corresponding light cones in the Schwarz-
schild spacetime. The dark cylinder repre-
sents a segment of the event horizon. The
geodesics cease to lie on the light cone
after a while.

(a) Original Schwarzschild coordinates

(b) Eddington-Finkelstein coordinates

Figure 4.16: Light cones in the Schwarzschild spacetime in the original coordinates and in
Eddington-Finkelstein coordinates. In both cases, the light cones tip over when crossing
the event horizon r = 2M (indicated by the dark plane).
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in this case are given by the Eddington-Finkelstein coordinates (V, r, θ, φ) where V
is defined by

V := t+
∫

1
1− 2m/r

dr.

The Schwarzschild metric now reads

ds2 =
(

1− 2m
r

)
dV 2 − 2 dV dr − r2

(
dθ2 + sin2 θ dφ2

)
. (4.8)

These coordinates are adapted to radially ingoing lightlike geodesics since they are given
by V = const. Figure 4.16b shows the situation in Eddington-Finkelstein coordinates.
Now the light cones do not tip over suddenly anymore but do so smoothly. This tipping
signifies the fate of radially outgoing lightlike geodesics: for r > 2M they can escape, at
the event horizon r = 2M they are confined to fixed orbits, and for r < 2M they are
forced into the real singularity r = 0 with no chance of escaping.
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5 Implementation

5.1 The Computer Algebra System Mathematica

Mathematica is a non-free software system of a kind generally referred to as computer
algebra systems which allow doing “mathematical experimentation”. Its main strength
is that it makes it possible to do symbolic calculations on the computer: differentiate
and integrate functions; solve algebraic, differential, and difference equations; simplify
expressions. Mathematica is also able to do all of those actions numerically which is
useful if, for example, a problem cannot be tackled symbolically or if one is interested in
the numerical solution only. Another important capability is visualization. Mathematica
can create all kinds of two- and three-dimensional plots of discrete data, arbitrary
functions, or vector fields using lines, surfaces, contours, or arrows for display. And
finally, Mathematica provides a powerful programming language that can be used to
extend existing and write new features.

There are quite a few alternative software systems with similar capabilities: the non-free
Maple and Matlab; and the free Maxima, Octave, Scilab, and Sage. Mathematica was
chosen for this work partly due to its easy availability on the campus network and the
author’s previous experience with it. But the main reason for the choice was the elegant,
expressive, and concise programming language provided by Mathematica. The following
table lists all the mentioned computer algebra systems again together with their web
address.

Mathematica http://www.wolfram.com/products/mathematica/
Maple http://www.maplesoft.com/Products/Maple/

Matlab http://www.mathworks.de/products/matlab/
Maxima http://maxima.sourceforge.net/
Octave http://www.gnu.org/software/octave/
Scilab http://www.scilab.org/

Sage http://www.sagemath.org/

5.2 The GeodesicGeometry Package

To make it easy to apply the visualization techniques described in the previous chapter
to various spacetimes, the Mathematica package GeodesicGeometry1 bundles all the
necessary functionality. It provides an object-oriented interface with a constructor
GeodesicGeometry that is called with information about the metric of the spacetime as

1The GeodesicGeometry package is freely available from http://www.math.tu-berlin.de/~schoenf/
GeodesicGeometry/.
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5 Implementation

arguments. It returns an object encapsulating this information for later use. For example,
to create an object for the Schwarzschild spacetime, we can use the following:

Needs["GeodesicGeometry`"]
m = 1;
schwarzschild = GeodesicGeometry[

{t, r, Theta, Phi},
{dt, dr, dTheta, dPhi},
(1 - 2 m/r) dt^2 - 1/(1 - 2 m/r) dr^2 -

r^2 (dTheta^2 + Sin[Theta]^2 dPhi^2)];

This loads the GeodesicGeometry package with the built-in function Needs and then
calls the constructor GeodesicGeometry with three arguments: a list of the names of the
coordinates we want to use, a list of the names of their differentials, and the line element
ds2 of the spacetime in these coordinates. Internally, the constructor GeodesicGeometry
mainly computes the inverse metric and the Christoffel symbols and stores them in the
returned object for later use so that they do not have to be computed over and over
again. This results in an object schwarzschild that can be passed to the other functions
provided by this package. These functions are described in the following sections.

