
Lectures Notes

Partial Differential Equations I

Winter Term 2018/19

Thomas Schmidt

Version: May 1, 2020





Partial Differential Equations I:
Table of Contents

Table of Contents 1

1 Basics, examples, classification 3

2 The Laplace equation and the Poisson equation 11
2.1 The fundamental solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Addendum on surface measures (and surface integration) . . . . . . . . . . . . . . . . 13
2.2 Harmonic polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Consequences of the divergence theorem . . . . . . . . . . . . . . . . . . . . . . 16
2.4 The mean value property and the maximum principle . . . . . . . . . . . . . . . 18
Addendum on the technique of mollification . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Weakly harmonic functions and regularity of harmonic functions . . . . . . . . . 31
2.6 Liouville and convergence theorems, Harnack’s inequality . . . . . . . . . . . . . 34
2.7 Generalized sub/superharmonic functions . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Green’s representation formula and the Poisson integral . . . . . . . . . . . . . . 42
2.9 Isolated singularities, analyticity, and reflection principles . . . . . . . . . . . . . 56
2.10 Perron’s method for the Dirichlet problem on general domains . . . . . . . . . . 61
2.11 The Newton potential as a solution of the Poisson equation . . . . . . . . . . . . 67
2.12 On the eigenvalue problem for the Laplace operator . . . . . . . . . . . . . . . . 79

3 The heat equation (not typeset)
3.1 Consequences of the divergence theorem . . . . . . . . . . . . . . . . . . . . . .
3.2 Fundamental solution and mean value property . . . . . . . . . . . . . . . . . .
3.3 Maximum principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 The initial-boundary value problem in space dimension 1 . . . . . . . . . . . . .
3.5 The initial value problem on the full space Rn . . . . . . . . . . . . . . . . . . .
3.6 The Green-Duhamel representation formula and the IBVP on domains in Rn . .
3.7 More on the heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 On the wave equation (not typeset)
4.1 The initial value problem in space dimension 1 . . . . . . . . . . . . . . . . . . .
4.2 The initial value problem in higher space dimension . . . . . . . . . . . . . . . .

References 85

If you find mistakes in these notes and/or have any other
comments, please communicate them to the author, either
in person or at thomas.schmidt@math.uni-hamburg.de.

1

mailto:thomas.schmidt@math.uni-hamburg.de


2 TABLE OF CONTENTS

2



Chapter 1

Basics, examples, classification

In these notes we stick to the basic conventions N ..= {1, 2, 3, . . .} and N0
..= N ∪ {0}.

Terminology (for general PDEs). A partial differential equation (PDE) is an equation
for a function u in two or more (real) variables:

F (x, u(x),Du(x),D2u(x), . . . ,Dm−1u(x),Dmu(x)) = 0RM for all x ∈ Ω (∗)

or, in short-hand notation,

F ( · , u,Du,D2u, . . . ,Dm−1u,Dmu) ≡ 0RM on Ω .

Here we denote . . .

• by m ∈ N (if chosen minimal1) the order of the PDE (∗),

• by Ω an arbitrary open set in Rn,

• by u : Ω→ RN the unknown function (by Du(x) ∈ L(Rn,RN ) = RN×n its first deriva-
tive at the point x, regarded as linear mapping Rn → RN or (N×n)-matrix, and more
generally by Dku(x) ∈ Lksym(Rn,RN ) its k-th derivative at x, regarded as symmetric k-

linear mapping (Rn)k → RN ),

• by n ∈ N the number of (independent) variables, here generally n ≥ 2,

• by N ∈ N the number of unknown (component) functions,

• by M ∈ N the number of (component) equations,

• by F : Ω×RN ×L(Rn,RN )×L2
sym(Rn,RN )× . . .×Lm−1

sym (Rn,RN )×Lmsym(Rn,RN )→ RM

the given structure function of the PDE (∗).

For N = 1 the unknown is a scalar/single function, otherwise a vector function. In case
M = 1 we speak of a scalar/single PDE, otherwise of a system of M PDEs. Finally, we
call u : Ω→ RN a solution of /to the PDE (∗) if (∗) holds for u.

1Minimality of m means that the PDE can see a difference in the m-th derivative only. In precise terms, this
means that there exist functions u, v, and a point x0 ∈ Ω with Dku(x0) = Dkv(x0) for k = 0, 1, 2, . . . ,m−1 but
still with F (x0, u(x0),Du(x0),D2u(x0), . . . ,Dmu(x0)) = 0 6= F (x0, v(x0),Dv(x0),D2v(x0), . . . ,Dmv(x0)).
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4 CHAPTER 1. Basics, examples, classification

We emphasize that the word ‘partial’ in the term ‘partial differential equation’ signifies
the occurrence of partial derivatives ∂αu = ∂α1

1 ∂α2
2 . . . ∂αnn u with α ∈ Nn

0 (which are the
components of Dku with k = |α| = α1+α2+ . . .+αn ≤ m) and is used to distinguish these
equations from ordinary differential equations (ODEs) for functions of a single variable.

Terminology (for linear PDEs). The PDE (∗) above is termed linear if the structure function
F is an affine function of the u, Du, D2u, . . . , Dm−1u, Dmu variables, that is if it takes the
form

N∑
i=1

∑
|α|≤m

aijα (x)∂αui(x) = f j(x) for all x ∈ Ω and j = 1, 2, . . . ,M−1,M (∗∗)

with coefficients aijα : Ω → R and inhomogeneities f j : Ω → R. The PDE (∗∗) has con-
stant coefficients if all coefficients aijα are constant functions; and it is homogeneous if all
inhomogeneities f j vanish.

While linear PDEs are clearly a very basic type, a lot of advanced PDE theory has nowadays
been developed for cases which are not truly linear but linear in the highest-order derivatives
at least. Though not all authors use the same terminology for such equations, there is some
agreement that quasilinear PDEs are equations of the type

N∑
i=1

∑
|α|=m

Aijα ( · , u,Du,D2u, . . . ,Dm−1u)∂αui = Gj( · , u,Du,D2u, . . . ,Dm−1u)

and semilinear PDEs are equations of the somewhat more special type

N∑
i=1

∑
|α|=m

aijα ( · )∂αui = Gj( · , u,Du,D2u, . . . ,Dm−1u) .

PDEs which are not even quasilinear are generally known as fully non-linear PDEs.

Examples (of PDEs and PDE systems). Consider an open set Ω ⊂ Rn with n ∈ N≥2.

(1) The Cauchy-Riemann system

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

is a first-order (m=1) linear system of M=2 PDEs for N=2 functions u, v : Ω→ RN in n=2
variables. It corresponds to the case of the structure function F (z, w, `) = (`11−`22, `12+`21)
for (z, w, `) ∈ Ω×R2×R2×2 in (∗).

If we identify R2 with C, solutions (u, v) : Ω→ R2 of the Cauchy-Riemann system turn out
to be precisely the holomorphic functions h : Ω → C. Thus, the Cauchy-Riemann system
can be viewed as the underlying PDE system in complex analysis (at least in case of a single
complex variable). The Cauchy integral and the Poisson integral yield explicit formulas for
solutions.

4



5

(2) The Laplace equation
div(∇u) ≡ 0

and the Poisson equation
div(∇u) = f

with non-vanishing f : Ω → R, respectively, are scalar (M=1) second-order (m=2) linear
PDEs for a single (N=1) function u : Ω→ R in an arbitrary number n of variables. On the
left-hand side these equations involve the Laplace operator ∆, defined by

∆u ..= div(∇u) =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . .+
∂2u

∂x2
n−1

+
∂2u

∂x2
n

=
n∑
i=1

∂2
i u = trace(∇2u)

(where D2u(x) is represented, in this scalar case, by the Hessian ∇2u(x) ∈ Rn×nsym ). The Pois-
son equation corresponds to the case of the structure function F (x, u, `, q) = trace(q)−f(x)
for (x, u, `, q) ∈ Ω×R×Rn×Rn×nsym in (∗), and clearly the choice f ≡ 0 yields the Laplace
equation.

Solutions of the Laplace equation are known as harmonic functions and will be of central
interest in this lecture. For n=2 there is strong connection to (1), as harmonic functions of
two variables arise as the real and imaginary parts of holomorphic functions.

The Poisson equation on Ω = R3 serves as a model equation in electrostatics, which deter-
mines the electric potential u corresponding to the charge distribution f .

(3) (Linear) Transport Equations take the form

∂u

∂t
+ b ·∇xu+ cu ≡ 0 ,

where the variables (t, x) ∈ Ω ⊂ R×Rn−1 are split into a single ‘time’ variable t and (n−1)
‘space’ variables x. Here, the non-vanishing time-dependent vector field b : Ω→ Rn−1 and
the coefficient c : Ω → R are considered as given, and the equations are scalar (M=1)
first-order (m=1) linear PDEs for a single (N=1) function u : Ω→ R in an arbitrary num-
ber n of variables. They correspond to the case of the structure function F (z, u, `) =
`0+b(z)·`′+c(z)u for (z, u, `) ∈ Ω×R×Rn, ` = (`0, `

′) ∈ R×Rn−1 in (∗).
The case of constant b and c is discussed in the exercise class.

Linear transport equations in n = 1+3 time-space variables model the mass transport in a
velocity field b.

(4) The Heat Equation or Diffusion Equation

∂u

∂t
−∆xu ≡ 0

and the Wave Equation (for n = 2 sometimes called Equation of the Vibrating String)

∂2u

∂t2
−∆xu ≡ 0 ,

respectively, involve once more the time-space split variables (t, x) ∈ Ω ⊂ R×Rn−1. These
equations are scalar (M=1) second-order (m=2) linear PDEs for a single (N=1) function
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6 CHAPTER 1. Basics, examples, classification

u : Ω → R in an arbitrary number n of variables, and they correspond to the case of
the structure functions F (z, u, `, q) = `0−

∑n−1
i=1 qii and F (z, u, `, q) = q00−

∑n−1
i=1 qii for

(z, u, `, q) ∈ Ω×R×Rn×Rn×nsym , ` = (`0, `
′) ∈ R×Rn−1, q = (qij)i,j=0,1,2,...,n−1 in (∗).

The heat/diffusion equation and the wave equation in n = 1+3 time-space variables consti-
tute basic physical models for the free propagation of heat/particles and waves/oscillations,
respectively.

(5) The p-Laplace Equation with parameter p ∈ [1,∞)

div(|∇u|p−2∇u) ≡ 0

is considered a scalar (M=1) second-order (m=2) quasilinear PDE for a single (N=1)
function u : Ω → R, though, strictly taken, the equation does not possess the form (∗).
However, by expanding the divergence it adopts this form with the structure function
F (x, u, `, q) = |`|p−2trace(q) + (p−2)|`|p−4

∑n
i,j=1 qij`i`j for (x, u, `, q) ∈ Ω×R×Rn×Rn×nsym .

In the only linear case p = 2 (which is also the only semilinear case), the p-Laplace equation
reduces to the Laplace equation from (2). In the general case, it plays the role of a natural
model case for quasilinear equations.

(6) The Monge-Ampère Equation

det(∇2u) = f

with right-hand side f : Ω → R is a scalar (M=1) second-order (m=2) fully non-linear
PDE for a single (N=1) function u : Ω → R in an arbitrary number n of variables. It
corresponds to the case of the structure function F (x, u, `, q) = det(q)−f(x) for (x, u, `, q) ∈
Ω×R×Rn×Rn×nsym in (∗).
The Monge-Ampère Equation is a basic model case among fully non-linear equations and
has important applications in convex geometry and optimal transportation (of measures).

(7) Many more PDEs and systems of PDEs occur in physics or geometry. Famous linear
examples are the Schrödinger equation, the Dirac equation, the equations of linear elasticity,
and the Maxwell equations. Famous non-linear examples are the Navier-Stokes equations,
the Einstein field equations, the minimal surface equation, and the Yamabe equation. Typ-
ically one has (as indeed it stands in all the mentioned examples) M = N and m ∈ {1, 2, 4}.

In the course of this lecture, a couple of explicit integral formulas for solutions of model
PDEs will be shown. Nevertheless, in more general PDE theory such formulas are available only
in very rare cases and the focus of interest is more on the following basic questions and related
general principles:

(1) Existence: Does a solution exist? Uniqueness: Is a solution unique?

(2) Stability (usually asked only with uniqueness at hand): Does the solution depend on the
structure function/the coefficients/the data in a continuous way? Is the solution stable
under (small) perturbations of the structure function/the coefficients/the data?

(3) Regularity: Do (higher) derivatives of solutions necessarily exist? Are all solutions smooth
functions?
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7

Generally we may hope for positive answers to these basic questions only . . .

(A) in case M = N , that is, if the number of (component) equations equals the number
of unknown (component) functions,

(B) if we add boundary conditions, that is, if we prescribe u and/or some of its derivatives
on ∂Ω (where they are defined e.g. after continuous extension from Ω to Ω).

As a general rule of thumb, it often makes sense to impose 1
2
mN (real-valued) boundary

conditions.

Despite the common questions (1), (2), (3) and the common general principles (A), (B),
there is no successful common theory of all PDEs. Indeed, different types of PDEs
exhibit a very different behavior, and thus such a common theory cannot be reasonably expected.
Rather different (classes of) PDEs require their own theories and notions of (generalized)
solutions. We do not attempt to survey or compare the various known theories and approaches
but only mention the general guiding principles that linear PDEs are usually simpler than non-
linear ones and that problems with small values of m, n, M , N tend to be simpler than problems
with large values of these numbers.

Classification (of scalar linear PDEs). Consider an open set Ω ⊂ Rn with n ∈ N≥2.

(1) The general scalar linear first-order PDE on Ω reads

n∑
i=1

bi∂iu+ cu = f or equivalently b ·∇u+ cu = f

with given non-vanishing vector field b = (b1, . . . , bn) : Ω→ Rn, given coefficient c : Ω→ R,
and given inhomogeneities f : Ω→ R. In principle, this PDE reduces to ODEs by a general
method, the method of characteristics, which we now roughly describe:

Under suitable regularity assumptions on the vector field b, one considers, for x ∈ Ω, the
flux lines γx : Ix → Ω of b, that is the maximal solutions of the ODE initial value
problem

γ′x(t) = b(γx(t)) (t ∈ Ix) ,

γx(0) = x

on the maximal existence interval Ix around 0. One commonly thinks of these γx as the
time-t-parametrized trajectory of a particle, which moves in the velocity field b and passes
through the point x at time t = 0. Anyway the chain rule and the ODE give d

dtu(γx(t)) =
γ′x(t) ·∇u(γx(t)) = b(γx(t)) ·∇u(γx(t)), and in view of this formula the PDE reduces to
the ODEs

d

dt
u(γx(t)) + c(γx(t))u(γx(t)) = f(γx(t)) (t ∈ Ix)

along the flux lines γx. In well-behaved cases this allows to determine all solutions of
the PDE by prescribing values on a hypersurface which meets all (equivalence classes of
reparametrized) flux lines exactly once and by solving the above ODEs along the flux lines.

The method of characteristics vastly simplifies in case of a constant field b, since then the flux
lines γx are just (constant-speed parametrized) line segments. The treatment of cases with
irregular b and the extension of the method to non-linear first-order PDEs, however, turn
out to be much more involved and are partially topics of ongoing mathematical research.
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8 CHAPTER 1. Basics, examples, classification

(2) The general scalar linear second-order PDE on Ω reads

Lu ..=
n∑

i,j=1

aij∂i∂ju+
n∑
i=1

bi∂iu+ cu = f (∗∗∗)

with given coefficients aij , bi, c : Ω→ R (among which at least one aij does not vanish) and
given inhomogeneities f : Ω→ R. In view of ∂i∂ju = ∂j∂iu (at least for C2 functions u), we
can and do assume the symmetry condition aij = aji. Moreover, we call . . .

• the operator L, casually defined in (∗∗∗), a (linear) partial differential operator
(PDO),

• the polynomial p(x, ξ) ..=
∑n

i,j=1 a
ij(x)ξiξj +

∑n
i=1 b

i(x)ξi+ c(x) in ξ ∈ Rn the symbol
of the PDO L (which, by the way, can be used to formally write L = p(x, ∂) =
p(x, ∂1, ∂2, . . . , ∂n)),

• the PDO L0
..=
∑n

i,j=1 a
ij∂i∂j the principal part (and the polynomial p0(x, ξ) ..=∑n

i,j=1 a
ij(x)ξiξj in ξ ∈ Rn the principal part symbol) of the PDO L.

An alternative, sometimes very convenient form of scalar linear second-order PDEs is the
divergence form

n∑
i,j=1

∂i(ã
ij∂ju) +

n∑
i=1

∂i
(
b̂iu
)

+

n∑
i=1

b̃i∂iu+ c̃u = f (∗∗∗∗)

with coefficients ãij , b̂i, b̃i, c̃ : Ω → R (among which at least one ãij does not vanish) and
inhomogeneity f : Ω → R. Here, the name ‘divergence form’ stems from the possibility to
express the first two terms on the left-hand side as a divergence (namely the divergence of
the vector field whose i-th component is

∑n
j=1 ã

ij∂ju+b̂iu).

In case of C1 coefficients, the forms (∗∗∗) and (∗∗∗∗) turn out to be essentially equivalent —
with coinciding principal part coefficients aij = ãij if symmetry is assumed. More precisely,
by straightforward computations with the product rule one verifies: If a PDE is given in
the form (∗∗∗) with aij ∈ C1(Ω), it can be brought in the form (∗∗∗∗) with ãij = aij ,
b̂i ≡ 0, b̃i = bi−

∑n
j=1 ∂ja

ji, c̃ = c. Conversely, if a PDE is given in the form (∗∗∗∗)
with ãij , b̂i ∈ C1(Ω), it can be brought in the form (∗∗∗) with aij = ãij , bi = b̂i+b̃i,
c = c̃+

∑n
i=1 ∂ib̂

i.

One usually classifies scalar linear second-order PDEs at hand of definiteness properties of
the symmetric matrix A(x) ..= (aij(x))i,j=1,2,...,n ∈ Rn×n: The PDE (∗∗∗) and the PDO L,
respectively, are called . . .

(a) • negatively elliptic if A(x) is a positive matrix (i.e. A(x) has only positive eigenvalues)
for all x ∈ Ω,

• positively elliptic if A(x) is a negative matrix (i.e. A(x) has only negative eigenval-
ues) for all x ∈ Ω,

• elliptic if it is either positively elliptic or negatively elliptic,

• uniformly elliptic if there exists a constant λ ∈ R>0 such that either ξ ·A(x)ξ ≥
λ|ξ|2 holds for all x ∈ Ω, ξ ∈ Rn or ξ ·A(x)ξ ≤ −λ|ξ|2 holds for all x ∈ Ω, ξ ∈ Rn.

As prototype elliptic equations we will study the Laplace and Poisson equations.
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(b) parabolic if — possibly after change of variables — the PDE takes the form

∂u

∂t
− L(t)u = f on Ω ,

once more with time-space split variables (t, x′) ∈ Ω ⊂⊂ R × Rn−1 and with a t-
dependent 1-parameter family of negatively elliptic PDOs L(t) = p(t, x′, ∂′x) which in-
volve only derivatives with respect to x′ but none with respect to t. In this case, the
matrix A(x) (which corresponds to the principal part −L(t) of L = ∂

∂t−L(t)) has one
zero eigenvalue and (n−1) negative eigenvalues.

As a prototype parabolic equation we will study the heat equation.

(c) hyperbolic if — possibly after change of variables — the PDE takes the form

∂2u

∂t2
+ b0

∂u

∂t
− L(t)u = f on Ω ,

with coefficient b0, time-space split variables, and negatively elliptic PDOs L(t) =
p(t, x′, ∂′x) as in (2b). In this case, the matrix A(x) (which corresponds to the principal

part ∂2

∂t2
−L(t) of L = ∂2

∂t2
+b0

∂
∂t−L(t)) has one positive eigenvalue and (n−1) negative

eigenvalues.

As a prototype hyperbolic equation we will study the wave equation.

In the next chapters we will discuss, one by one, the prototype equations of elliptic, parabolic,
and hyperbolic type.
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Chapter 2

The Laplace equation and the
Poisson equation

In this chapter, we investigate (scalar solutions of) the (scalar) Laplace equation

∆u ≡ 0

and the (scalar) Poisson equation

∆u = f

on an open set Ω in Rn, n ∈ N≥2 (with the previously mentioned Laplace operator ∆ ..= div∇ =∑n
i=1 ∂

2
i = trace(∇2) and given non-vanishing inhomogeneity f : Ω → R) . Often we will also

assume that Ω is bounded. As discussed in the previous chapter, the equations then give rise
to a uniquely solvable, well-behaved problem only if combined with a boundary condition. The
simplest such conditions, which also turn out to be relevant in typical applications, are the
Dirichlet boundary condition

u ∂Ω = ϕ

with prescribed ϕ : ∂Ω→ R and the Neumann boundary condition

∂νu ∂Ω = ψ

with prescribed ψ : ∂Ω → R. In the latter condition, ν : ∂Ω → Rn denotes the outward unit
normal field of Ω (defined only in case that ∂Ω is sufficiently smooth), and the normal derivative
∂νu(x) at x ∈ ∂Ω is nothing but the directional derivative ∂ν(x)u(x) = ν(x) ·∇u(x).

However, we postpone the detailed treatment of boundary value problems (that is the com-
bination of PDE and boundary condition) to later sections in this chapter. First we record a
basic definition and discuss specific symmetric solutions:

Definition (harmonic function). Consider an open set Ω in Rn. We say that a function
u ∈ C2(Ω) is (classically) harmonic if it solves the Laplace equation on Ω, that is, if ∆u ≡ 0
holds on Ω.

In the following sections we will see examples of harmonic functions.

11



12 CHAPTER 2. The Laplace equation and the Poisson equation

2.1 The fundamental solution

Here we consider a rotationally symmetric (scalar C2) function u on Rn \{0}, that is, a function
u ∈ C2(Rn \ {0}) which satisfies

u(x) = g(|x|) for x ∈ Rn \ {0}

with some C2 function g : (0,∞)→ R. By a computation (to be discussed in the exercise class),
for the Laplace operator on such u, we infer the formula

∆u(x) = g′′(|x|) +
n−1

|x|
g′(|x|) for x ∈ Rn \ {0} .

If u is, in addition, harmonic on Rn \ {0}, we thus obtain for g the scalar linear second-order
ODE

g′′(r) +
n−1

r
g′(r) = 0 for r ∈ (0,∞) ,

which can also be seen as a scalar linear first-order ODE for g′. By a basic ODE formula (or
alternatively by rewriting the equation as d

dr (rn−1g′(r)) = 0), we deduce that solutions of the
ODE are characterized by g′(r) = ar1−n for r ∈ (0,∞) with constant a ∈ R or equivalently by

g(r) =

{
cr2−n+d if n ≥ 3

c(log r)+d if n = 2
for r ∈ (0,∞)

with two constants c, d ∈ R (where, here and in what follows, log always denotes the natural
logarithm). Thus, we have shown that the rotationally symmetric harmonic functions on
Rn \ {0} are precisely the function u of the form

u(x) =

{
c|x|2−n+d if n ≥ 3

c(log |x|)+d if n = 2
for x ∈ Rn \ {0}

with constants c, d ∈ R. In the case c 6= 0 these functions exhibit an isolated singularity at the
origin and cannot be extended continuously to the whole space Rn. (Thus, as a side benefit we
have also shown that the only rotationally symmetric harmonic functions on all of Rn are the
constant functions obtained in case c = 0).

Among the rotationally symmetric harmonic functions found above one singles out a specific
one by setting d = 0 and by a particular choice of c, which will be explained in the remark
below:

Definition (fundamental solution). The function F : Rn \ {0} → R, given by

F (x) ..=

{
− 1
n(n−2)ωn

|x|2−n if n ≥ 3
1

2π log |x| if n = 2
for x ∈ Rn \ {0} ,

is called the fundamental solution of the Laplace equation on Rn. Here, ωn ..= L n(B1)
denotes the volume (in the sense of Lebesgue measure) of the unit ball B1

..= {x ∈ Rn : |x| < 1}.

12



Addendum on surface measures (and surface integration) 13

Remark (on the choice of the constant c). In order to arrive at the definition of F the constant
c ∈ R in the preceding considerations has been fixed such that the flux of the gradient vector
field ∇F through every sphere Sr ..= {x ∈ Rn : |x| = r} with center at the origin amounts to
1, that is (as it will be verified in the exercise class)∫

Sr

ν ·∇F dHn−1 = 1 for all r ∈ (0,∞)

with the outward unit normal field ν(x) = x
|x| to the ball Br

..= {x ∈ Rn : |x| < r} and the

(n−1)-dimensional Hausdorff measure Hn−1.

In view of the divergence theorem, this formula for the flux and the fact that F is harmonic
on Rn \ {0} can be reasonably summarized by the here-only-heuristic equation “∆F = δ0” on
Rn with the Dirac measure δ0 at the origin (and in some more advanced sense this equation can
actually be given a rigorous meaning). Remembering the interpretation of the Poisson equation
in electrostatics, we also express this fact by saying that the fundamental solution yields the
electric potential of a single unit point charge at the origin.

Addendum on surface measures (and surface integration)

The k-dimensional spherical Hausdorff measureHk assigns to every subset A of Rn a non-
negative number which measures the k-dimensional area of A (where the ‘k-dimensional
area’ is to be thought of as length, surface area, volume, and higher-dimensional extensions
for k = 1, k = 2, k = 3, and k ≥ 4, respectively). This concept differs from the more well-
known Lebesgue measure insofar that the k-dimensional measurement now concerns sets A in
Rn, typically with n > k, and is no longer restricted to sets in the ambient space Rk of the
same dimension. The definition of Hk (which, by the way, makes sense even for subsets A of an
arbitrary metric space) rests on coverings with arbitrarily small balls and reads as follows:

Definition (Hausdorff measure). For n ∈ N and k ∈ [0,∞), the k-dimensional Hausdorff
measure Hk is the set function on the power set of Rn given by

Hk(A) ..= lim
δ↘0

(
inf

{ ∞∑
i=1

ωkr
k
i : A ⊂

∞⋃
i=1

Bri(xi) , ri ∈ [0, δ)

})
∈ [0,∞] for every A ⊂ Rn .

Here, Bri(xi) stands for the open ball with radius ri and center xi in Rn (understood as the

empty set in case ri = 0). Moreover, we rely on the general convention ωk ..= π
k
2

Γ( k
2

+1)
, which

involves the Γ-function and reduces for k ∈ N to the earlier definition of ωk as volume of the
k-dimensional unit ball.

In order to understand this definition one should think of ωkr
k
i as the area of the k-

dimensional equator plane in the n-dimensional ball Bri(xi). With this interpretation it
then becomes plausible that

∑∞
i=1 ωkr

k
i may yield a good approximation to a k-dimensional

area of A — at least in those cases where the covering balls are small and the above infimum is
almost attained.

13



14 CHAPTER 2. The Laplace equation and the Poisson equation

Properties (of Hausdorff measures Hk on Rn). We record, for n ∈ N, k ∈ [0,∞), in brief
summary and without proofs:

• σ-subadditivity: Hk(
⋃∞
i=1Ai) ≤

∑∞
i=1Hk(Ai) for arbitrary Ai ⊂ Rn.

• σ-additivity: Hk(
⋃∞
i=1Ai) =

∑∞
i=1Hk(Ai) for disjoint Borel sets Ai ⊂ Rn.

• special cases:

– H0 is the counting measure, i.e. H0(A) is the possibly infinite number of elements of A,

– Hn equals the Lebesgue measure L n on Rn,

– Hk with k > n vanishes on all subsets of Rn.

• measures of balls and spheres:

– Hk(BV
r (x)) = ωkr

k for a ball BV
r (x) = {y ∈ V : |y−x| < r} in a k-dimensional affine

subspace V of Rn with radius r ∈ R>0 and center x ∈ V in this subspace,

– Hn−1(Sr(x)) = nωnr
n−1 for a sphere Sr(x) = {y ∈ Rn : |y−x| = r} in Rn with radius

r ∈ R>0 and center x ∈ Rn.

• scaling: Hk(rA) = rkHk(A) for all A ⊂ Rn and r ∈ R>0.

• translation invariance and rotation/orthogonal invariance: Hk(x+T (A)) = Hk(A)
for all A ⊂ Rn, x ∈ Rn and T ∈ O(Rn).

• Lipschitz bound: Hk(f(A)) ≤ LkHk(A) for A ⊂ Rn and a Lipschitz map f : A → RN

with Lipschitz constant ≤ L.

• Hk-integration is a special case of the integration with respect to arbitrary measures
and yields a notation of (unoriented) k-dimensional surface integrals.

• For a Borel set A ⊂ Rk, a one-to-one mapping T ∈ C1(U,Rn) on a neighborhood U of A
in Rk, and a Borel function g : T (A)→ RN , the area formula asserts∫

T (A)
g dHk =

∫
A

(g ◦ T ) JT dx

with the Jacobian JT (x) ..=
√

det(DT (x)∗DT (x)). This formula reduces the computation
of Hk-integrals and, in the case g ≡ 1, of Hk-measures to the computation of volume
integrals (i.e. integrals with respect to the Lebesgue measure) for which many standard
tools are available. In concrete situations, the formula is applied after parametrizing a
k-dimensional surface or parts thereof in the form T (A).

• For every A ⊂ Rn there exists a uniquely determined d ∈ [0, n] such that Hk(A) = ∞
holds for all k ∈ [0, d) and Hk(A) = 0 holds for all k ∈ (d, n] (while Hd(A) can be zero,
a finite positive number, or infinity). This number d is called the Hausdorff dimension
of A and is compatible with usual intuitive ideas of dimension for ‘nice’ sets A. Still it is
well known (and not even too difficult to prove) that d can be non-integer (!) and that
in fact, for every n ∈ N and every d ∈ [0, n], there exists a set A ⊂ [0, 1]n of Hausdorff
dimension d.

14



2.2. Harmonic polynomials 15

2.2 Harmonic polynomials

Some basic examples of harmonic polynomials in x ∈ Rn are . . .

• all affine functions
∑n

i=1 b
ixi + c with bi, c ∈ R (or, in other words, all polynomials of

degree ≤ 1),

• the degree-two polynomials xixj and x2
i−x2

j with i 6= j in {1, 2, . . . , n},

• the degree-three polynomial x3
i−3xix

2
j with i 6= j in {1, 2, . . . , n}.

Here, harmonicity can be checked easily by direct computation of the Laplacian. Similar exam-
ples of higher degree can also be given; compare with the exercises.

Definition (spaces of homogeneous polynomials). For α ∈ Nn
0 , we write pα for the mononomyal

given by pα(x) ..= xα. For k ∈ N0, we then introduce the space

Pk ..=

{ ∑
|α|=k

cαpα : cα ∈ R
}

of homogeneous degree-k polynomials on Rn and the space

Hk ..= {h ∈ Pk : ∆h ≡ 0 on Rn}

of homogeneous degree-k harmonic polynomials on Rn. Moreover, for k ∈ N≥2, we set

Qk ..= {q ∈ Pk : q(x) = |x|2p(x) for allx ∈ Rn with some p ∈ Pk−2} ,

and we agree on the convention Q1
..= Q0

..= {0}.

Theorem. For all k ∈ N0, we have Pk = Hk ⊕Qk and dimHk =
(
n+k−1

k

)
−
(
n+k−3
k−2

)
.

Proof. This will be treated in the exercise class.

Corollary (solvability of the Dirichlet problem; case of polynomial boundary data).
Every polynomial on Rn coincides on S1 with a harmonic polynomial. Equivalently, whenever
the boundary datum ϕ is (the restriction to S1 of ) a polynomial on Rn, then the Dirichlet
problem for harmonic functions

∆h ≡ 0 on B1 ,

h = ϕ on S1

posseses a (polynomial) solution h.

Proof. The corollary is proved by induction on the degree k of the polynomial ϕ: In the case
k ≤ 1 the claim holds trivially with h = ϕ, since ϕ itself is harmonic. For the inductive step, we
consider a polynomial ϕ of degree k ∈ N≥2 and write ϕ = p+ϕ̃ with p ∈ Pk and a polynomial ϕ̃
of degree ≤ k−1. By the preceding theorem we can further decompose p(x) = h(x)+|x|2p̃(x) for
x ∈ Rn with h ∈ Hk and p̃ ∈ Pk−2. As p̃+ϕ̃ has degree ≤ k−1, the inductive hypothesis yields
a harmonic polynomial h̃ on Rn which coincides with p̃+ϕ̃ on S1. For x ∈ S1, that is |x| = 1,
we now observe

h(x) + h̃(x) = h(x) + p̃(x) + ϕ̃(x) = h(x) + |x|2p̃(x) + ϕ̃(x) = p(x) + ϕ̃(x) = ϕ(x) .

Thus, the harmonic polynomial h+h̃ coincides with ϕ on S1, and the induction is complete.

15



16 CHAPTER 2. The Laplace equation and the Poisson equation

Remark. The hypotheses that the boundary datum be polynomial is by no means nec-
essary for existence of solutions to the Dirichlet problem. In fact, we will soon extend the
above result to general (continuous) boundary data ϕ.

2.3 Consequences of the divergence theorem

Definition (Gauss domain). For us, a domain is a non-empty, open, connected set. We call
a bounded domain G in Rn a Gauss domain if we have Hn−1(∂G) <∞ and there exists a Borel
unit vector field νG on ∂G, then called outward unit normal field to G, such that the divergence
theorem ∫

G
div V dx =

∫
∂G
V · νG dHn−1

holds for all V ∈ C1(G,Rn)∩C0(G,Rn). (Here, the right-hand integral does generally exist with
finite value. Hence, the validity of identity requires, in particular, existence of finiteness of the
left-hand integral, that is, div V ∈ L1(G).)

Remarks (on known Gauss domains).

(1) A common version of the divergence theorem applies on bounded C1 domains G (for fields
V as above). Thus, bounded C1 domains are Gauss domains in the preceding sense.

(2) The divergence theorem is also valid on cubes, cuboids, half-balls, triangles, and similar
domains with corners or cusps. Thus, these non-smooth domains are Gauss domains as
well.

(3) All domains mentioned so far are also contained in a general class of Gauss domains, sufficient
for most purposes, namely the bounded domains G with Hn−1(∂G) < ∞ which are C1-
smooth near Hn−1-almost every boundary point in ∂G.

The next result is closely related to the divergence theorem, but is indeed valid without any
smoothness assumption on the underlying domain Ω:

Lemma (on integration by parts). Consider an open set Ω in Rn and u, v ∈ C1(Ω) such that
either sptu or spt v is a compact subset of Ω. Then, for i = 1, 2, . . . , n, we have∫

Ω
(∂iu)v dx = −

∫
Ω
u(∂iv) dx

Definition (support). We define the support sptu of a function u : Ω → RN on Ω ⊂ Rn as
the closure of {x ∈ Ω : u(x) 6= 0} in Rn.

Proof of the lemma. We assume, without loss of generality, that K ..= sptu is compact in Ω and
choose a Gauss domain (for instance a large ball) G with K ⊂ G. Then, by taking V ..= uvei
on G ∩ Ω and V ..= 0 on G \K we obtain a well-defined vector field V ∈ C1(G), and we get∫

Ω
∂i(uv) dx =

∫
G

div V dx =

∫
∂G
V · νG dHn−1 = 0

The claim then follows by using ∂i(uv) = (∂iu)v+u(∂iv) and rearranging terms.