5.3 Solving the Geodesic Equations Numerically

With the metric and thus the inverse metric and the Christoffel symbols given, the
geodesic equations (2.12) are four coupled ordinary differential equations of second order
for the four unknown components γµ of the geodesic. So a unique solution exists if
we specify the initial positions γµ(0) and the initial velocities γµ′(0). Nonetheless, it is
often very difficult to find the solution analytically. Even if it is possible, Mathematica’s
command for solving differential equations analytically, DSolve, might take a very long
time to do so.

We do not need the analytic expression for the geodesics for plotting them, numerical
approximations suffice. Thus, GeodesicGeometry uses Mathematica’s numerical solver
for differential equations, NDSolve, to find these numerical approximations. There are
various methods for solving ordinary differential equations, most of which deal with initial
value problems for ordinary differential equations that are posed in the following form:

y′(τ) = f(τ,y), y(0) = α, (5.1)

where y is the dependent variable that we are trying to find, f is some well-mannered
function, and α is the initial value. All of these are vector-valued, so (5.1) describes a
system of ordinary differential equations of first order. Any system of ordinary differential
equations of higher order can be reformulated as a system of equations of first order by
considering the derivatives of the dependent variable as new dependent variables.

The simplest numerical method for solving these kinds of systems is called the explicit
Euler method. First create a discrete mesh for the parameter τ :

τ0 = 0, τr = τ0 + rh for r = 1, 2, . . . ,
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and where h is the step length. Then consider the Taylor expansion of y(τr + h) about
τr:

y(τr + h) = y(τr) + hy′(τr) +O
(
h2

)
.

As an approximation for y(τr), the explicit Euler method then computes the value Y r at
step r by simply using only the first two terms of the expansion:

Y r+1 = Y r + hf(τr,Y r).

This is a so-called single-step iterative approach because it computes Y 1 from Y 0 = α,
Y 2 from Y 1, and so on. An approximation curve Y can then be obtained by fitting an
interpolating function to the computed points Y r. There are, of course, more advanced
techniques for solving ordinary differential equations, many of which are described in Fox
and Mayers (1988). Mathematica’s NDSolve uses one of those more advanced algorithms.2

GeodesicGeometry offers the function SolveGeodesicEquations as a convenient wrap-
per around NDSolve adapted to finding solutions of the geodesic equations. It is passed
the spacetime object, the initial conditions, and the desired parameter range. For example,
if we want to find the geodesic originating at (t = 0, r = 4m, θ = π/2, φ = 0) with initial
direction 2∂t + ∂r, we can use:

SolveGeodesicEquations[
schwarzschild,
{0, 4 m, Pi/2, 0}, {2, 1, 0, 0},
{0, 1}]

This will result in four interpolating functions for the four components of the geodesic.
When the spacetime has singularities, SolveGeodesicEquations might yield unreason-

able results when the solution gets close to one. To avoid this, SetSingularityCriterion
can be used to instruct GeodesicGeometry to stop computations when reaching a sin-
gularity. It takes the spacetime object and a list of functions which can signal that a
singularity has been reached by returning a true value. For the Schwarzschild spacetime,
this might look like this:

SetSingularityCriterion[
schwarzschild,
{Abs[r[#] - 2 m] < 10^(-3),
Abs[r[#] - 0 m] < 10^(-3)}&]

5.4 Plotting Geodesics

To more conveniently plot a set of geodesics, GeodesicGeometry offers functions to
do that for sets of null or timelike geodesics. When specifying the initial directions
of the set of geodesics we want to visualize, we need to make sure that their length