16



2.3. Consequences of the divergence theorem 17

Applications (of the divergence theorem). In what follows we suppose that G is a Gauss
domain with outward unit normal field ν = νG.

(1) Green’s first identity∫
G
∇u·∇v dx+

∫
G
v∆udx =

∫
∂G
v ∂νudHn−1 for u ∈ C2(G)∩C1(G), v ∈ C1(G)∩C0(G)

is obtained by applying the divergence theorem to the vector field v∇u.

(2) Specifically for harmonic functions u ∈ C2(G) ∩ C1(G), we have the conclusions∫
∂G
∂νu dHn−1 = 0 and

∫
∂G
u ∂νudHn−1 =

∫
G
|∇u|2 dx ≥ 0 ,

which follow by choosing v ≡ 1 and v = u in Green’s first identity.

(3) As important consequences of Green’s first identity we obtain the following twin uniqueness
theorems:

Theorem (uniqueness of solutions to the Dirichlet problem for Poisson’s equation).
For each f ∈ C0(G) and each ϕ ∈ C0(∂G), the Dirichlet problem for Poisson’s equation

∆u ≡ f on G ,

u = ϕ on ∂G

has at most one solution u ∈ C2(G) ∩ C1(G).

It will become evident in Section 2.4 that this first uniqueness statement remains also valid
for slightly less regular solutions u ∈ C2(G) ∩ C0(G).

Theorem (uniqueness of solutions to the Neumann problem for Poisson’s equation).
For each f ∈ C0(G) and each ψ ∈ C0(∂G), solutions u ∈ C2(G) ∩ C1(G) to the Neumann
problem for Poisson’s equation

∆u ≡ f on G ,

∂νu = ψ on ∂G

are unique up to additive constants.

Proof of both theorems. Consider two solutions u1 and u2 of the respective problem. Then
h ..= u1−u2 is harmonic on G with h ∂G ≡ 0 and ∂νh ∂G ≡ 0, respectively. By the second
identity in (2), we infer ∫

G
|∇h|2 dx =

∫
∂G
h ∂νhdHn−1 = 0 .

Thus, ∇h vanishes everywhere on G, and u1−u2 = h is constant on G. In the Neumann
case this completes the proof. In the Dirichlet case, taking into account h ∂G ≡ 0, it even
follows that the constant is zero and u1 equals u2.

(4) Green’s second identity∫
G

(v∆u−u∆v) dx =

∫
∂G

(v ∂νu−u ∂νv) dHn−1 for u, v ∈ C2(G) ∩ C1(G)

is obtained by applying the divergence theorem to the vector field v∇u−u∇v.

17



18 CHAPTER 2. The Laplace equation and the Poisson equation

2.4 The mean value property and the maximum principle

Notation. Consider a measure space (Ω,A , µ). Then, for A ∈ A with 0 < µ(A) < ∞ and
h ∈ L1(A,µ ;RN ), we call

−
∫
A
h dµ ..=

1

µ(A)

∫
A
hdµ ∈ RN

the mean value (integral) or the integral mean of h on A.

Theorem (mean value property). Consider an open set Ω ⊂ Rn, a harmonic function
h ∈ C2(Ω), and an arbitrary ball Br(a) ⊂ Ω. Then, for the mean values on the ball Br(a) =
{x ∈ Rn : |x−a| < r} and the sphere Sr(a) ..= ∂Br(a) = {x ∈ Rn : |x−a| = r}, we have

h(a) = −
∫

Br(a)
hdx = −

∫
Sr(a)

hdHn−1 .

Proof. For arbitrary % ∈ (0, r), by the change of variables x = a+%ω and the corresponding
integral transformation (which in turn follows from the invariance and scaling properties of the
Hausdorff measure) we have

−
∫

S%(a)
h(x) dHn−1(x) = −

∫
S1

h(a+%ω) dHn−1(ω) .

By differentiation of this equation, exchange of derivative and integral (here justified, since ∇h
is locally bounded on Ω), and the chain rule we then infer

d

d%
−
∫

S%(a)
h(x) dHn−1(x) = −

∫
S1

d

d%
h(a+%ω) dHn−1(ω) = −

∫
S1

ω ·∇h(a+%ω) dHn−1(ω) .

Moreover, by the reverse change of variables, the divergence theorem, and the harmonicity of h
we deduce

−
∫

S1

ω ·∇h(a+%ω) dHn−1(ω) = −
∫

S%(a)

x−a
%
·∇h(x) dHn−1(x) =

1

Hn−1(S%(a))

∫
B%(a)

∆h(x) dx = 0 .

Combining the last two chains of equations, we can conclude that the continuous mapping
% 7→ −

∫
S%(a) hdHn−1 has zero derivative on (0, r) and thus is constant on (0, r]. In addition,

continuity of h at a implies
∣∣−∫

S%(a) hdHn−1−h(a)
∣∣ ≤ supS%(a) |h−h(a)| −→

%↘0
0 and hence

lim
%↘0
−
∫

S%(a)
hdHn−1 = h(a) .

Therefore, the constant value of % 7→ −
∫

S%(a) hdHn−1 is indeed equal to h(a), and the claim is

verified for spherical means.
With the help of spherical coordinates the mean value property on balls can now be deduced

as follows:

−
∫

Br(a)
hdx =

1

ωnrn

∫ r

0

∫
S%(a)

hdHn−1 d%

=
1

ωnrn

∫ r

0
nωn%

n−1h(a) d% =
n

rn

∫ r

0
%n−1 d% h(a) = h(a) .

This completes the proof.

18



2.4. The mean value property and the maximum principle 19

Remarks and Definitions. Consider an open set Ω in Rn.

(1) A function u ∈ C2(Ω) is called subharmonic1 on Ω if ∆u ≥ 0 holds on Ω.

For subharmonic u on Ω and Br(a) ⊂ Ω, an inspection of the above proof reveals that the
mean values on both B%(a) and S%(a) are non-decreasing functions of % ∈ (0, r] and that the
mean value inequality

u(a) ≤ −
∫

Br(a)
udx ≤ −

∫
Sr(a)

udHn−1

is valid. If, additionally, ∆u(a) > 0 happens to hold, the mentioned mean values are even
strictly increasing functions, and also the mean value inequality holds in the strict form

u(a) < −
∫

Br(a)
udx < −

∫
Sr(a)

udHn−1 .

In the same way, superharmonic functions u are defined by the inequality ∆u ≤ 0 and
satisfy the reverse mean value inequality.

(2) In fact, the respective form of mean value inequality even characterizes sub- and super
harmonic functions, respectively, i.e. the converse to the assertions in (1) — now spelled out
for the subharmonic case — also holds: If we have u ∈ C2(Ω) and either u(a) ≤ −

∫
Br(a) udx

or u(a) ≤ −
∫

Sr(a) udHn−1 = u(a) holds for every ball Br(a) ⊂ Ω, then u is subharmonic.
Clearly, the combination of the assertions on sub- and superharmonicity implies that the
mean value property characterizes harmonic functions.

Proof of the statement for the subharmonic case. Assumme that the statement is false, that
is u(a) ≤ −

∫
Br(a) u dx or u(a) ≤ −

∫
Sr(a) udHn−1 for every ball Br(a) ⊂ Ω, but still ∆u(x0) < 0

for some x0 ∈ Ω. Then, by continuity of ∆u, we have ∆u ≤ 0 on B2δ(x0) ⊂ Ω for some
sufficiently small δ > 0. Hence, u is superharmonic on B2δ(x0) with ∆u(x0) < 0, and (1)
yields u(a) > −

∫
Bδ(x0) udx > −

∫
Sδ(x0) udHn−1. This contradicts the initial assumption on the

mean values and thus completes the proof of the claim.

Theorem (weak maximum principle). Consider a bounded open set Ω in Rn and a sub-
harmonic function u ∈ C2(Ω) ∩ C0(Ω). Then we have the bound

u ≤ max
∂Ω

u on Ω

(or, clearly equivalent, supΩ u ≤ max∂Ω u).

Theorem (strong maximum principle). Consider a domain Ω in Rn. If a subharmonic
function u ∈ C2(Ω) attains its global maximum in Ω, then u is constant on Ω.

Remarks (on the maximum principles).

(1) Roughly speaking, the weak maximum principle asserts that the maximum is attained at
the boundary, and the strong maximum principle asserts that it is attained only at the
boundary (apart from the case of constants).

1The reason for this choice of terminology will be explained later in this section; see Remark (2) on the
comparison principle.
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20 CHAPTER 2. The Laplace equation and the Poisson equation

(2) Boundedness of Ω is essential for the above form of the weak maximum principle (but
compare with the later remarks on Phragmén-Lindelöf principles). Connectedness of Ω is
essential for the strong maximum insofar that otherwise u would merely need to be constant
on that connected components of Ω where the maximum is attained.

(3) Clearly, for superharmonic functions u, the weak minimum principle u ≥ min∂Ω u on Ω
and the analogous strong minimum principle hold true. Specifically, for harmonic func-
tions h, both maximum and minimum principles hold, and particularly this implies
the maximum modulus estimate |h| ≤ max∂Ω |h| for harmonic h on bounded Ω.

1st proof of the weak maximum principle. The boundedness of Ω implies that ∂Ω is compact
and max∂Ω u ∈ R exists. We fix an arbitrary M ∈ R with M > max∂Ω u and introduce the
auxiliary function v ..= (u−M)2

+ (with the usual abbreviation f+
..= max{f, 0}). Since v is

the composition of u−M and the C1 function x 7→ x2
+ on the real line, the chain rule gives

v ∈ C1(Ω)∩C0(Ω) with ∇v = 2(u−M)∇u on {u ≥M} and ∇v ≡ 0 on {u ≤M}. Moreover, the
definition of v and the choice of M imply spt v ⊂ {x ∈ Ω : u(x) ≥M} ⊂ Ω. Using boundedness
of Ω once more, we deduce that spt v and {u ≥ M} are compact subsets of Ω. All in all, using
v ‘as a test function’ for the subharmonicity of u and integrating by parts, we arrive at

0 ≤
∫

Ω
v∆udx = −

∫
Ω
∇v ·∇udx = −2

∫
{u>M}

(u−M)|∇u|2 dx .

From the resulting inequality we conclude ∇u ≡ 0 on {u > M}, and hence u equals some
constant > M on every connected component of the open set {u > M}. However, each such
component, as it is also open and contained in a compact subset of Ω, posses boundary points
in which the value of u is ≤ M . Hence, the existence of any connected component would lead
to discontinuity of u at its boundary and would thus result in a contradiction. This leaves
{u > M} = ∅ as the only possibility and yields u ≤ M on Ω. Finally, sending M ↘ max∂Ω u,
we arrive at the claim.

2nd proof of the weak maximum principle. We first assume that even ∆u > 0 holds on Ω and
prove that there is no maximum point for u in Ω (that is, in the case ∆u > 0 we even prove
the strong maximum principle). Indeed, if x0 ∈ Ω is such a maximum point, the well-known
second-order necessary criterion for extremal points asserts that the Hessian ∇2u(x0) is semi-
negative, i.e. has only eigenvalues ≤ 0, and in conclusion we get ∆u(x0) = trace(∇2u(x0)) ≤ 0.
This contradicts the initial assumption and proves the absence of maximum points. Under the
assumption that Ω is bounded, u posseses, however, a maximum on the compactum Ω, and thus
we have shown u < max∂Ω u on Ω.

Now we merely assume that u is subharmonic. For arbitrary positive ε, we introduce an
auxiliary function uε by uε(x) ..= u(x)+ε|x|2 for x ∈ Ω and record ∆uε = ∆u+2nε ≥ 2nε > 0.
Thus, the first part of the reasoning applies to uε and yields uε < max∂Ω uε on Ω. Using u < uε
on the left-hand side of this estimate and writing out the definition of uε on its right-hand side,
we arrive at

u < max
x∈∂Ω

[
u(x)+ε|x|2

]
≤ max

∂Ω
u+ εmax

x∈∂Ω
|x|2 on Ω .

Taking into account the boundedness of Ω, we have maxx∈∂Ω |x|2, and sending ε ↘ 0 we can
conclude u ≤ max∂Ω u on Ω.
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2.4. The mean value property and the maximum principle 21

Proof of the strong maximum principle. We set M ..= supΩ u. By assumption, we have M ∈ R
and {u = M} 6= ∅. Moreover, {u = M} is closed in Ω. Next we demonstrate that it is also
open. Indeed, for a ∈ {u = M}, we fix a positive radius r with Br(a) ⊂ Ω. Then, by the choice
of a and the mean value inequality for the subharmonic function u, we get

M = u(a) ≤ −
∫

Br(a)
udx ,

but by the choice of M we also know u ≤M on Br(a). This is only possible if u ≡M holds on
the whole ball Br(a) and we thus have Br(a) ⊂ {u = M}. All in all, the set {u = M} is non-
empty, open, and closed in Ω. Since Ω is a domain and thus connected this leaves {u = M} = Ω
as the only possibility. We have thus shown that u is constant with value M on Ω.

Corollary (refined uniqueness statement for the Dirichlet problem). The uniqueness state-
ment in Section 2.3, Remark (3) for the Dirichlet problem to Poisson’s equation remains valid
on an arbitrary bounded open set Ω in Rn (which replaces the Gauss domain G) and for solutions
u ∈ C2(Ω) ∩ C0(Ω) which are merely continuous at the boundary.

Proof. Given two solution u1 and u2 to the Dirichlet problem, the weak maximum principle
applies to the harmonic function u1−u2 and yields u1−u2 ≤ max∂Ω(u1−u2) = 0, thus u1 ≤ u2

on Ω. Exchanging the roles of u1 and u2, we also get u2 ≤ u1 on Ω. Hence u1 and u2 coincide.

Corollary (continuous dependence for the Dirichlet problem). Consider a bounded open set
Ω in Rn, and define ` as the maximum width of Ω in the sense of the smallest number ` ∈ (0,∞)
such Ω ⊂

{
x ∈ Rn : |v ·(x−a)| ≤ 1

2`
}

holds for some point a ∈ Rn and some unit vector v ∈ Rn.
If u ∈ C2(Ω) ∩ C0(Ω) solves the Dirichlet problem

∆u = f on Ω , u = ϕ on ∂Ω

and ũ ∈ C2(Ω) ∩ C0(Ω) solves the Dirichlet problem

∆ũ = f̃ on Ω , ũ = ϕ̃ on ∂Ω ,

then we have the estimate

max
Ω
|ũ−u| ≤ max

∂Ω
|ϕ̃−ϕ|+ 1

8`
2 sup

Ω
|f̃−f | .

Proof. Taking into account linearity of the Laplace operator ∆, we can assume ũ ≡ 0, f̃ ≡ 0,
ϕ̃ ≡ 0. Moreover, it can be checked that ∆ is invariant under translations and rotations, and
thus we can also assume a = 0, v = e1, that is Ω ⊂

(
−1

2`,
1
2`
)
×Rn−1. We now abbreviate

M ..= supΩ |f | and set w(x) ..= u(x)+1
2Mx2

1. Then, in view of ∆w = ∆u+M = f+M ≥ 0 on
Ω, we have that w is subharmonic on Ω. By the weak maximum principle, together with the
choices of w and `, we get

max
Ω

u ≤ max
Ω

w ≤ max
∂Ω

w ≤ max
∂Ω

u+ 1
2M max

|x1|≤ 1
2
`
x2

1 = max
∂Ω

ϕ+ 1
8`

2M .

Applying the same reasoning to −u (and relying on −f+M ≥ 0), we also get

min
Ω
u ≥ min

∂Ω
ϕ−1

8
`2M .
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In conclusion we arrive at

max
Ω
|u| ≤ max

∂Ω
|ϕ|+1

8
`2M .

This is the claim.

Corollary (comparison principle). Consider a bounded open set Ω in Rn and u, v ∈ C2(Ω)∩
C0(Ω). Then, the inequalities

∆u ≥ ∆v on Ω , u ≤ v on ∂Ω

imply the inequality
u ≤ v even on Ω .

Proof. From ∆(u−v) = ∆u−∆v ≥ 0 on Ω we see that u−v is subharmonic on Ω. By the weak
maximum principle we infer u−v ≤ max∂Ω(u−v) ≤ 0 and thus u ≤ v on Ω.

Remarks (on the comparison principle).

(1) Clearly, the assumption ∆u ≥ ∆v on Ω is satisfied if u is subharmonic and v superharmonic
on Ω. This is the case in typical applications of the comparison principle. Often one of the
two functions is even harmonic.

(2) For a subharmonic function u on Ω the comparison principle guarantees u ≤ h on Ω for
every harmonic function h which coincides with u on ∂Ω. In view of this property
the introduction of the term ‘subharmonic’ indeed makes sense.

Remarks (on Phragmén-Lindelöf principles). Here we always consider an open set Ω in
Rn and functions u ∈ C2(Ω).

(1) In general, on unbounded Ω the weak maximum principle does not hold in the
form of the preceding theorem. A very basic counterexample is given by the unbounded
harmonic function u(x) ..= x1 on the half-space (0,∞) × Rn−1 with zero boundary values
on ∂((0,∞)×Rn−1) = {0} ×Rn−1.

However, if we regard the point ∞Rn of infinite distance as an additional boundary point,
the weak maximum principle stays valid in the following form:

u subharmonic on Ω ,

lim sup
Ω3x→a

u(x) ≤M for all a ∈ ∂Ω ∪ {∞Rn}

}
=⇒ u ≤M on Ω . (∗)

Proof. Assuming Ω 6= ∅, we can find a maximizing sequence for u in Ω, that is a sequence
(xk)k∈N in Ω with limk→∞ u(xk) = supΩ u. It follows from the Bolzano-Weierstraß theorem,
for instance, that a subsequence

(
xk`
)
`∈N converges to a limit a ∈ Ω ∪ {∞Rn}.

Next we dinstiguish two cases.

We start with the case a ∈ Ω. In this case, by continuity, we get u(a) = lim`→∞ u
(
xk`
)

=
supΩ u, and the strong maximum principle guarantees that u is constant ≡ supΩ u on the
connected component of Ω which contains a. We conclude supΩ u ≤ lim supΩ3x→b u(x) ≤M
whenever this component posseses a boundary point b. It remains to deal with the situation
that no such boundary point exists, which happens precisely for Ω = Rn. However, in that
situation we get supΩ u ≤ lim supΩ3x→∞Rn

u(x) ≤M simply by using ∞Rn in place of b.
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2.4. The mean value property and the maximum principle 23

Finally, we come to the (simpler, but nonetheless more relevant) case a ∈ ∂Ω ∪ {∞Rn}. In
this case we directly infer supΩ u = lim`→∞ u

(
xk`
)
≤ lim supΩ3x→a u(x) ≤M by the choice

of (xk)k∈N as a maximizing sequence and the assumption for the lim sup at boundary points.

Altogether, we have shown supΩ u ≤M in all cases and arrive at the claim.

(2) Somewhat surprisingly it is often possible to weaken the assumptions made in (∗)
at ∞ or at other ‘exceptional’ boundary points: Indeed, whenever there exist a
point a0 ∈ ∂Ω ∪ {∞Rn} and a superharmonic comparison function v : Ω → (0,∞) with2

limΩ3x→a0 v(x) = ∞, then the growth condition limΩ3x→a0

u+(x)
v(x) = 0 at a0 suffices for the

validity of the maximum principle. In other words, if a0 and v as above exist, then the
following weakened variant of (∗) is valid:

u subharmonic on Ω ,

lim sup
Ω3x→a

u(x) ≤M for all a ∈ (∂Ω ∪ {∞Rn}) \ {a0} ,

lim
Ω3x→a0

u+(x)

v(x)
= 0

 =⇒ u ≤M on Ω . (∗∗)

Proof. Consider an arbitary ε > 0. Then, under the assumptions on the left-hand side of
the statement, we have lim supΩ3x→a(u(x)−εv(x)) ≤ M for all a ∈ (∂Ω ∪ {∞Rn}) \ {a0}
and

lim sup
Ω3x→a0

(u(x)−εv(x)) = lim sup
Ω3x→a0

v(x)

(
u(x)

v(x)
−ε
)
≤ lim sup

Ω3x→a0

v(x)
(
−1

2ε
)

= −∞ .

Therefore, (∗) applies to the subharmonic function u−εv and yields u−εv ≤ M on Ω.
Recalling that ε > 0 is arbitrary, we then infer u ≤M on Ω.

Assertions of the type (∗∗) are known as Phragmén-Lindelöf principles. They can also
be seen as non-existence results for subharmonic function which are unbounded only near
the point a0, but even near this point grow sufficiently slow.

The next few remarks provide concrete examples:

(3) For n ≥ 3 and a0 ∈ ∂Ω, we now specialize (∗∗) by using the shifted negative v(x) =
−F (x−a0) of the fundamental solution F as a comparison function. In this case, v is
positive and even harmonic on Rn \ {a0} ⊃ Ω. Hence, recalling the form of F , we get

u subharmonic on Ω ,

lim sup
Ω3x→a

u(x) ≤M for all a ∈ (∂Ω)6=a0 ∪ {∞Rn} ,
lim

Ω3x→a0

u+(x)|x−a0|n−2 = 0

 =⇒ u ≤M on Ω .

In the case n = 2, the analogous principle with |x−a0|n−2 replaced by − log |x−a0| holds
only on bounded Ω. Indeed, this two-dimensional principle is deduced from (∗∗) by choosing
v(x) = −F (x−a0)+C there, where the constant C needs to be taken sufficiently large to
keep v positive on Ω.

2An inspection of the following proof reveals that the assumption limΩ3x→a0 v(x) = ∞ is unneccesarry in
the case M ≥ 0. However, our aim with (∗∗) is indeed to allow some growth near a0. Thus, we want v to be
unbounded at least near a0, and indeed limΩ3x→a0 v(x) =∞ will be satisfied in all upcoming applications.
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24 CHAPTER 2. The Laplace equation and the Poisson equation

In particular, if an harmonic function h on Ω blows up slower than the fundamental
solution at an isolated boundary point a0 of Ω (that is, {a0} is relatively open in ∂Ω

and limx→a0

h(x)
F (x) = 0), then h is in fact bounded in a neighborhood of a0. Indeed, this

simply follows by applying the above principle to ±h on a punctured ball Br(a0) \ {a0}
(with r suitably small that Br(a0) ⊂ Ω ∪ {a0} and M larger than maxSr(a0) |h|). In a later
section we will actually improve on this result by showing that indeed h can be extended to
a harmonic function on Ω ∪ {a0}.

(4) The classical Phragmén-Lindelöf principle originates from complex analysis and con-
cerns the case of n = 2 variables. It applies under the hypothesis that Ω is contained in
a sector3 Dα

..= {x ∈ R2 \ {0} : |Arg(x1+ix2)| < 1
2α} with opening angle α ∈ (0, 2π] and

then asserts:
u subharmonic on Ω ,

lim sup
Ω3x→a

u(x) ≤M for all a ∈ ∂Ω ,

lim
Ω3x→∞

R2

u+(x)

|x|π/α
= 0

 =⇒ u ≤M on Ω .

Indeed, the growth condition in this statement is optimal. This can be seen at hand of the
harmonic function hα, defined by hα(x) ..= Re((x1+ix2)π/α) = |x|π/α cos(πα Arg(x1+ix2))
and thus obtained as real part of a holomorphic function. Indeed hα is positive on Dα and
vanishes on ∂Dα, but hα(x) equals |x|π/α on the positive real axis and thus falls short —
though ever so closely — of the growth condition.

On the proof. The claim can be established along the above lines under the the slightly
stronger growth assumption limΩ3x→∞

R2

u+(x)

|x|π/β = 0 with some β > α. Then the harmonic

function hβ considered right before satisfies hβ(x) ≥ δ|x|π/β for x ∈ Dα with the fixed

positive constant δ ..= cos πα2β . Thus, the growth assumption implies limΩ3x→∞
R2

u+(x)
hβ(x) = 0,

and we can simply deduce the claim from (∗∗) with the choice v = hβ.

In the general case a more refined argument, based on an analysis of the quantity

m(r) ..=
∫

S1∩Dα

u(rx)hα(x) dHn−1(x) ,

is needed. We do not go through the details here, but indeed one can closely follow the reasoning described below for
the case of the following Remark (5).

(5) Another Phragmén-Lindelöf principle applies when Ω is contained in a half-space (0,∞)×
Rn−1 (now again with arbitrary dimension n ≥ 2). This principle then says:

u subharmonic on Ω ,

lim sup
Ω3x→a

u(x) ≤M for all a ∈ ∂Ω ,

lim
Ω3x→∞Rn

u+(x)

|x|
= 0

 =⇒ u ≤M on Ω .

For n = 2 this is actually nothing but the case α = π of the previous Remark (4). Moreover,
the basic example of the harmonic function x1 shows that the growth condition cannot be
further weakened.

3We write i for the imaginary unit in C. Moreover, for z ∈ C \ {0}, we denote by Arg(z) the unique number
in
(
− 1

2
π, 1

2
π
]

such that z = |z| exp(iArg(z)).
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Addendum on the technique of mollification 25

Proof. W.l.o.g. we assume M = 0.

Following the basic approach of [1], we first give a proof of the principle in the case that Ω equals the half-space
Hn ..= (0,∞)×Rn−1 and u ∈ C2(Hn) ∩ C1(Hn) is non-negative on Hn. This, in combination with the above
assumptions, implies that u vanishes on ∂Hn. Writing B+

r
..= Br ∩ Hn and S+

r
..= Sr ∩ Hn for the half-balls and

half-spheres in Hn, we proceed by analyzing the quantity

m(r) ..=
∫

S+
1

u(rx)x1 dHn−1(x)

(which, up to multiplication with a dimension-dependent constant, is a weighted mean value of u on S+
r ). As a first

step, we differentiate m (where exchange of derivative and integral is possible and m turns out to be continuously
differentiable, since ∇u is bounded on Hn) and use the divergence theorem on B+

1 (where the term on the boundary

portion (∂B+
1 ) \ S+

1 ⊂ ∂Hn vanishes due to the presence of x1). In this way, we get

m′(r) =

∫
S+
1

x1∇u(rx)·xdHn−1(x) =

∫
B+

1

divx(x1∇u(rx)) dx for every r > 0 .

For the last integrand, via the product rule and the subharmonicity of u we get

divx(x1∇u(rx)) = ∂1u(rx) + rx1∆u(rx) ≥ ∂1u(rx) = 1
r

divx(u(rx)e1) .

By this estimate and another application of the divergence theorem on B+
1 (in view of u ≡ 0 on ∂Hn once more with

vanishing boundary term on (∂B+
1 ) \ S+

1 ⊂ ∂Hn), we then arrive at

m′(r) ≥
1

r

∫
B+

1

divx(u(rx)e1) dx =
1

r

∫
S+
1

u(rx)e1 ·x dHn−1(x) =
m(r)

r
for every r > 0 .

Via the quotient rule we infer d
dr

m(r)
r

=
m′(r)−m(r)

r
r

≥ 0, and thus

m(r)

r
is a non-decreasing function of r ∈ (0,∞) .

In addition, the growth hypothesis for u = u+ yields

lim sup
r→∞

m(r)

r
= lim sup

r→∞

(
1

r

∫
S+
1

u(rx)x1 dHn−1(x)

)
≤ Hn−1(S+

1 ) lim sup
r→∞

(
1

r
sup
S+
r

u(y)

)
≤ Hn−1(S+

1 ) lim sup
Hn3x→∞Rn

u(x)

|x|
= 0 .

Combining these properties of
m(r)
r

we necessarily have m(r) ≤ 0 for all r > 0. In fact, taking into account non-

negativity and continuity of u we even conclude m(r) = 0 and u ≡ 0 on S+
r for all r > 0. We have thus shown u ≡ 0

on Hn and have verified the claim in the situation at hand.

Finally, we turn to the general case and show that it can reduced to the previously treated one. However, the reduction
requires concepts and tools not yet discussed, and thus the following concise description of the relevant arguments may
only be traceable at a later stage. This said, we recall that we now consider merely subharmonic u ∈ C2(Ω) on open

Ω ⊂ Hn with lim supΩ3x→a u(x) ≤ 0 for all a ∈ ∂Ω and limΩ3x→∞Rn
u+(x)

|x| = 0, but without boundary-regularity or

non-negativity assumptions on u. We then define a non-negative function w ∈ C0(Rn) by setting w(x) ..= u+(x−e1)
for x ∈ e1+Ω (where e1 denotes the first canonical basis vector in Rn) and w(x) ..= 0 otherwise. It can be shown
that w, though possibly non-differentiable at points of e1+∂Ω, is subharmonic on Rn in a generalized sense. Using
the concept of mollification, as discussed soon, for parameters ε ∈ (0, 1), we approximate w by certain wε ∈ C∞(Rn),

which are still non-negative and subharmonic on Rn with wε ≡ 0 on Rn \Hn ⊃ ∂Hn and limx→∞Rn
wε(x)
|x| = 0. Now

the previously proven statement applies and shows wε ≡ 0 also on Hn. As, moreover, w is the pointwise limit of wε
for ε↘ 0, we can finally deduce w ≡ 0 on Hn and u ≤ 0 on Ω.

Addendum on the technique of mollification

Next we introduce and discuss a standard technical tool in the analysis of real functions. In
the subsequent section(s) it will turn out that this has important applications in the theory of
PDEs.
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26 CHAPTER 2. The Laplace equation and the Poisson equation

Definitions (mollification).

• A mollifier or mollification kernel η on Rn is a C∞ function η : Rn → [0,∞) such
that

spt η ⊂ B1 and

∫
Rn
η dx = 1 .

Occasionally one also requires that η is rotationally symmetric, and often one agrees on a
concrete choice such as η(x) ..= 0 for x ∈ Rn \B1 and η(x) ..= cn exp(− 1

1−|x|2 ) for x ∈ B1,

with cn ..=
( ∫

B1
exp(− 1

1−|x|2 ) dx
)−1 ∈ (0,∞).

• Given a mollification kernel η on Rn we define, for ε > 0, the corresponding scaled
kernels ηε : Rn → [0,∞) by

ηε(x) ..=
1

εn
η
(x
ε

)
for x ∈ Rn .

These satisfy spt ηε ⊂ Bε and
∫
Rn
ηε dx = 1.

• Given an open set Ω in Rn, u ∈ L1
loc(Ω,R

N ), and a mollification kernel η on Rn, we
define, for ε > 0, mollifications uε of u by setting4

uε(x) ..= (ηε∗u)(x) =

∫
Ω
ηε(x−y)u(y)dy =

∫
Bε(x)

ηε(x−y)u(y)dy =

∫
Bε

ηε(z)u(x−z)dz

for all x ∈ Rn with Bε(x) ⊂ Ω. Consequently, uε : Ωε → RN is defined (only) on the
subset

Ωε
..= {x ∈ Rn : Bε(x) ⊂ Ω} = {x ∈ Rn : dist(x,Rn \ Ω) > ε} = {x ∈ Ω : dist(x, ∂Ω) > ε}

of Ω. The operators which map functions u to their mollifications uε (with fixed ε > 0)
are also called mollifiers.

Remarks (on mollification).

(1) Mollification is a central technique in analysis for approximating arbitrary functions
with smooth ones.

(2) It is often illustrative to think of uε(x) as a weighted mean value of u on the ball Bε(x)
with weight y 7→ ηε(x − y). In principle, the choice η = ω−1

n 1Br corresponds to a uniform
weight and thus gives the usual mean uε(x) = −

∫
Br(x) udy, but due to the discontinuity of

1Br this choice is (at least formally) not admissible in the above definitions.

(3) For ε↘ 0, the scaled kernels ηε approximate the Dirac measure at the origin in the
sense that we have ηε ≥ 0 on Rn, spt ηε ⊂ Bε,

∫
Rn
ηε dx = 1, and limε↘0 ηε ≡ 0 uniformly on

4The notation v∗w is commonly used for the convolution (v∗w)(x) ..=
∫
Rn
v(x−y)w(y) dy of (suitably inte-

grable) functions v and w defined on all of Rn, and by a change of variables turns out to be a commutative
operation. The integral expressions for uε are in accordance with the notion of convolution if one thinks of using
an arbitrary extension of u to Rn and takes into account that ηε vanishes outside Bε. We remark that, proceeding
in this way, we could indeed define uε on all of Rn, but that the values are independent of the chosen extension
and behave reasonably only on Ωε.

26



Addendum on the technique of mollification 27

Rn \Bδ for every δ > 0. With this approximation property or the mean value interpretation
in mind we naturally expect the convergence

lim
ε↘0

uε = lim
ε↘0

ηε∗u = u

in a sense to be made precise. Indeed, several statement in this direction are established in
the sequel.

(4) Under the above assumptions the integrals in the definition of uε(x) exist with finite value.
This is clear from boundedness of ηε on Rn and the fact

∫
Bε(x) |u|dx <∞.

(5) We have (Rn)ε = Rn. Specifically for functions u defined on all of Rn, the mollifications uε
are thus defined, as a convenient feature, on the same domain Rn.

Theorem (on properties of mollifications). Consider an open set Ω in Rn, a function
u ∈ L1

loc(Ω,R
N ), and a mollification kernel η on Rn. Then the corresponding mollifications of

u have the following properties.

(I) Smoothness: We have uε ∈ C∞(Ωε,R
N ) for all ε > 0.

(II) Linearity : For fixed ε > 0, the mollifier L1
loc(Ω,R

N ) → C∞(Ωε,R
N ) , u 7→ uε is an

R-linear mapping.

(III) Preservation of (Lp) bounds:

(a) In the case N = 1, for arbitrary ε > 0 and a, b ∈ [−∞,∞], we have:

a ≤ u ≤ b holds L n-almost everywhere on Ω =⇒ a ≤ uε ≤ b on Ωε .

(b) If u ∈ Lp(Ω,RN ) holds for p ∈ [1,∞], then we have

‖uε‖p;Ωε ≤ ‖u‖p;Ω for every ε > 0 .

Taking into account linearity this yields that the mollifier Lp(Ω,RN ) → Lp(Ωε,R
N ) ,

u 7→ uε is a contraction (i.e. is Lipschitz continuous with Lipschitz constant ≤ 1).

(IV) Preservation of moduli of continuity : If we have

|u(y)−u(x)| ≤ ω(|y−x|) for all x, y ∈ Ω

with some fixed function ω : [0,∞)→ [0,∞) (which, if it also satisfies ω(0+) = ω(0) = 0,
is called a modulus of continuity for u on Ω), then, for every ε > 0, we also have

|uε(y)−uε(x)| ≤ ω(|y−x|) for all x, y ∈ Ωε .
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28 CHAPTER 2. The Laplace equation and the Poisson equation

(V) Convergence for ε↘ 0:

(a) We have limε↘0 uε(x) = u(x) for every Lebesgue point5 x ∈ Ω of u with corresponding
Lebesgue value u(x). In particular, we have

lim
ε↘0

uε = u L nalmost-everywhere on Ω .

(b) For continuous u on Ω, we have

lim
ε↘0

uε = u locally uniformly on Ω .