2See http://documents.wolfram.com/mathematica/book/section-A.9.4 for information about the al-
gorithms used, and see http://reference.wolfram.com/mathematica/tutorial/NDSolveOverview.
html for more information on NDSolve.
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5 Implementation

always matches the desired value, i.e. zero for lightlike geodesics and some positive
constant for timelike geodesics. This quickly becomes bothersome to ensure manually, so
GeodesicGeometry let’s you specify so-called initial direction templates which contain
one unknown variable whose value is automatically determined so that the resulting
vector’s length is what is desired. Whereas a normal vector is represented as a simple
tuple like {0, 4 m, Pi/2, 0}, a vector template looks like {Psi, {0, Psi, Pi/2, 0}}.
The unknown Psi is then automatically determined so that the resulting vector has the
desired length at the current spacetime point. This approach generally yields two vectors
since the equation for Psi is quadratic. When Psi is used as the time component, the
resulting vectors will be the future- and past-directed solutions.

As described in the previous chapter, there are two basic methods for plotting sets of
geodesics: sprays and bundles. To plot sprays, GeodesicGeometry offers PlotNullSpray
and PlotTimelikeSpray. Both take the spacetime object, an initial position, and a
set of initial direction templates. Additional optional arguments determine the desired
range of the geodesics, the coordinates that should be plotted, and the coordinate
transformation that should be applied for plotting. To plot bundles, PlotNullBundle
and PlotTimelikeBundle can be used. They take the spacetime object, a set of initial
positions, and an initial direction template. The optional arguments are the same as
for the spray variants. The functions PlotTimelikeSpray and PlotTimelikeBundle for
timelike geodesics determine initial directions such that they have unit length. This
indirectly fixes the assumed signature of the specified line element to be (+,−,−,−). If
only lightlike geodesics are plotted, the signature does not matter.

In both cases, the resulting set of solutions to the geodesic equations will look like
{{γ11, γ12}, {γ21, γ22}, . . . }, where γ1i are the two solutions for the first tuple of initial
position and initial direction template, γ2i the second, and so on. There are two solutions
for every such tuple since an initial direction template generally yields two vectors, as
explained above. To get meaningful pictures, we have to reorder the solutions a bit so
that those coming from the same kind of initial direction are in the same set. For example,
if the unknown variable in the initial direction template is used for the time component,
we want all future-directed solutions in one set and all past-directed solutions in the
other. This reordering leads to the two sets {γ11, γ21, . . . } and {γ12, γ22, . . . }. These
can now be plotted by choosing the desired components from each solution, applying
the specified coordinate transformation, and using Mathematica’s ParametricPlot or
ParametricPlot3D.

Using PlotNullSpray for the Schwarzschild spacetime to plot geodesics emanating
from (0, 4m,π/2, 0) with initial directions of the form ψ∂t+cos v∂r+sin v∂φ and showing
(r, φ, t) as cylindrical coordinates is demonstrated in figure 5.1. A similar invocation of
PlotNullBundle, this time with (r, φ) as polar coordinates, is shown in figure 5.2.

5.5 Plotting Light Cones

For plotting light cones, GeodesicGeometry offers the function PlotNullCone. Its
arguments are the spacetime object, a position, and, optionally, the plot coordinates,
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Needs["VectorAnalysis`"];
PlotNullSpray[

schwarzschild,
{0, 4 m, Pi/2, 0},
Table[{Psi, {Psi, Cos[v], 0, Sin[v]}}, {v, 0, 2 Pi, Pi/10}],
ParameterRange -> {0, 1},
PlotCoordinates -> {r, Phi, t},
PlotCoordinateTransformation ->

(CoordinatesToCartesian[#, Cylindrical]&)]

:

3
4

5r cosHΦL

-2

0

2
r sinHΦL
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-2

0

t

,
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4
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-2

0

2
r sinHΦL

0

2

4

t

>

Figure 5.1: An invocation and the results of PlotNullSpray for the Schwarzschild
spacetime. The plot on the left side shows the past-directed geodesics while the plot on
the right shows the future-directed ones.