Moreover, if u is even uniformly continuous on Ω, this convergence holds even uni-
formly (that is, globally uniformly) on Ω in the sense of limε↘0 supΩε |uε−u| = 0.

(c) For u ∈ Lp(Ω,RN) with p ∈ [1,∞), we have

lim
ε↘0

uε = u in Lp(Ω,RN )

in the more precise sense of limε↘0 ‖uε−u‖p;Ωε = 0. This statement does not carry
over to p =∞ (since discontinuous functions in L∞(Ω,RN ) cannot be the uniform
limit of their continuous mollifications).

(VI) Mollification commutes with (partial) differentiation: Consider a multi-index
α ∈ Nn

0 . If there holds u ∈ C|α|(Ω,RN ), then, for every ε > 0, we have

∂α(uε) = (∂αu)ε on Ωε .

(VII) Gradient estimate for Lp approximation error : In case u ∈ C1(Ω,RN ) with Du ∈
Lp(Ω,RN×n) there holds

‖uε−u‖p;Ωε ≤ ε‖Du‖p;Ω for every ε > 0 .

(e.g. with operator norm on the target space RN×n of Du).

Proof of (I). For compact K ⊂ Ω, we record Kε
..= {x ∈ K : dist(x, ∂K) > ε} ⊂ Ωε. By

differentiation of the identity uε(x) =
∫
K ηε(x−y)u(y) dy for x ∈ Kε, we then obtain

∂α(uε)(x) =

∫
K
∂αηε(x−y)u(y) dy

for x ∈ Kε and all α ∈ Nn
0 . Here, the differentiation under the integral is possible, since, for

all x ∈ Kε, we have the x-independent bound |∂αηε(x−y)u(y)| ≤ (supRn |∂αηε|)|u(y)| for the
pointwisely differentiated integrand with majorant |u| ∈ L1(K). Relying on the same bound,
we also read off continuity of ∂αuε on K. This proves uε ∈ C∞(Kε,R

N ) and then, since every
x ∈ Ωε is contained in the open set Kε for some compact K ⊂ Ω, also u ∈ C∞(Ωε,R

N ).
5Here, we call x ∈ Ω a Lebesgue point or (strong) approximate continuity point of u if there exists some

γ ∈ RN with limr↘0 −
∫

Br(x)
|u−γ| dy = 0. We then call γ (which is easily seen to be uniquely determined)

the Lebesgue value of u at x and use notation u(x) for this value. Lebesgue values are a way to define point
evaluations of Lp functions in ‘good’ points at least. Clearly, every continuity point of u is also a Lebesgue point,
but moreover a standard result from advanced measure theory (which we use without proof here) asserts for
arbitrary u ∈ L1

loc(Ω,RN ) on open Ω ⊂ Rn that L n-almost every point in Ω is a Lebesgue point for u and that
the Lebesgue value coincides with the value of an arbitrary representative of the Lebesgue class (i.e. ‘L n-almost
everywhere defined function’) u at L n-almost every point in Ω. In this light, one also calls the function which
maps the Lebesgue points of u to their Lebesgue values (and takes arbitrary values in the non-Lebesgue points)
the Lebesgue representative of u.
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Proof of (II). This is evident from the definition of the mollifier and the linearity of the Lebesgue
integral in the integrand.

Proof of (III). The claims in (IIIa) follow from

uε(x) =

∫
Ω
ηε(x−y)u(y) dy ≤ b

∫
Ω
ηε(x−y) dy = b

∫
Ω
ηε(z) dz = b for x ∈ Ωε

and an analogous estimation which ensures uε ≥ a on Ωε. Using, in addition, the triangle
inequality for integrals (in order to get the modulus inside), we can also handle the case p =∞
in (IIIb) in the same way.

For the case p ∈ [1,∞) in (IIIb), we use Hölder’s inequality or Jensen’s inequality6 for
the weighted Lebesgue measure ηε(( · )−y)L n (which is a probability measure) together with
Fubini’s theorem. In this manner we deduce

‖uε‖pp;Ωε =

∫
Ωε

|uε|p dx =

∫
Ωε

∣∣∣∣ ∫
Ω
ηε(x−y)u(y) dy

∣∣∣∣p dx

≤
∫

Ωε

∫
Ω
ηε(x−y)|u(y)|p dy dx

=

∫
Ω
|u(y)|p

∫
Ωε

ηε(x−y) dx dy ≤
∫

Ω
|u|p dy = ‖u‖pp;Ω

(where we have exploited
∫

Ωε
ηε(x−y) dx ≤

∫
Rn
ηε(x−y) dx = 1 in the penultimate step).

Proof of (IV). For ε > 0 and x, y ∈ Ωε, we infer

|uε(y)−uε(x)| =
∣∣∣∣ ∫

Bε

ηε(z)u(y−z) dz −
∫

Bε

ηε(z)u(x−z) dz

∣∣∣∣
≤
∫

Bε

ηε(z)|u(y−z)−u(x−z)| dz ≤ ω(|y−x|)
∫

Bε

ηε dz = ω(|y−x|)

from the triangle inequality and the assumption for u.

Proof of (V). For (Va), we fix a Lebesgue point x ∈ Ω of u. Then, for sufficiently small ε > 0,
we have x ∈ Ωε, and we can estimate

|uε(x)−u(x)| =
∣∣∣∣ ∫

Bε(x)
ηε(x−y)u(y) dy − u(x)

∫
Bε(x)

ηε(x−y) dy

∣∣∣∣
≤
∫

Bε(x)
ηε(x−y)|u(y)−u(x)|dy

≤
(

sup
Rn

η
) 1

εn

∫
Bε(x)

|u−u(x)| dy −→
ε↘0

0 ,

where in the last step we used that x is a Lebesgue point of u. This shows limε↘0 uε(x) = u(x).

6Jensen’s integral inequality can be stated as follows: Consider a probability measure µ on a set X , that is, a
measure µ on (a σ-algebra over) X with µ(X ) = 1. Then, if Φ: C → R is convex on a convex set C ⊂ RN , there
holds

Φ

(∫
X
F dµ

)
≤
∫
X

Φ(F ) dµ

for all F ∈ L1(X ,RN ;µ) such that F ∈ C holds µ-almost everywhere on X .
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Coming to (Vb), we first treat the case that u is uniformly continuous on Ω. Proceeding
similar to the previous estimate and using uniform continuity in the end, we then infer

sup
Ωε

|uε−u| ≤ sup
x∈Ωε

∫
Bε(x)

ηε(x−y)|u(y)−u(x)|dy ≤ sup
x,y∈Ω,|y−x|<ε

|u(y)−u(x)| −→
ε↘0

0 .

This proves the claimed uniform convergence. If u is merely continuous on Ω, a standard result
on continuous function on compact sets guarantees uniform continuity of u on every compact
subset of Ω. It then follows from the previous consideration that the convergence limε↘0 uε = u
is uniform on each such K and hence locally uniform on Ω.

The proof of (Vc), finally, is less straightforward. Indeed, we use the density of C0
cpt(Ω,R

N )

in Lp(Ω,RN ) for p ∈ [1,∞) (proved typically in functional analysis classes). Given an arbitrary
χ > 0, this density yields some v ∈ C0

cpt(Ω,R
N ) with ‖v−u‖p;Ω < χ, and via (II) and (IIIb) we

deduce ‖vε−uε‖p;Ω < χ. In addition, by applying (Vb) to the continuous function v on Ω, we
get

‖vε−v‖pp;Ωε ≤ L n(spt v) sup
spt v
|vε−v|p −→

ε↘0
0 .

Thus, using Minkowski’s inequality (i.e. the triangle inequality for the Lp norm), we can conclude

lim sup
ε↘0

‖uε−u‖p;Ωε ≤ lim sup
ε↘0

‖uε−vε‖p;Ωε + lim
ε↘0
‖vε−v‖p;Ωε + lim sup

ε↘0
‖v−u‖p;Ω ≤ 2χ .

Since χ > 0 was arbitrary, this proves the claim.

Proof of (VI). The proof is similar to the argument used for (I) and uses the notation Kε for
compact K ⊂ Ω, as introduced there. This time, however, we proceed by differentiation of the
differently arranged identity uε(x) =

∫
Bε
ηε(z)u(x−z) dz for x ∈ Kε. We then obtain

∂α(uε)(x) =

∫
Bε

ηε(z)∂
αu(x−z) dz = (∂αu)ε(x)

for x ∈ Kε, where the computation is justified, since ηε is bounded on Rn and |∂αu(x−z)| with
x ∈ Kε and z ∈ Bε is bounded by supK |∂αu| <∞. Since every x ∈ Ωε is contained in some Kε,
this proves ∂α(uε) = (∂αu)ε on Ωε.

Proof of (VII). Using Hölder’s inequality or Jensen’s inequality in the same way as in the proof
of (IIIb), we infer

‖uε−u‖pp;Ωε ≤
∫

Ωε

∫
Bε

ηε(z)|u(x−z)−u(x)|p dz dx .

By the fundamental theorem of calculus and again Hölder’s or Jensen’s inequality, we also get

|u(x−z)−u(x)|p =

∣∣∣∣ ∫ 1

0

d

dt
u(x−tz) dt

∣∣∣∣p ≤ ∫ 1

0
|Du(x−tz)z|p dt ≤ εp

∫ 1

0
|Du(x−tz)|p dt

for all x ∈ Ωε and z ∈ Bε. Plugging this into the previous estimate and exchanging the order of
integration via Fubini’s theorem, we end up with

‖uε−u‖pp;Ωε ≤ ε
p

∫ 1

0

∫
Bε

ηε(z)

∫
Ωε

|Du(x−tz)|p dx dz dt .
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By a change of variables, the innermost integral on the right-hand side equals ‖Du‖pp;Ωε−tz, and

in view of Ωε−tz ⊂ Ω for all t ∈ [0, 1] and z ∈ Bε it is thus controlled by ‖Du‖pp;Ω. Since this
bound no longer depends on (t, z), we can decouple the integrals and arrive at

‖uε−u‖pp;Ωε ≤ ε
p‖Du‖pp;Ω

∫ 1

0
dt

∫
Bε

ηε dz = εp‖Du‖pp;Ω .

This proves the claim.

2.5 Weakly harmonic functions and regularity of harmonic func-
tions

Consider an open set Ω in Rn and h ∈ C2(Ω). From the fundamental lemma of the calculus of
variations (see the exercises) and integration by parts we obtain the following characterizations
of harmonicity:

h harmonic on Ω ⇐⇒
∫

Ω
∇h ·∇ϕdx = 0 for all ϕ ∈ C∞cpt(Ω)

⇐⇒
∫

Ω
h∆ϕdx = 0 for all ϕ ∈ C∞cpt(Ω) .

Here, the right-hand sides remain meaningful for non-C2 functions and can thus be taken as
generalized definitions of harmonicity. In connection with the right-hand side in the first line,
it also common to replace ∇h by a weak gradient field G which may exist for non-C1 functions,
and on the precise technical level the definitions are then implemented as follows:

Definitions (weak gradient, (very) weak harmonicity). Consider an open set Ω in Rn

and h ∈ L1
loc(Ω).

(1) We call G ∈ L1
loc(Ω,R

n) a weak gradient of h on Ω if we have∫
Ω
hdiv Φ dx = −

∫
Ω
G · Φ dx for all Φ ∈ C∞cpt(Ω,R

n) .

(2) We say that h is weakly harmonic on Ω if h has a weak gradient G on Ω such that there
holds ∫

Ω
G ·∇ϕdx = 0 for all ϕ ∈ C∞cpt(Ω) .

(3) We say that h is very weakly harmonic on Ω if we have∫
Ω
h∆ϕdx = 0 for all ϕ ∈ C∞cpt(Ω) .

Remarks.

(1) It is shown in the exercise class (without usage of the terminology at hand, however) that
the classical gradient of a C1 function is also its (unique C0) weak gradient.
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(2) From the definitions we infer

h harmonic =⇒ h weakly harmonic =⇒ h very weakly harmonic .

Here, the first implication is obvious by the above characterization (and by regarding the
classical gradient as a weak one). The second implication is obtained by plugging Φ = ∇ϕ
into the definition of weak gradient and then combining this with the definition of weak
harmonicity.

(3) For suitably regular functions, the fundamental lemma and integrations by parts also yield
that the implications in Remark (2) are indeed equivalences: So, every weakly harmonic
C2 function is harmonic, and every very weakly harmonic function which posseses a weak
gradient (in particular, every very weakly harmonic C1 function) is weakly harmonic.

Next we show that (very) weakly harmonic functions are automatically C∞ and thus turn out
to be classically harmonic even without any additional regularity assumption. This non-trivial
fact may seem quite surprising at first, yet turns out to be typical in the theory of elliptic PDEs:

Theorem (Weyl lemma, C∞ regularity of harmonic functions). Consider an open set
Ω in Rn. Every very weakly harmonic function on Ω is (possibly after modification on an L n

null set) automatically in C∞(Ω) and classically harmonic on Ω.

Proof. We suppose that h ∈ L1
loc(Ω) is very weakly harmonic on Ω and rely on the following

three facts, which will be verified in the exercises:

• The very weak harmonicity of h implies that the mollifications hε ∈ C∞(Ωε) with ε > 0
are classically harmonic on Ωε.

• If — what is clearly possible and assumed in the remainder of this section — a rotation-
ally symmetric mollification kernel is used, then the spherical mean value property of a
classically harmonic function k on Ω implies kε = k on Ωε for every ε > 0.
Detailed justification: Clearly, the rotational symmetry of the mollification kernel η implies rotational symmetry of
the scaled kernels ηε, that is, ηε(x) = χε(|x|) for all x ∈ Rn and suitable functions χε. Using, in turn, integration
in spherical coordinates, the spherical mean value property of k, and radial integration, we infer

kε(a) =

∫
Bε(a)

ηε(a−x)k(x) dx =

∫ ε

0
χε(r)

∫
Sr(a)

k dHn−1 dr = nωn

∫ ε

0
χε(r)r

n−1 dr k(a) =

∫
Bε

ηε(z) dz k(a)

for every a ∈ Ωε. This shows the claim kε = k on Ωε.

• For u ∈ L1
loc(Ω) and arbitrary ε, δ > 0, we have (uε)δ = (uδ)ε on (Ωε)δ = Ωε+δ = (Ωδ)ε.

All in all, we infer
hε = (hε)δ = (hδ)ε = hδ on Ωε+δ

for arbitrary ε, δ > 0, and thus h = limδ↘0 hδ = hε holds L n-a.e. on Ω2ε for every ε > 0. Since
hε is C∞ and classically harmonic on the open set Ω2ε ⊂ Ωε and the union of all Ω2ε with ε > 0
is Ω, this immediately yields the claim.

Remarks (on the Weyl lemma and variants thereof).

(1) In particular, the Weyl lemma applies to classically harmonic functions. Even in this
case the improvement from C2 to C∞ regularity may be considered as surprising.

The proof, however, simplifies in the classically harmonic case, since the mean value property
of h directly leads to h = hε on Ωε for every ε > 0. Thus, h ∈ C∞(Ω) follows without any
need of working with a second parameter δ.
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2.5. Weakly harmonic functions and regularity of harmonic functions 33

(2) If h ∈ C0(Ω) has the mean value property, that is, either −
∫

Br(a) hdx = h(a) for all balls

Br(a) ⊂ Ω or −
∫

Sr(a) hdHn−1(x) = h(a) for all spheres Sr(a) ⊂ Br(a) ⊂ Ω, then, in some
literature, h is called generalized harmonic on Ω. Occasionally this notion is even broad-
ened to functions h ∈ L1

loc(Ω) which satisfy the mean value property for Ln+1-almost all

pairs (a, r) with Br(a) ⊂ Ω. In any case, also generalized harmonic functions h on Ω satisfy
h = hε on Ωε (justified earlier in case of Sr(a) mean values; for Br(a) mean values see below)
and thus turn out to be C∞ smooth and classically harmonic (in the L1

loc setting
after modification on an L n null set).

Deducution of h = hε from the Br(a) mean value property. We choose a rotationally symmetric mollification kernel
η on Rn such that the function χ with η(x) = χ(|x|) for x ∈ Rn strictly decreases on [0, 1]. For ε > 0, this implies
that χε with ηε(x) = χε(|x|) for x ∈ Rn strictly decreases on [0, ε]. Now we fix a ∈ Ωε. As a consequence of the
previous observations, the superlevel sets At,ε(a) ..= {x ∈ Rn : ηε(a−x) > t} are balls with center a and radius ≤ ε.
Now, for h ∈ C0(Ω), we argue with Fubini’s theorem (applied twice), the mean value property on the balls At,ε(a),
and the normalization

∫
Bε
ηε dx = 1 of the scaled kernels. In this way, we infer

hε(a) =

∫
Bε(a)

ηε(a−x)h(x) dx =

∫
Bε(a)

∫ ηε(a−x)

0
dt h(x) dx =

∫ ηε(0)

0

∫
At,ε(a)

h(x) dx dt

=

∫ ηε(0)

0

∫
At,ε(a)

dxdt h(a) =

∫
Bε(a)

∫ ηε(a−x)

0
dtdxh(a) =

∫
Bε(a)

ηε(a−x) dxh(a) = h(a) .

This shows the claim for h ∈ C0(Ω). For h ∈ L1
loc(Ω), the reasoning is, up to tracking of null sets, the same.