PlotNullBundle[
schwarzschild,
Table[{0, 4 m, Pi/2, v}, {v, 0, 2 Pi, Pi/10}],
{Psi, {1, 0, 0, Psi}},
ParameterRange -> {0, 10},
PlotCoordinates -> {r, Phi},
PlotCoordinateTransformation ->

({#1[[1]] Cos[#1[[2]]], #1[[1]] Sin[#1[[2]]]}&)]

:

-4 -2 2 4
r cosHΦL

-4

-2

2

4

r sinHΦL

,

-4 -2 2 4
r cosHΦL

-4

-2

2

4

r sinHΦL

>

Figure 5.2: An invocation and the results of PlotNullBundle for the Schwarzschild
spacetime. The two plots show geodesics starting from the same set of points but with
opposite initial directions.
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PlotNullCone[
schwarzschild,
{0, 4 m, Pi/2, Pi/2},
PlotCoordinates -> {r, t},
SolveCoordinate -> t,
PlotRangeOffsets -> 1]

PlotNullCone[
schwarzschild,
{0, 4 m, Pi/2, Pi/2},
PlotCoordinates -> {r, Phi, t},
SolveCoordinate -> t,
PlotRangeOffsets -> 1,
PlotCoordinateSystem ->

Cylindrical]

3.8 4.0 4.2 4.4
r

-1.0

-0.5

0.5

1.0

t

Figure 5.3: An invocation and the result
of PlotNullCone for the Schwarzschild
spacetime and with the coordinates r and
t.

Figure 5.4: An invocation and the result
of PlotNullCone for the Schwarzschild
spacetime and with the cylindrical coordi-
nates r, φ, and t.

the range of those plot coordinates, and the coordinate system that should be used for
plotting.

Internally, PlotNullCone basically solves gp(v, v) = 0 for one component vi of v =
(v0, v1, v2, v3). Thus vi becomes a function of the other components. Which of the
components is solved for can be specified and the quality of the resulting plot often
depends on the choice. From the resulting tuple, PlotNullCone then picks the wanted
components and plots them as a parametric surface, respecting the given plot ranges and
coordinate system. If three plot components are specified, the result will be a 3D plot of a
two-parameter surface. For two plot components, it will be a 2D plot of a one-parameter
surface, i.e. a curve. The possibility of applying arbitrary coordinate transformations
is the reason that PlotNullCone uses ParametricPlot and ParametricPlot3D rather
than ContourPlot and ContourPlot3D, even if the latter would automatically take care
of choosing the best component to solve the equation for.

Figures 5.3 and 5.4 show example applications of PlotNullCone for the Schwarzschild
spacetime.
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6 Application to Particular Spacetimes

6.1 Gödel’s Spacetime

Gödel (1949) describes a spacetime with remarkable properties. It has a five-dimensional
group of isometries making it completely homogeneous (i.e. stationary and spatially
homogeneous). It solves the field equations for a pressure-free perfect fluid with negative
cosmological constant. And even though topologically it is just R4, it allows closed
timelike curves through every point.

The spacetime’s line element is given by

ds2 = (dt+ exdy)2 − dx2 − e2x

2
dy2 − dz2

= dt2 − dx2 +
e2x

2
dy2 − dz2 + 2exdtdy.