(3) In conclusion, all concepts of harmonicity (classical, weak, very weak, generalized) coincide,
and one may wonder why we have entered into the discussion of the different concepts at
all. One answer is that the coincidence of the different definitions may and should indeed be
seen an indication that harmonic functions are very natural and interesting objects. A more
practical answer is that both weakly harmonic functions and generalized harmonic functions
are useful in obtaining existence results for harmonic functions in the sense of the original
classic definition. Indeed, the theory of weakly harmonic functions (and weak solutions of
more general PDEs) is accessible by powerful methods of functional analysis, but here we do
not enter into this. Rather we now present a more specific existence proof, which is similar
in spirit and involves generalized harmonic functions:

Theorem (solvability of the Dirichlet problem for harmonic functions on balls). For
a ∈ Rn, R ∈ (0,∞), ϕ ∈ C0(SR(a)), the Dirichlet problem for harmonic functions

∆h ≡ 0 on BR(a) ,

h = ϕ on SR(a)

has a solution h ∈ C2(BR(a)) ∩ C0(BR(a)) (which, by the maximum principle, is also unique).

Proof. W.l.o.g. we only treat the case a = 0, R = 1. By the Weierstraß approximation theorem7,
there exists a sequence (pk)k∈N of polynomials on Rn with limk→∞ pk = ϕ uniformly on S1. In

7The Weierstraß approximation theorem (in n dimensions) asserts, for every continuous function on a compact
subset K of Rn, that there exists a sequence (pk)k∈N of polynomials on Rn which approximates ϕ uniformly in
the sense of limk→∞ pk = ϕ uniformly on K. For n = 1 this is commonly proved by rather elementary means. For
n ≥ 2 the proof is often carried out in the setting of a general functional analysis principle, the Stone-Weierstraß
theorem, which contains the Weierstraß approximation theorem as a special case.
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34 CHAPTER 2. The Laplace equation and the Poisson equation

view of the solvability result in Section 2.2, for every k ∈ N, we can find a (polynomial) solution
hk of the Dirichlet problem

∆hk ≡ 0 on B1 ,

hk = pk on S1 .

By the maximum (and minimum) principle for the harmonic functions hk−h`, we obtain

max
B1

|h`−hk| ≤ max
S1

|p`−pk| for all k, ` ∈ N .

Thus, the uniform Cauchy-property of (pk)k∈N on S1 carries over to (hk)k∈N on B1 and leads to
the existence of a uniform limit h ..= limk→∞ hk on B1. Since uniform limits preserve continuity,
we obtain h ∈ C0(B1) with h = ϕ on S1. In view of the uniform convergence it is easily verified
that h inherits the mean value property from hk, and thus h is generalized harmonic on B1 in
the sense of Remark (2) above. As pointed out there, h is then C∞ on B1 and turns out to be
the classically harmonic solution of the Dirichlet problem on B1.

Remark. An alternative way of finalizing the proof above is worth pointing out: Instead of
relying on the notion of generalized harmonic functions one may also employ the Weierstraß-type
convergence theorem treated in the subsequent section 2.6.

2.6 Liouville and convergence theorems, Harnack’s inequality

It has been observed in the previous Section 2.5 that the mean value property of a harmonic
function h on Ω implies the crucial identity

h(a) = hr(a) =
1

rn

∫
Br(a)

η
(a−x

r

)
h(x) dx =

1

rn

∫
Ω
η
(a−x

r

)
h(x) dx

for Br(a) ⊂ Ω provided that the mollification kernel η is rotationally symmetric. Differentiating
with respect to a and exchanging the order of differentiation and integration (justified as usual),
we infer

∂αh(a) =
1

rn+|α|

∫
Br(a)

∂αη
(a−x

r

)
h(x) dx

for every multi-index α ∈ Nn
0 . Once the mollification kernel η is suitably fixed, supRn |∂αη| <∞

depends only on n and |α|. Thus, from the previous expression for ∂αh we deduce the important
interior estimates for harmonic functions

|∂αh(a)| ≤ const(n, |α|)
rn+|α| ‖h‖1;Br(a) , whenever h is harmonic on Ω, Br(a) ⊂ Ω, and α ∈ Nn

0 .

As a first application of these estimates we establish the following result on entire (i.e.
everywhere-defined) harmonic functions on Rn.

Theorem (Liouville property of entire harmonic functions).

(I) If h is harmonic and bounded on Rn, then h is necessarily constant on Rn.
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2.6. Liouville and convergence theorems, Harnack’s inequality 35

(II) If h is harmonic on Rn with polynomial growth lim|x|→∞
h(x)
|x|m+1 = 0 for some m ∈ N0,

then h is necessarily a polynomial of degree ≤ m.

Remark. Consider an entire harmonic function h. Then boundedness of h implies its constancy
by the Liouville property in (I). This is sharpened by the case m = 0 in (II) which says that
already sublinear growth of h implies its constancy.

A refined Liouville property will be established later in this section.

Proof. In order to prove (I), we use the interior estimates in the case α = ei, i ∈ {1, 2, . . . , n} of
a first-order partial derivative. We obtain

|∂ih(a)| ≤ const(n)

rn+1
‖h‖1;Br(a) ≤

const(n)

r
sup
Rn
|h| −→

r→∞
0 for all a ∈ Rn ,

where we have the boundedness supRn |h| <∞ of h in the last step. In conclusion, ∇h vanishes
on Rn, and h is constant on Rn.

Aiming at (II), we apply the interior estimates for α ∈ Nn
0 , |α| = m+1. In addition, we rely

on the weak maximum principle and the assumed polynomial growth. In this way, we get

|∂αh(a)| ≤ const(n,m)

rn+m+1
‖h‖1;Br(a) ≤

const(n,m)

rm+1
sup

Br(a)
|h|

≤ const(n,m)

rm+1
sup
Sr(a)
|h| = const(n,m) sup

x∈Sr(a)

|h(x)|
|x|m+1

−→
r→∞

0

for all a ∈ Rn .

Thus, Dm+1h vanishes on Rn, and h is a polynomial of degree ≤ m.

As a second application of the interior estimates we obtain compactness and convergence
results for sequence of harmonic functions:

Theorem. Consider a sequence (hk)k∈N of harmonic functions on Ω.

(I) (Montel type) compactness theorem: If the sequence is locally uniformly bounded on
Ω, that is, supk∈N supK |hk| < ∞ for every compact K ⊂ Ω, then it has a subsequence
which converges locally uniformly on Ω.

(II) (Weierstraß type) convergence theorem: If the sequence converges locally uniformly on
Ω, then the limit function h is harmonic on Ω, and we have locally uniform convergence
of derivatives limk→∞ ∂

αhk = ∂αh on Ω for arbitrary α ∈ Nn
0 .

Remarks (on the compactness and convergence theorem).

(1) The compactness theorem resembles a version of the Montel compactness theorem in com-
plex analysis, which gives the same assertions for a sequence of holomorphic functions. Sim-
ilarly the convergence theorem resembles the Weierstraß compactness theorem in complex
analysis. In the case n = 2, where harmonic functions are nothing but the real/imaginary
parts of holomorphic functions, the above theorems are indeed equivalent with their complex
analysis counterparts.

(2) In case of bounded Ω, uniform boundedness or uniform convergence on ∂Ω of a sequence of
harmonic functions implies the same on Ω by the weak maximum principle. In this sense the
hypotheses of the theorems can be deduced from corresponding hypotheses on the boundary.
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Proof of the compactness theorem. Given a convex8 compact subset K of Ω, we can choose a
larger compact subset K̃ of Ω with r ..= dist(K,Rn\K̃) > 0. Then the interior estimates for the
harmonic functions hk yield

|∇hk(a)| ≤ const(n)

rn+1
‖hk‖1;Br(a) ≤

const(n)

r
sup
K̃

|hk| for all a ∈ K and k ∈ N .

Thus, from uniform boundedness of (hk)k∈N on K̃ (which we have by assumption) we infer
uniform boundedness of (∇hk)k∈N on K, and this in turn implies that the hk are equi-Lipschitz
onK. The Arzelà-Ascoli theorem9 then yields a subsequence

(
hk`
)
`∈N which converges uniformly

on K. Exhausting Ω with countably many suitable compact subsets K and using the diagonal
sequence trick, one can then show the existence of one subsequence such that this convergence
actually holds for all compact subsets K of Ω.

Proof of the convergence theorem. Given a compact subset K of Ω, we choose a larger compact
set K̃ ⊂ Ω and r > 0 as in the proof of the compactness theorem. Then, by the interior
estimates, we obtain

|∂αh`(a)−∂αhk(a)| ≤ const(n, |α|)
r|α|

sup
K̃

|h`−hk| for all a ∈ K, α ∈ Nn
0 , and k, ` ∈ N .

Thus, from the uniform convergence of (hk)k∈N on K̃ (which we have by assumption) we infer,
for every α ∈ Nn

0 , that (∂αhk)k∈N is a uniform Cauchy sequence on K, thus uniformly convergent
on K, and locally uniformly convergent on Ω. In this situation, a standard analysis result ensures
that the limits are the ‘correct’ ones, that is, limk→∞ ∂

αhk = ∂αh locally uniformly on Ω for all
α ∈ Nn

0 . In particular, we get ∆h = limk→∞∆hk, and thus h inherits harmonicity from hk.

Theorem (Harnack inequality). For every non-empty compact subset K of a connected Ω,
there exists a constant C = const(K,Ω) ∈ [1,∞) such that

max
K

h ≤ C min
K

h holds for all non-negative harmonic functions h on Ω .

Proof. In a first step, we consider a ball Br(a) ⊂ Ω and arbitrary points x, y ∈ Br/4(a) in the
smaller concentric ball Br/4(a). We observe Br/4(x) ⊂ B3r/4(y) (and moreover that the closures
of both these balls are contained in Br(a) and Ω). Using the mean value property (twice) and
non-negativity of h, we infer

h(x) =
1

ωn(r/4)n

∫
Br/4(x)

hdz ≤ 3n
1

ωn(3r/4)n

∫
B3r/4(y)

hdz = 3nh(y) .

The resulting estimate corresponds to the Harnack inequality on K = Br/4(a).
In a second step, we carry over this estimate to the non-empty compact subset K from the

statement of the theorem. In view of the connectedness of Ω we can assume that K is connected

8The convexity assumption is not restrictive. Indeed it suffices to verify the claim for all closed balls K in Ω.
9The Arzelà-Ascoli theorem can be stated as follows: If (fk)k∈N is a sequence of equi-continuous and pointwisely

bounded (and then automatically uniformly bounded) functions on a compact metric space X , then there exists a
subsequence

(
fk`
)
`∈N which converges uniformly on X . As in the case at hand, this is often applied to a sequence of

equi-Lipschitz functions fk, i.e. to functions fk which are all Lipschitz continuous with a fixed Lipschitz constant.
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2.6. Liouville and convergence theorems, Harnack’s inequality 37

(for, if it is not, we can replace it with a larger compact subset which has this property). By
compactness of K we can moreover find a finite cover (Bi)i=1,2,...,M of K by balls Bi = Bri/4(ai)
such that Bri(ai) ⊂ Ω holds and the first step applies on Bi. For the moment, we now fix x ∈ K
and consider the auxiliary set S of points y ∈ K which can be reached from x via a chain of
balls from the cover in the sense that there exist distinct indices i1, i2, . . . , i` ∈ {1, 2, . . . ,M}
with x ∈ Bi1 , Bij ∩Bij+1 6= ∅ for j = 1, 2, . . . , `−1, and y ∈ Bi` . It turn out that S is both open
and closed in K (since each x ∈ S and x ∈ K \ S, respectively, are contained in all ball Bi, and
then all points of this ball belong to S and K \ S, respectively). Thus S equals the connected
set K, and the connecting chain of balls Bij in the preceding sense generally exists for x, y ∈ K.
Once we know this, we can choose arbitrary points xj ∈ Bij ∩ Bij+1 and apply the estimate of
the first step along the chain as follows:

h(x) ≤ 3nh(x1) ≤ 32nh(x2) ≤ 33nh(x3) ≤ . . . ≤ 3(`−1)nh(xn−1) ≤ 3`nh(y) .

In view of ` ≤ M we infer h(x) ≤ 3Mnh(y) for arbitrary points x, y ∈ K. By taking the sup
in x ∈ K and the inf in y ∈ K we then arrive at the claim with constant C = 3Mn (where M
depends only on the initial choice of the cover and thus only on K and Ω).

Remark (on invariance of the Harnack constant). The Harnack constant, that is, the optimal
constant in the Harnack inequality, is invariant under translations, orthogonal transfor-
mations, and scaling. More precisely, given (K,Ω) as in the theorem, a ∈ Rn, T ∈ O(Rn),
and r > 0, the Harnack inequality holds for (a+rT (K), a+rT (Ω)) with the same constant as for
(K,Ω) itself.

The proof of this claim is based on the observation that harmonic functions h on Ω correspond
to harmonic functions h̃ on a+rT (Ω) through the transformation h̃(a+rTx) = h(x) for x ∈ Ω.

Corollary (one-sided Liouville property for entire harmonic functions).

(I) If h is harmonic on Rn and bounded from either above or below on Rn, then h is neces-
sarily constant on Rn.

(II) If h is harmonic on Rnand either h+ or h− has polynomial growth lim|x|→∞
h±(x)
|x|m+1 = 0

with m ∈ N0, then h is a polynomial of degree ≤ m.

(III) If u is subharmonic on R2 and u+ grows sub-logarithmically, that is lim|x|→∞
u+(x)
log |x| = 0,

then u is necessariliy constant.

Remarks (on optimality of the growth conditions).

(1) The growth condition in (II) is optimal in the following sense: There exist harmonic func-
tions h on Rn (e.g. homogeneous harmonic polynomials of degree m+1) which satisfy

lim sup|x|→∞
|h(x)|
|x|m+1 < ∞ (and thus lim|x|→∞

h(x)
|x|m+1+δ = 0 for every δ > 0), but are not

polynomials of degree ≤ m. Clearly, this discussion also shows the optimality of the analo-
gous growth condition in the both-sided Liouville property from the beginning of the section.

(2) Similarly the restriction to two dimensions and the growth in (III) are also optimal. This
follows from the fact that max{F,−1} is a non-constant subharmonic harmonic function on
Rn in the generalized sense of the subsequent Section 2.7, and a mollification u thereof is even
non-constant subharmonic in the classical sense. In dimensions n ≥ 3 these functions are
additionally bounded (from above and below), while in dimension n = 2 they are bounded

from below and satisfy lim sup|x|→∞
u+(x)
log |x| <∞.
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Proof. For the proof of (I) it suffices to treat one of the cases. Here we thus assume that h
is bounded from above, that is M ..= supRn h < ∞. Applying the Harnack inequality to the
non-negative harmonic function M−h on Rn, we then get

max
Br

(M−h) ≤ C min
Br

(M−h) for arbitrary r > 0 .

Sending r →∞, we conclude

sup
Rn

(M−h) ≤ C min
Rn

(M−h) = 0

and read off h ≡M on Rn.

The proofs of (II) and (III) are discussed in the exercise class.

Corollary (Harnack convergence theorem). Consider a domain Ω in Rn and a sequence
(hk)k∈N of harmonic functions on Ω such that h1 ≤ h2 ≤ h3 ≤ . . . holds on Ω. Then, either we
have limk→∞ hk(x) = ∞ for all x ∈ Ω, or the sequence (hk)k∈N converges locally uniformly on
Ω to a harmonic limit function.

Remark. In particular, if one knows limk→∞ hk(x0) <∞ at a single point x0 ∈ Ω, the theorem
can be applied (and is commonly used in this way) to deduce locally uniform convergence on Ω.

Proof. We assume limk→∞ hk(x0) <∞ for some x0 ∈ Ω. For k ≤ ` in N and a compact subset
K ⊂ Ω with x0 ∈ K, we then get

max
K

(h`−hk) ≤ C min
K

(h`−hk) ≤ C(h`(x0)−hk(x0))

from the Harnack inequality for the non-negative harmonic function h`−hk on Ω. In view
of this estimate, the Cauchy property of (hk(x0))k∈N implies the uniform Cauchy property of
(hk)k∈N on K. From this property we conclude that (hk)k∈N converges locally uniformly on Ω.
The harmonicity of the limit function results from the Weierstraß type convergence theorem in
Section 2.6.

2.7 Generalized sub/superharmonic functions

In Section 2.5 the concept of harmonicity has been extended to non-C2 functions in two ba-
sically different ways. On one hand, (very) weakly harmonic functions have been defined via
an integration-by-parts formula. On the other hand, a notion of generalized harmonic func-
tions, based on the mean value property, has been discussed. Both these approaches can
also be adapted in order to explain subharmonicity and superharmonicity for non-
C2 functions. In contrast to the harmonic case, however, one cannot expect that generalized
sub/superharmonic functions exhibit any additional regularity, and thus the resulting concepts
are truly more general than the ones for C2 functions.

Here we dispense with weak notions based on integration by parts (though also these are
natural and widespread). Rather, with some applications in the existence theory of the later
Section 2.10 in mind, we turn directly to generalized notions based on mean value
inequalities:
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Definition (general sub/superharmonic functions). We call an upper semicontinuous
function u : Ω → [−∞,∞) (generalized) subharmonic on Ω if it satisfies the mean value
inequality10

u(a) ≤ −
∫

Br(a)
udx for all a ∈ Ω, r > 0 with Br(a) ⊂ Ω .

Similarly, we call a lower semicontinuous function u : Ω→ (−∞,∞] (generalized) superhar-
monic on Ω if it satisfies the mean value inequality

u(a) ≥ −
∫

Br(a)
udx for all a ∈ Ω, r > 0 with Br(a) ⊂ Ω .

Remarks (on general sub/superharmonic functions).

(1) For u ∈ C2(Ω) it is clear from Section 2.4 that the generalized notions coincide with the
classical requirements ∆u ≥ 0 and ∆u ≤ 0, respectively.

(2) Most previous results on sub/superharmonic C2 functions extend verbatim to their
generalized counterparts. Specifically, the next result shows that this is true for the basic
maximum/comparison principles of Section 2.4, and a consequence it follows for the other
results as well.

(3) A subharmonic or superharmonic function u on Ω satisfies limr↘0 −
∫
Br(a) |u−u(a)| dx = 0 at all a ∈ Ω, that is, all

points in Ω are Lebesgue points (and u itself is the Lebesgue representative).

Proof. We consider the subharmonic case. The mean value inequality and upper semicontinuity yield the chain
of inequalities u(a) ≤ lim infr↘0 −

∫
Br(a) u dx ≤ lim supr↘0 −

∫
Br(a) udx ≤ lim supΩ3x→a u(x) ≤ u(a), and we infer

limr↘0 −
∫
Br(a)(u−u(a)) dx = 0. In addition, we have limr↘0 −

∫
Br(a)(u−u(a))+ dx ≤ lim supΩ3x→a(u(x)−u(a))+ = 0

by upper semicontinuity. In view of |f | = 2f+−f this is enough to conclude limr↘0 −
∫
Br(a) |u−u(a)| dx = 0.

Lemma (characterizations of subharmonic functions). For an upper semicontinuous func-
tion u : Ω→ [−∞,∞), the following properties are equivalent :

(a) u satisfies the mean value inequality on balls, i.e. is generalized subharmonic on Ω in
the sense of the above definition.

(b) u satisfies the mean value inequality on spheres

u(a) ≤ −
∫

Sr(a)
udHn−1 for all a ∈ Ω, r > 0 with Br(a) ⊂ Ω .

(c) u satisfies the comparison principle as follows:

G bounded open set in Rn , G ⊂ Ω ,

h ∈ C2(G) ∩ C0(G) harmonic on G ,

u ≤ h on ∂G

 =⇒ u ≤ h on G .

(d) u satisfies the mean value inequality on small balls, i.e. for every a ∈ Ω there exists
some (possibly small but positive) ra ∈ (0,∞] such that

u(a) ≤ −
∫

Br(a)
udx for all r ∈ (0, ra) with Br(a) ⊂ Ω .

10Upper semicontinuity of u implies its Borel measurability and boundedness from above on Br(a). Thus, the
mean value integral exists in [−∞,∞).
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Specifically, the lemma shows that generalized subharmonicity is, in fact, a local prop-
erty in the following sense: If (Oi)i∈I is a family of open sets (over an arbitrary index set I)
with

⋃
i∈I Oi = Ω and u is subharmonic on Oi for every i ∈ I, then u is also subharmonic on

Ω itself. While this locality principle is obvious for subharmonicity in the classical ∆u ≥ 0
sense, for generalized subharmonicity it results only from property (d) in the lemma, while it
would not at all be clear from (a), (b), or (c) alone. We remark that the locality principle for
generalized subharmonic functions will prove to be very useful in establishing a basic existence
result for harmonic functions in the later Section 2.10.

Proof of the lemma. We start recording that, trivially, (a) implies (d).
Moreover, (d) implies (c), essentially by the reasoning from the proof of the strong maximum

principle in Section 2.4. Indeed, this reasoning can be easily adapted to work on the connected
components of G and deduce the weak maximum principle for u−h from the mean value property
of u−h.

Next we show that (c) implies (b). To this end, we assume u 6≡ −∞, we fix a ball Br(a) ⊂ Ω,
and we rely, for k ∈ N, on the often useful standard construction

ϕk(x) ..= max
y∈Sr(a)

(
u(y)−k|x−y|

)
∈ R for x ∈ Sr(a) .

Here, compactness of Sr(a) and upper semicontinuity imply that the maximum is attained.
Furthermore, we record:

• It is clear from the definition that ϕk ≥ u and ϕk ≥ ϕk+1 hold on Sr(a) for all k ∈ N.

• The upper semicontinuity of u implies limk→∞ ϕk(x) = u(x) for all x ∈ Sr(a).

(Justification: In view of the above, limk→∞ ϕk(x) exists in [−∞,∞) and is ≥ u(x). From the definition of ϕk, we
infer ϕk(x) ≤ max{maxBr(a)∩Bδ(x) u,maxBr(a) u− kδ} for all k ∈ N, δ > 0. Sending first k →∞, then δ ↘ 0, we
infer first limk→∞ ϕk(x) ≤ maxBr(a)∩Bδ(x) u, then limk→∞ ϕk(x) ≤ u(x) by upper semicontinuity of u.)

• For every k ∈ N, the function ϕk is the pointwise maximum of Lipschitz functions with
Lipschitz constant k, and thus also ϕk itself is a Lipschitz function with Lipschitz constant
≤ k, in particular ϕk ∈ C0(Sr(a)).

By the existence theorem at the end of Section 2.5, we can then find, for every k ∈ N, a solution
hk of the Dirichlet problem for harmonic functions

hk ∈ C2(Br(a)) ∩ C0(Br(a)) , ∆hk ≡ 0 on Br(a) , hk = ϕk on Sr(a) .

By the comparison principle, the inequality u ≤ ϕk = hk on Sr(a) extends to u ≤ hk on Br(a)
and specifically to u(a) ≤ hk(a) for all k ∈ N. Applying this observation together with the mean
value property of hk on spheres S%(a) with 0 < % < r (then B%(a) is contained in the domain of
harmonicity Br(a)), we conclude

u(a) ≤ hk(a) ≤ lim
%↗r
−
∫

S%(a)
hk dHn−1 = −

∫
Sr(a)

hk dHn−1 = −
∫

Sr(a)
ϕk dHn−1 .

Finally, the monotone convergence theorem ensures limk→∞ −
∫

Sr(a) ϕk dHn−1 = −
∫

Sr(a) udHn−1,

and thus the mean value inequality of (b) holds on Sr(a).
Finally, from (b) we get back to (a) by a spherical integration argument, which closely follows

the last part of the proof of the mean value property in Section 2.4.
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The concept of generalized subharmonic functions turns out to be very convenient also in
the treatment of the following (classes of) examples and basic principles:

Examples (‘many’ (generalized) subharmonic functions).

(1) If the fundamental solution F is extended by setting F (0) ..= −∞, then — beside being
harmonic on Rn\{0}— it turns out to be subharmonic on all of Rn. This can be verified
with the help of the previous lemma: Indeed, the harmonicity of F on Rn \ {0} implies the
validity of property (d) for a ∈ Rn \ {0} with ra ..= |a|, while in view of F (0) = −∞ this
property holds trivially for a = 0 with r0

..=∞.

(2) Convex functions11 u : Ω→ [−∞,∞) on convex open sets Ω ⊂ Rn are subharmonic.

Proof. It follows from the definition of convexity that u is either constant ≡ −∞ or finite-
valued. In any case, u is continuous on Ω (trivially in the former and by a basic result of
convex analysis in the latter case). Moreover, Jensen’s inequality gives

u(a) = u

(
−
∫

Br(a)
x dx

)
≤ −
∫

Br(a)
u(x) dx whenever Br(a) ⊂ Ω .

By definition, this means that u is subharmonic on Ω.

For example, by u(x) ..= |x| or u(x) ..= e|x| we obtain a subharmonic function u on Ω = Rn.

(3) If u and v are two subharmonic functions on an open set Ω ⊂ Rn, also the pointwise
maximum max{u, v} is subharmonic on Ω.

Proof. Whenever Br(a) ⊂ Ω, we clearly have u(a) ≤ −
∫

Br(a) u dx ≤ −
∫

Br(a) max{u, v} dx and

v(a) ≤ −
∫

Br(a) v dx ≤ −
∫

Br(a) max{u, v}dx, thus max{u(a), v(a)} ≤ −
∫

Br(a) max{u, v} dx.

This implies, for instance, that max{F, s} with the fundamental solution F and s ∈ R and
the positive part of any harmonic function are subharmonic on Rn.

As an obvious consequence, also the pointwise maximum of any finite family of subharmonic functions on Ω remains
subharmonic on Ω. Moreover, an analogous reasoning shows that even the pointwise supremum of an arbitrary family
of subharmonic functions on Ω is subharmonic on Ω provided that this supremum is — what is not automatic in case
of an infinite family — still upper semicontinuous.

(4) The following interconnected assertions hold for open Ω ⊂ Rn:

• If h is harmonic on Ω, then |h|s with any s ∈ [1,∞) is subharmonic on Ω.

• If h is harmonic on Ω and Φ: (a, b)→ [−∞,∞) is convex on an open interval (a, b) ⊂ R
with h(Ω) ⊂ (a, b), then Φ(h) is subharmonic on Ω.

• If H : Ω → RN is a vector-valued harmonic function on Ω (that is, all its components
Hi with i ∈ {1, 2, . . . , N} are harmonic on Ω) and Φ: C → [−∞,∞) is convex on a
convex open set C ⊂ RN with H(Ω) ⊂ C, then Φ(H) is subharmonic on Ω.

11Convexity of [−∞,∞)-valued functions u on convex sets C is defined by the usual convexity inequality
u(λx+(1−λ)y) ≤ λu(x)+(1−λ)u(y) for all x, y ∈ C, λ ∈ [0, 1].
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Proof. We only prove the last claim, which contains the previous ones as special cases. As
in the proof of (2), Φ is either constant ≡ −∞ or finite-valued, but in any case continuous
on C. Thus, Φ(H) is continuous on Ω, and via the mean value property of H and Jensen’s
inequality we infer

Φ(H(a)) = Φ

(
−
∫

Br(a)
H dx

)
≤ −
∫

Br(a)
Φ(H) dx whenever Br(a) ⊂ Ω .

By definition, this means that Φ(H) is subharmonic on Ω.

For instance, this implies that u(x) ..= |x1x2|s defines, for every fixed s ∈ [1,∞), a subhar-
monic function u on Ω = Rn

(5) The following convergence theorems for subharmonic functions hold on open Ω ⊂ Rn:

(a) If uk are subharmonic on Ω with uk ↘ u pointwisely on Ω (i.e. u1 ≥ u2 ≥ u3 ≥ . . . and
limk→∞ uk = u on Ω), then u is subharmonic on Ω.

(b) If uk are subharmonic on Ω with uk ↗ u pointwisely on Ω (i.e. u1 ≤ u2 ≤ u3 ≤ . . . and
limk→∞ uk = u on Ω) and u is upper semicontinuous and finite-valued on Ω, then u is
subharmonic on Ω.

(c) If uk are subharmonic on Ω with limk→∞ uk = u locally uniformly on Ω for finite-valued
u, then u is subharmonic on Ω.

Proof. In all cases, we first justify upper semicontinuity of u: Under the assumptions of
(5a), it follows from u = infk∈N uk. In (5b), it is assumed. In the situation of (5c), it results
from the locally uniform convergence. Then we get

u(a) = lim
k→∞

uk(a) ≤ lim sup
k→∞

−
∫

Br(a)
uk dx ≤ −

∫
Br(a)

u dx whenever Br(a) ⊂ Ω (∗)

with different justifications for having lim supk→∞ −
∫

Br(a) uk dx ≤ −
∫

Br(a) udx: In the (5a) case,

it comes (even as equality) from the monotone convergence theorem (where supBr(a) u1 <∞
by upper semicontinuity). In the situation of (5b), it results simply from uk ≤ u on Ω. In
the one of (5c), it follows (even as equality) from uniform convergence on Br(a).

2.8 Green’s representation formula and the Poisson integral

In this section we come back to the Dirichlet problem

∆u = f on Ω ,

u = ϕ on ∂Ω

for the Poisson equation on a bounded open set Ω ⊂ Rn (where f ∈ C0(Ω) and ϕ ∈ C0(∂Ω)
are given). While uniqueness of solutions u to this problem has been shown in Section 2.4 in
large generality, so far we have solved the existence problem for solutions u only in quite specific
cases, namely for f ≡ 0 and balls Ω; see the end of Section 2.5. We now strive for establishing
existence also on general bounded domains Ω by an approach based on explicit formulas
for solutions. Though the aim will turn out to be ambitious and the program will be fully
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successful only for specific domains Ω (most prominently again for balls), in this section we will
lay some foundations for other approaches and still gain new insight on harmonic functions and
the Dirichlet problem.

As a first natural step we now deal with explicit formulas which are valid for given solutions
u. Indeed, only with these formulas at hand, we then are in the position for the second step,
namely to define solutions u by these formulas. As start in the direction of the first step we
have:

Theorem (Green’s representation formula). Consider a Gauss domain Ω in Rn and an
arbitrary function u ∈ C2(Ω) ∩ C1(Ω). Then, for each x ∈ Ω, we have

u(x) = −
∫
∂Ω
F (x−y)∂νu(y) dHn−1(y) +

∫
∂Ω
u(y)(∂ν)yF (x−y) dHn−1(y) +

∫
Ω
F (x−y)∆u(y) dy

where F denotes the fundamental solution of the Laplace equation on Rn.

Remarks (on the representation formula).

(1) The single terms on the right-hand side have certain interpretations in potential theory:
One may understand

∫
∂Ω F (x−y)ψ(y) dHn−1(y) as a single-layer boundary potential and∫

∂Ω ϕ(y)(∂ν)yF (x−y) dHn−1(y) as a double-layer dipole potential. Finally, the volume po-
tential

∫
Ω F (x−y)f(y) dy is known as Newton potential and will be studied in detail in

Section 2.11.

(2) The second and third terms on the right-hand side involve only the boundary values u ∂Ω

and the Laplacian ∆u of u, i.e. the prescribed data ϕ and f in the Dirichlet problem. Thus,
these terms potentially allow to define u by a formula involving only ϕ and f . Unfortunately,
the first terms on the right-hand side is, however, ‘bad’ in the sense that it contains the
normal derivative ∂νu ∂Ω, which is not prescribed in the Dirichlet problem. We will return
to this point below and will develop a strategy to circumvent it.
(As a side remark we record that the situation slightly changes in case of the Neumann problem: Then the first and
third terms are ‘good’, while the second is ‘bad’.)

Proof of Green’s representation formula. We argue for fixed x ∈ Ω and for positive ε which are
small enough that Bε(x) ⊂ Ω. We start by applying Green’s second identity on the domain12

Ω \ Bε(x) with boundary (∂Ω) ∪ Sε(x) to the functions u and y 7→ F (x−y). In this way we get∫
Ω\Bε(x)

F (x−y)∆u(y) dy −
∫

Ω\Bε(x)
u(y)∆yF (x−y) dy

=

∫
∂Ω
F (x−y)∂νu(y) dHn−1(y) −

∫
∂Ω
u(y)(∂ν)yF (x−y) dHn−1(y)

+

∫
Sε(x)

F (x−y) x−yε ·∇u(y) dHn−1(y) −
∫

Sε(x)
u(y) x−yε ·∇yF (x−y) dHn−1(y) ,

where at y ∈ Sε(x) the outward unit normal ν takes the form ν(y) = x−y
ε . Here the second

integral on the left-hand side vanishes, since y 7→ F (x−y) is harmonic on Rn \ {x} ⊃ Ω \Bε(x).

12At this point, a marginal technical difficulty arises from the fact that only Ω has been assumed to be a Gauss
domain but not Ω \ Bε(x). However, this can easily be overcome by cutting-off the singularity of F in the sense
that one chooses some Fε ∈ C2(Rn) which coincides with F on Rn \ Bε. Then one may apply Green’s identity
to u and y 7→ Fε(x − y) on both Ω and Bε(x) and arrives at the above by subtracting the resulting formula on
Bε(x) from the one on Ω.
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Moreover, taking into account the explicit form of F , the third integral on the right-hand side
takes the form − ε

n−2
−
∫

Sε(x)
x−y
ε ·∇u(y) dHn−1(y) and ε(log ε)−

∫
Sε(x)

x−y
ε ·∇u(y) dH1(y) for n ≥ 3

and n = 2, respectively. In view of the ε-prefactors, this integral will eventually disappear in the
limit ε↘ 0. For the treatment of the crucial fourth integral on the right-hand side, we compute
x−y
ε ·∇yF (x−y) = − 1

nωnεn−1 for y ∈ Sε(x) and rewrite this integral as −−
∫

Sε(x) udHn−1. Thus, in

the limit ε↘ 0 it turns simply into −u(x). Incorporating all these remarks and sending ε↘ 0
in the above identity, we arrive at∫

Ω
F (x−y)∆u(y) dy

=

∫
∂Ω
F (x−y)∂νu(y) dHn−1(y) −

∫
∂Ω
u(y)(∂ν)yF (x−y) dHn−1(y) + u(x) ,

where indeed F ∈ L1(Bε(x)) guarantees the convergence of the F (x−y)∆u(y) integrals on
Ω \ Bε(x) to the (hence well-defined) singular limit integral on all of Ω. By rearranging terms
in the last equation we easily arrive at the claim.

Next we aim at removing the ‘bad’ first term in Green’s representation formula. This will
be approached by replacing the shifted fundamental solutions y 7→ F (x−y) in this formula with
y 7→ F (x−y)−hx(y), where the corrector functions hx are chosen as a harmonic functions on
Ω such that y 7→ F (x−y)−hx(y) vanishes on ∂Ω. With the properties of the resulting function
G(x, y) ..= F (x−y)−hx(y) in mind, we coin the following definition:

Definition (Green function). Consider an open set Ω in Rn. We then call a function
G : {(x, y) ∈ Ω×Ω : y 6= x} → R the Green function of Ω (or, at length, the Green function
to the Dirichlet problem for harmonic functions on Ω) if it satisfies the following two conditions:

(a) For every x ∈ Ω, the function y 7→ F (x−y)−G(x, y) on Ω \ {x} can be extended to a
harmonic function on Ω.

(b) For every x ∈ Ω, the function y 7→ G(x, y) vanishes on ∂Ω in the sense of limΩ3y→y0 G(x, y) =
0 for every y0 ∈ ∂Ω (and moreover limΩ3y→∞G(x, y) = 0 in case of unbounded Ω).

Remarks (on Green functions).

(1) Clearly, the function y 7→ F (x−y)−G(x, y) in (a) plays the role of the harmonic corrector
function hx mentioned before.