(6.1)

This form makes it apparent that there are three trivial Killing fields: ∂t, ∂y, and
∂z. A fourth one is given by the line element’s symmetry under the transformation
x→ x+ a, y → e−ay which yields ∂x − y ∂y. These four account for the homogeneity of
the spacetime. It is also easy to verify that (6.1) satisfies the field equations (3.3) for
Λ = −1 and Tµν = uµuν , where uµ = (2

√
2π)−1 ∂t can thus be interpreted as the word

lines of the fluid.
To examine the behavior of light, we need to solve the geodesic equations (2.12). As

Kundt (1956) and Chandrasekhar and Wright (1961) show, this can be done analytically
for the Gödel spacetime. For our purposes, however, it suffices to obtain numerical
solutions as described in the previous chapter. Figure 6.1 shows a set of geodesics starting
from the origin with initial directions of the form

ψ∂t + cosα∂x + sinα∂y (6.2)

where α ∈ [0, 2π] and, as usual, ψ is chosen such that the resulting geodesic is lightlike
for every α. The mostly irrelevant coordinate z has been suppressed and projections to
three coordinate planes have been added. Initially, the geodesics move “outwards”, but
after a finite parameter time they reach a turning point and refocus on a point on the t
axis. After reaching this point, the geodesics repeat their behavior leading to a periodic
appearance. Timelike geodesics behave similarly: figure 6.2 shows a set of geodesics
with tangent vectors of unit length (in red) in conjunction with the geodesics from the
previous figure (in blue).

Since ∂t, ∂y, and ∂z are Killing fields, the behavior of the geodesics does not change
when moving along those directions. It does change, however, when we use different
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6 Application to Particular Spacetimes

Figure 6.1: A set of geodesics starting from the origin with initial directions of the form
ψ∂t + cosα∂x + sinα∂y. The mostly irrelevant coordinate z has been suppressed and
projections to three coordinate planes have been added.

Figure 6.2: Two sets of geodesics starting from the origin, one consisting of lightlike
geodesics (in blue) and the other consisting of timelike geodesics (in red).
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Figure 6.3: Three sets of geodesics originating from points with different initial x values
x0. The sets tip over as one moves from smaller to larger x0 values (from left to right).
The separation of the three sets on the x axis is not to scale: they are depicted farther
apart than they actually are because the plots would overlap otherwise.

initial x coordinate values x0: this is depicted in figure 6.3. The existence of a horizon
and the refocusing are not affected. But in order to obtain a representative sample of
geodesics at each starting point, the initial directions have to be adjusted. Instead of
always using (6.2), we now need to scale the amplitude of the ∂y component:

ψ∂t + cosα∂x + 3−x0 sinα∂y.

The maximum distance travelled in the ∂y direction thus becomes smaller when moving
from smaller to larger x0 values. But independently of this effect, the sets of geodesic
also seem to “tip over” when moving from smaller to larger x0 values. The light cones
shown at the respective base points of the geodesics provide a good indication for this.

The tipping over of the light cones means that ∂y becomes timelike when moving from
smaller to larger x0 values. But in addition to tipping over, the light cones also “open
up” so that ∂t always stays timelike as it should since the world lines of the matter are a
multiple of it. These are the key ingredients that allow the formation of closed timelike
curves1, an example of which is depicted in figure 6.4.

Most of the mentioned properties of Gödel’s spacetime can be better visualized when
using the cylindrical form of the line element. It is obtained from the original line element
(6.1) by the following transformation:

ex = cosh(2r) + cos(φ) sinh(2r),

y ex =
√

2 sin(φ) sinh(2r),

tan
(
φ

2
+
t− 2u
2
√

2

)
= e−2r tan

(
φ

2

)
,

z = 2w.

(6.3)

1For more on closed timelike curves in the Gödel spacetime and their implications, see Bell (2002);
Malament (1984); Pfarr (1981); Rosa and Letelier (2007); Stein (1970).
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6 Application to Particular Spacetimes

Figure 6.4: Recipe for constructing a
closed timelike curve in the Cartesian
frame of the Gödel spacetime. Start from
x = −2. Then move along ∂t and ∂x until
the light cones tip over sufficiently. Then
move along −∂t and ∂y as far as necessary.
Then go back to the origin.

Figure 6.5: Recipe for constructing a
closed timelike curve in the cylindrical
frame of the Gödel spacetime. Start at
the origin. Then move along ∂u and ∂r
until the light cones tip over sufficiently.
Then spiral back along ∂φ and −∂u. Then
go back to the origin.
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This system of equations is rather complicated to handle, and Gödel (1949) is very terse in
describing its derivation. But Stein (1970) argues that the transformation is well-defined
and meaningful. Most importantly, we can solve it for the old coordinates (t, x, y, z):

t = 2s−
√

2φ+ 2
√

2 arctan
(
e−2r tan

φ

2

)
,

x = log cosh 2r + cosφ sinh 2r,

y =
√

2 sinφ sinh 2r
cosh 2r + cosφ sinh 2r

,

z = 2w.

Thus we can transform the line element to the new coordinates (u, r, φ, w):

ds2 =
(
du+

√
2 sinh2 r dφ

)2
− dr2 −

(
sinh4 r + sinh2 r

)
dφ2 − dw2

= du2 − dr2 − dw2 +
(
sinh4(r)− sinh2(r)

)
dφ2 + 2

√
2 sinh2(r) dφdu.

Due to the transformation, φ is a cyclic coordinate with period 2π and r is interpreted
as a radial coordinate. The world lines of matter are now u lines. The line element’s
components do not depend on φ, so ∂φ is a Killing field. It turns out that it is independent
from the others so it is the fifth Killing field, describing the spacetime’s rotational
symmetry. It does not seem to be possible to solve the transformation (6.3) for the new
coordinates, so it is not easily possible to find the representation of a vector field like ∂φ
in the old coordinates. For this particular case, however, the representation can be found
with a bit of experimentation. It turns out to be

√
2 ∂φ = 2

(
1 + e−x

)
∂t − y ∂x +

(
1
2
y2 − e−2x − 1

)
∂y.

The behavior of geodesics and light cones in the cylindrical frame of the Gödel spacetime
can be succinctly represented in a plot which was first used in Hawking and Ellis (1973)
and the crucial parts of which are shown in figure 6.6. The light cones tip over as one
moves radially outwards so that ∂φ becomes timelike eventually, and the geodesics have a
horizon and refocus. The original picture purports to let the geodesics start at the origin
which means from r = 0 in particular. This presents a technical difficulty since the line
element is singular there. In figure 6.6, r = 10−5 is used instead. Also, the initial velocity
templates need to be adapted to the starting position again so that a representative
sample of geodesics is computed:

ψ ∂u + cosα∂r + 105 sinα∂φ.

As figure 6.7 shows, the geodesics also tip over like the light cones. Just like in the
Cartesian frame, these ingredients can be used to construct closed timelike curves through
any point. An example is shown in figure 6.5.

For more visualization work on the Gödel spacetime, see Andréka et al. (2008) and
Sahdev, Sundararaman, and Modgil (2006).
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6 Application to Particular Spacetimes

Figure 6.6: A set of geodesics, a few light cones, and a closed timelike curve in the
cylindrical frame of the Gödel spacetime. The geodesics have a horizon and refocus.
The light cones tip over as one moves radially outwards so that ∂φ becomes timelike
eventually and thus forms a closed timelike curve.

Figure 6.7: Three sets of geodesics in the cylindrical frame of the Gödel spacetime. The
sets tip over like the light cones. The radial separation of the three sets is not to scale:
they are depicted farther apart than they actually are because the plots would overlap
otherwise.
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6.2 Expanding Generalization of Gödel’s Spacetime

Plaue, Scherfner, and de Sousa Jr. (2008) present a way of constructing spacetimes
with given kinematical invariants. As an example of their technique, the authors give a
generalization of the Gödel spacetime that exhibits expansion. The line element reads

ds2 = dt2 − S2(t) dx2 +
1
2
e2
√

2x
(
2− S2(t)

)
dy2 − S2(t) dz2 + 2e

√
2x dtdy, (6.4)

where S(t) is called scale parameter and obeys

θ(t) = 3
Ṡ(t)
S(t)

,

along with another differential equation; θ(t) is the expansion. For our purposes, it is
sufficient to consider S(t) = exp(1/3 θ(t) t).

Figure 6.8 shows six sets of geodesics with identical initial conditions but in spacetimes
with different values for the expansion θ. Without expansion, the structure is reminiscent
of what happens in the original Gödel spacetime: the geodesics form a caustic and refocus.
With growing θ, however, the refocusing is increasingly dissolved.

Plaue, Scherfner, and de Sousa Jr. (2008) also develop a criterion for the absence of
closed timelike or lightlike curves. It says that there can be no closed timelike or lightlike
curves wherever the spatial part of the metric is negative definite. In the case of (6.4),
this means that the spacetime is causal where S2(t) > 2. The area above the surface
S2(t) = 2 is thus free of closed timelike or lightlike curves. This is exemplarily shown
by the behavior of the light cones shown in figure 6.9. Below the surface, they exhibit
the characteristic tipping for large x values that makes closed timelike curves possible.
When we move upwards towards the surface however, the light cones tilt back, up to the
point of being upright above the surface.

6.3 Ori’s Time-Machine Spacetimes

Amos Ori has been publishing multiple spacetimes that resemble “time machines” in
so far as they allow closed timelike or lightlike curves only in confined regions which
are, furthermore, controllable in some sense. Ori also strives to find well-defined matter
models for his spacetimes so that they satisfy the various energy conditions.

Ori (1993) presents the first such spacetime as a perturbation of the Minkowski
spacetime in cylindrical coordinates:

ds2 = dt2 − dr2 − r2dφ2 − dz2 − ds̃2,

ds̃2 = 2r h(ρ)
(
a t dt− b

(
(r − r0)dr + z dz

))
dφ+ r2 h2(ρ)

(
b2ρ2 − a2t2

)
dφ2,

where a, b, r0 > 0 and 0 < d < r0 are parameters2 and ρ2 := (r − r0)2 + z2. The surfaces
ρ = const define tori. The scale factor h(ρ) confines the perturbation to the interior of a

2For the figures, we choose r0 = 3, d = 1, a = 6/d, and b = 2/d.
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6 Application to Particular Spacetimes

(a) θ = 0.00 (b) θ = 0.02 (c) θ = 0.05

(d) θ = 0.10 (e) θ = 0.20 (f) θ = 0.40

Figure 6.8: Six sets of geodesics with the same initial conditions but with different values
for the expansion θ. As the expansion grows, the geodesics’ refocusing increasingly
dissolves.

Figure 6.9: Causality change in the expanding generalization of Gödel’s spacetime. The
blue surface marks the border above which no closed timelike curves can exist. The
characteristic tipping of the light cones below the surface is continually reversed when
nearing the surface. Above the surface, the light cones are upright.
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Figure 6.10: The torus outside of which the scale factor h(ρ) vanishes and where the
metric is thus equal to the Minkowski metric. Below and to the right of the torus the r
and the z profile of h(ρ) are shown.

spatial torus of finite size:

h(ρ) :=

{(
1− (ρ/d)4

)3 if ρ < d,

0 otherwise.

The torus h(ρ) = d is shown in figure 6.10, along with the r and z profiles of h.
Inside this torus, the perturbation causes the light cones to tip over increasingly when

moving to larger t values. This is demonstrated in figure 6.11 which shows the same
situation for three different t values. In contrast to the previous figure, the coordinates
(r, φ, t) are now used instead of (r, φ, z). So the torus is now indicated by two cylinders.
For all three t values, the light cones are upright outside the torus since the metric is
that of Minkowski spacetime there. Inside the torus, however, the perturbation changes
the metric in such a way that the light cones start to tip over for t > 0. At t = 1/a, the
closed curve ρ = 0 is lightlike, and for t > 1/a it is timelike.

Ori (1994) explains the spacetime in more detail, and Soen and Ori (1996) present a
modification which satisfies more energy conditions.

Later, Ori (2005) presented an improved time-machine spacetime which develops closed
timelike curves inside a vacuum core part surrounded by a matter field. We focus here
on the vacuum core. The line element reads

ds2 = 2dz dt− dx2 − dy2 −
(
eρ2 − t

)
dz2

− 2
(
(2e− a)xdx+ (2e+ a)y dy

)
dz.

(6.5)

With ρ2 = x2 + y2 and e, a > 0. The coordinate z is periodic, z ∈ [0, L] for some L > 0,
and z = 0 and z = L are identified. The other coordinates take all real values. Thus, the
spacetime has the somewhat unusual topology of R3 × S1.

We choose e and a such that e > (2e+ a)2. Then we have

gtt = eρ2 − t− (2e− a)2x2 − (2e+ a)2y2

> eρ2 − t− (2e+ a)2x2 − (2e+ a)2y2

> −t.
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6 Application to Particular Spacetimes

(a) t = 2/a

(b) t = 1/a

(c) t = 0

Figure 6.11: The same set of light cones for different t values. Inside the torus, here
shown as two cylinders, the light cones start to tip over for t > 0. At t = 1/a, the closed
curve ρ = 0, shown in red, is lightlike, and for t > 1/a it is timelike.
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Figure 6.12: Behavior of light cones in Ori’s time-machine spacetime (6.5). The coordinate
y is suppressed, and e = 1/8 and a = 1/16 are used. The dark contour marks the causality
border of the hypersurfaces t = const. Similarly, the lighter contour marks the causality
border for the directions ∂z.

So the hypersurfaces t = const are spacelike at t < 0. For t ≥ 0, the hypersurfaces are
mixed: causal for small ρ and spacelike for large ρ. And since gzz = t− eρ2, the closed
curves ∂z are timelike at t > eρ2. This region lies completely inside the region where
t = const is causal. The light cones behave accordingly: for growing t, they open up so
that t = const becomes causal, and they also tip over so that ∂z becomes causal. These
observations are depicted in figure 6.12, where the coordinate y is suppressed. It should
be stressed that the existence of closed timelike curves in this spacetime appears to
depend crucially on its unusual topology.

Interestingly, the criterion for the spacelikeness of the hypersurfaces t = const matches
a criterion for the absence of closed timelike or null curves developed by Plaue, Scherfner,
and de Sousa Jr. (2008) and described in section 6.2. It says that there can be no closed
timelike or null curves wherever the spatial part of the metric is negative definite. The
determinant of the spatial part of Ori’s core metric turns out to be −gtt, however. So this
criterion says that there cannot be any closed timelike or null curves wherever gtt > 0,
which is exactly where the hypersurfaces t = const are spacelike.

Very recently, Ori (2007) presented a spacetime made up of three parts fit together: a
vacuum core, a dust shell, and a vacuum exterior. Inside the vacuum core, closed timelike
curves develop. The metric of the vacuum core arises from the Schwarzschild metric (3.2)
by a Wick rotation θ → iθ followed by a transformation akin to but different from the
usual Eddington-Finkelstein transformation:

t→ v, v = −(t+ r∗), r∗ = r + 2µ ln
(
r

2µ
− 1

)
. (6.6)

The result is

ds2 =
(

1− 2µ
r

)
dv2 + 2dvdr + r2

(
dθ2 + sinh2 θdφ2

)
.
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6 Application to Particular Spacetimes

Figure 6.13

The coordinates have the usual ranges except for v which is defined to be periodic on
[0, L]. Similarly to the previous spacetime, this enforces the topology S1 × R3. In the
region r < 2µ, the light cones tip over in such a way that the closed curves ∂v become
timelike. This is depicted in figure 6.13.
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