(2) For fixed x ∈ Ω it follows from (a) and the harmonicity of F on Rn \{0} that G(x, · ) is har-
monic on Ω\{x}. Moreover, the harmonic extension in (a) is continuous (and even smooth)
near x. This means that y 7→ G(x, y) and y 7→ F (x−y) have a singularity of the same type
at the point x and that the singularities cancel out when taking the difference. All in all,
“∆
[
G(x, · )

]
= δx” holds on Ω (in the same heuristic sense in which we observed “∆F = δ0”

on Rn in Section 2.1), and the Green function essentially consists of fundamental
solutions with singularity at x and zero boundary values.

(3) The Green function is unique if it exists. This follows from uniqueness in the Dirichlet
problem solved by the corresponding harmonic corrector functions hx on Ω (where unique-
ness, in turn, results from the weak maximum principle and holds even in case of unbounded
Ω, since ∞Rn is suitably taken into account).
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(4) If a Gauss domain Ω has a Green function G such that G(x, · ) ∈ C1(Ω \ {x}) holds for all
x ∈ Ω, then — somewhat surprisingly — G is symmetric in the sense of G(y, x) = G(x, y)
for all x, y ∈ Ω with y 6= x.

Proof. Similar to the proof of Green’s representation formula, we apply Green’s second
identity to the functions v ..= G(x, · ) and w ..= G(y, · ) on Ω \ (Bε(x)∪Bε(y)) (where ε > 0
is small enough that Bε(x) and Bε(y) are disjoint subsets of Ω). Since both v and w are
harmonic on this domain and vanish on ∂Ω, we deduce

0 =

∫
Sε(x)

(
v ∂νw − w ∂νv

)
dHn−1 +

∫
Sε(y)

(
v ∂νw − w ∂νv

)
dHn−1 ,

where ν(z) = x−z
ε for z ∈ Sε(x) and ν(z) = y−z

ε for z ∈ Sε(y). Since v and ∇v blow
up at x in the same way as z 7→ F (x−z) and z 7→ ∇F (x−z) (the differences just be-
ing bounded functions), while w and ∂νw are continuous at x, we can follow the proof
of Green’s representation formula once more to infer limε↘0

∫
Sε(x) v ∂νw dHn−1 = 0 and

limε↘0

∫
Sε(x)(−w ∂νv) dHn−1 = −w(x). Clearly, the terms on Sε(y) can be treated analo-

gously, and thus we arrive at

0 = −w(x) + v(y) = G(x, y)−G(y, x) .

From this, the claim is immediate.

If we assume that the Green function exists, then we indeed get the desired representation
formula:

Theorem (Green function representation). For a Gauss domain Ω, assume that the Green
function G exists and satisfies G(x, · ) ∈ C1(Ω\{x}) for all x ∈ Ω. Then, for u ∈ C2(Ω)∩C1(Ω),
setting f ..= ∆u and ϕ ..= u ∂Ω, we have

u(x) =

∫
∂Ω
ϕ(y)(∂ν)yG(x, y) dHn−1(y) +

∫
Ω
G(x, y)f(y) dy for all x ∈ Ω

Proof. Applying Green’s second identity to u and the harmonic extension hx of y 7→ F (x−y)−G(x, y)
to Ω, we get

0 = −
∫
∂Ω
hx(y) ∂νu(y) dHn−1 +

∫
∂Ω
u(y) ∂νhx(y) dHn−1 +

∫
Ω
hx(y) ∆u(y) dy .

Next we subtract this equation from Green’s representation formula. Taking into account
F (x−y)−hx(y) = G(x, y) we then end up with

u(x) = −
∫
∂Ω
G(x, y) ∂νu(y) dHn−1(y) +

∫
∂Ω
u(y) (∂ν)yG(x, y) dHn−1(y) +

∫
Ω
G(x, y) ∆u(y) dy .

By property (b) in the definition of the Green function, the first term on the right-hand side
vanishes, and we arrive at the claim.
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Remarks (on the Green function representation).

(1) As the most important special case, for a harmonic function h ∈ C2(Ω) ∩ C1(Ω) with
ϕ ..= h ∂Ω, the Green function representation reads

h(x) =

∫
∂Ω
ϕ(y)(∂ν)yG(x, y) dHn−1(y) for all x ∈ Ω .

(2) The Green function representation remains true for functions u ∈ C2(Ω) ∩C0(Ω) which are
not necessarily C1 up to the boundary.

(3) The Green function representation holds also for suitable unbounded domains Ω provided
that u and f = ∆u decay suitably at ∞.

(4) Though the Green function representation has been established for given solutions u,
this formula is basically suitable to reverse the point of of view and make an attempt
to establish the existence of a solution u to the Dirichlet problem with given data
f and ϕ by this explicit formula. Under strong assumptions on G, f , and ϕ, this is indeed
possible, i.e. it can be verified that the function u defined this way is a solution.

(5) However, it does not make sense to enter into the more technical details of (2), (3), and
the existence program (4), since we are left with the more basic problem to secure the
existence of the Green function G at all. Indeed, proving existence of G is the same
as proving the existence of the corrector functions hx, which are themselves solutions of a
Dirichlet problem for harmonic functions. Thus, we are still faced with the existence issue
in a Dirichlet problem, and one may doubt that anything is won at all. Indeed, it will turn
out that the Green function representation does not help in the existence theory on
general domains Ω but only on specific domains Ω for which the Green function can
be (more or less) explicitly determined. The most prominent such case follows:

Theorem (Green function of balls).

(I) For x ∈ Rn \ {0}, we denote by x∗ ..= x
|x|2 the reflection of x at the unit sphere S1, and as

usual we write F for the fundamental solution of the Laplace equation on Rn. With this
terminology the Green function GB1 of the unit ball B1 in Rn is given by

GB1(x, y) = F (y−x)− F (|x|(y−x∗))

=


1

2π

[
log |y−x| − log(|x| |y−x∗|)

]
if n = 2

− 1
n(n−2)ωn

[
|y−x|2−n − (|x| |y−x∗|)2−n] if n ≥ 3

for y 6= x in B1, where |x| |y−x∗| = 1 is understood for y 6= 0 = x.

(II) The Green function GBR(a) of an arbitrary ball BR(a) in Rn is given by

GBR(a)(x, y) = R2−nGB1

(x−a
R

,
y−a
R

)
for y 6= x in BR(a) .

Remarks (on Green functions of balls).

(1) Since the fundamental solution yields the electric potential of a unit charge at the origin,
GB1(x, · ) corresponds to the electric potential induced by two charges, a unit charge at the
point x and an antipolar charge |x|2−n at the reflection point x∗.
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(2) By the general Remark (4) on Green functions, GBR(a) is symmetric in its two argu-
ments. However, symmetry of GB1 and thus GBR(a) can also be deduced more elemen-
tarily: It is obvious that |y−x| is symmetric in (x, y), and the computation (|x| |y−x∗|)2 =
|x|2(|y|2−2y ·x∗+|x∗|2) = |x|2|y|2−2y ·x+1 reveals the same symmetry for |x| |y−x∗|.

(3) A related useful observation is

|x| |y−x∗| = |y−x| for y 6= x in Rn with |y| = 1.

This results from (|x| |y−x∗|)2 = |x|2|y|2−2y ·x+1
|y|=1
= |x|2−2y ·x+|y|2 = |y−x|2.

Proof of the last theorem. We first check that the expression in (I) satisfies the defining prop-
erties (a), (b) of the Green function of B1. Indeed, since F is harmonic on Rn \ {0}, for every
fixed x ∈ B1, the function y 7→ F (|x|(y−x∗)) is harmonic on B1 (which does not contain x∗),
and (a) is immediate. Moreover, Remark (3) above yields F (|x|(y−x∗)) = F (y−x) for y ∈ S1,
and (b) follows.

Next we verify the definition for the expression in (II). We fix x ∈ BR(a) and record x−a
R ∈ B1.

Then the fact that F
(
x−a
R −y

)
−GB1

(
x−a
R , y

)
is, when extended for y = x−a

R , harmonic in y ∈ B1

implies that F (x−y)−R2−nGB1

(
x−a
R , y−aR

)
= R2−n[F (x−aR −y−a

R

)
−GB1

(
x−a
R , y−aR

)]
+C(n,R) is,

when extended for y = x, harmonic in y ∈ BR(a) (where C(n,R) actually equals logR
2π for n = 2

and is zero for n ≥ 3). This shows (a). Moreover, from GB1

(
x−a
R , y

)
= 0 for y ∈ S1 we clearly

get R2−nGB1

(
x−a
R , y−aR

)
= 0 for y ∈ SR(a), and thus also (b) is valid.

In order to make the Green function representation explicit — at least in the basic case of
balls — we need in fact the normal derivatives of the Green function at the boundary.
Thus, starting from the explicit formula for the Green function GB1 of B1 and using Remark
(3), we compute for y ∈ S1:

(∂ν)yGB1(x, y) = y ·∇yGB1(x, y) = y · 1

nωn

[
y−x
|y−x|n

− |x|
2(y−x∗)

|x|n|y−x∗|n

]
=

1

nωn

[
|y|2−x · y
|y−x|n

− |x|
2(|y|2−x∗ · y)

|y−x|n

]
=

1

nωn

[
|y|2−x · y
|y−x|n

− |x|
2−x · y
|y−x|n

]
=

1

nωn

|y|2−|x|2

|y−x|n
.

Moreover, from the formula for GBR(a) and the chain rule we infer

(∂ν)yGBR(a)(x, y) = R2−n(∂ν)yGB1

(x−a
R

,
y−a
R

) 1

R
=

1

nωnR

|y−a|2−|x−a|2

|y−x|n
for y ∈ SR(a) ,

which then leads to:

Definition (Poisson kernel). For every R ∈ (0,∞), the function PR : BR×SR → R, given by

PR(x, y) ..=
1

nωnR

|y|2−|x|2

|y−x|n
=

1

nωnR

R2−|x|2

|y−x|n
for x ∈ BR , y ∈ SR ,

is called the n-dimensional Poisson kernel for radius R.
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With the normal derivative at hand we now restate the Green function representation on
balls in a more explicit way and obtain the following important formula for solutions of
the Dirichlet problem for harmonic functions on balls:

Main Theorem (Poisson integral formula (PIF)). Consider a ball BR(a) in Rn.

(I) Suppose that h ∈ C2(BR(a)) ∩ C0(BR(a)) is harmonic on BR(a), and set ϕ ..= h SR(a).
Then we have

h(x) =

∫
SR(a)

ϕ(y) PR(x−a, y−a) dHn−1(y) for all x ∈ BR(a) .

(II) Consider a given ϕ ∈ C0(SR(a)). Then, by setting

h(x) ..=

∫
SR(a)

ϕ(y) PR(x−a, y−a) dHn−1(y) for x ∈ BR(a)

and h(x) ..= ϕ(x) for x ∈ SR(a) we obtain a solution h ∈ C2(BR(a)) ∩ C0(BR(a)) of the
Dirichlet problem

∆h ≡ 0 on BR(a) , u = ϕ on SR(a) .

Remark. In particular, (I) implies uniqueness of solutions to the Dirichlet problem in (II).
However, we have established uniqueness already in the earlier Section 2.4.

Proof for Part (I) of the theorem. The definition of the Poisson kernel has been implemented
such that (∂ν)yGBR(a)(x, y) = PR(x−a, y−a) holds for x ∈ BR(a) and y ∈ SR(a). If we use
this and the harmonicity of h in the general Green function representation, we get the claim for
h ∈ C2(BR(a)) ∩ C1(BR(a)). If merely h ∈ C2(BR(a)) ∩ C0(BR(a)) is assumed, we can apply
the result of the previous consideration to the harmonic C2(BR(a)) functions x 7→ h(tx) with
parameter t ∈ (0, 1). We infer h(tx) =

∫
SR(a) h(ty) PR(x−a, y−a) dHn−1(y) for x ∈ BR(a) and

then pass to the limit t↗ 1 in this equality. Since the uniform continuity of h on BR(a) implies
limt↗1 h(ty) = h(y) = ϕ(y) uniformly in y ∈ SR(a) and PR(x−a, y−a) with fixed x ∈ BR(a) is a
bounded function of y ∈ SR(a), the integrals converge suitably, and we arrive at the claim.

Proof for Part (II) of the theorem. We know from Section 2.5 that a solution h ∈ C2(BR(a)) ∩
C0(BR(a)) to the Dirichlet problem exists. Then, Part (I) applies to h, and thus h is indeed
given by the integral formula on BR(a) (and, as a solution of the Dirichlet problem, it also
coincides with ϕ on SR(a)).

Though this proof for Part (II) is formally correct, we have cheated insofar that existence
has not been achieved with the help of the explicit formula, as we have set it out as a principal
aim in this section. Rather, we have simply cited the existence result, based on a different
approach, from a previous section. Next we will show, however, that it is also possible to follow
the guiding idea of this section and indeed establish the existence of the solution by a direct and
quite illustrative analysis of the Poisson integral:

Alternative proof for Part (II) of the theorem (without usage of the earlier existence result). For
simplicity of notation we assume a = 0 and R = 1. We first record that P1( · , y) ∈ C∞(B1)
is harmonic on B1 for each fixed y ∈ S1. Indeed, this can be checked by explicit computation
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2.8. Green’s representation formula and the Poisson integral 49

of the Laplacian or, alternatively by the following more abstract argument: It follows from the
symmetry of GB1 that GB1(x, y) is harmonic in x ∈ B1, and thus also P1(x, y) = y ·∇yGB1(x, y)
is harmonic in x ∈ B1. In any case, the smoothness and harmonicity of P1( · , y) then implies (by
exchange of differentiation and integration with the usual justification) that the Poisson integral
defines a harmonic h ∈ C∞(B1).

It remains to prove the attainment of the boundary datum

lim
B13x→x0

h(x) = ϕ(x0) for every boundary point x0 ∈ S1 , (BC)

and this will be achieved by relying on the following crucial properties of the Poisson kernel:

• For every fixed x ∈ B1, we have P1(x, · ) ≥ 0 on S1 (clear from the explicit formula for P1)
and

∫
S1

P1(x, · ) dHn−1 = 1 (by Part (I) applied to the constant harmonic function ≡ 1). In

view of these properties we may understand the Poisson integral
∫

S1
hP1(x, · ) dHn−1

as a weighted integral mean of h with weight function P1(x, · ).

• The weight functions P1(x, · ) concentrate at a boundary point x0 ∈ S1 in the limit
B1 3 x→ x0 in the sense that we have locally uniform convergence limB13x→x0 P1(x, · ) ≡ 0
on S1 \ {x0} (which easy to check from the explicit formula for P1).

On the basis of these observations, for arbitrary x0 ∈ S1, x ∈ B1, δ > 0, and for the function h
defined by the Poisson integral, we estimate

|h(x)−ϕ(x0)| =
∣∣∣∣ ∫

S1

ϕP1(x, · ) dHn−1 − ϕ(x0)

∫
S1

P1(x, · ) dHn−1

∣∣∣∣
≤
∫

S1

|ϕ−ϕ(x0)|P1(x, · ) dHn−1

≤ 2 max
S1

|ϕ|
∫

S1\Bδ(x0)
P1(x, · ) dHn−1 + sup

S1∩Bδ(x0)
|ϕ−ϕ(x0)|

∫
S1

P1(x, · ) dHn−1

= 2 max
S1

|ϕ|
∫

S1\Bδ(x0)
P1(x, · ) dHn−1 + sup

S1∩Bδ(x0)
|ϕ−ϕ(x0)| .

Here, the first term on the right-hand side vanishes in the limit B1 3 x→ x0, and thus we have
lim supB13x→x0

|h(x)−ϕ(x0)| ≤ supS1∩Bδ(x0) |ϕ−ϕ(x0)|. By continuity of ϕ at x0, the remaining
right-hand side vanishes when we send δ ↘ 0. Thus we have limB13x→x0 |h(x)−ϕ(x0)| = 0,
which is nothing but the boundary condition (BC).

Remark. As a side benefit of (a slight variant of) this last proof we indeed obtain the following
refined statement: For ϕ ∈ L1(S1 ;Hn−1), the function h defined by the Poisson integral on B1

is still smooth and harmonic, and it satisfies (BC) for all continuity points x0 ∈ S1 of ϕ even if
ϕ is not continuous on the whole sphere S1.

Remarks (on the Poisson integral formula).

(1) With the Poisson integral formula we have an explicit integral formula for solutions at
hand. This is essentially the best possible situation for which one may reasonably hope in
the theory of PDEs.
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(2) The Poisson integral formula resembles the Cauchy integral formula from complex analysis,
and indeed on discs in R2 these two formulas are essentially equivalent.
In more detail, the Cauchy integral formula — for simplicity of notation stated only in the case of center at 0 — asserts

H(z) = 1
2πi

∫
κR

H(ζ)
ζ−z dζ = 1

2πR

∫
SR

H(ζ)
ζ−z ζ dH1(ζ) for z ∈ BR and a holomorphic function H on a neighborhood of the

disc BR ⊂ C, where κR : [0, 2π)→ Sr , t 7→ Reit is the standard parametrization of the circle SR. Using the reflection

z∗ = R2z/|z|2 = R2/z /∈ BR and subtracting the Cauchy integral for the holomorphic function ζ 7→ H(ζ)
ζ−z∗ (ζ−z) on

BR, the formula can be rewritten as H(z) = 1
2πR

∫
SR

[
ζ
ζ−z−

ζ
ζ−z∗

]
H(ζ) dH1(ζ) (where, for z = 0 the term ζ

ζ−z∗

should be omitted). By computation one finds 1
2πR

[
ζ
ζ−z−

ζ
ζ−z∗

]
= 1

2πR
Re ζ+z

ζ−z = PR(z, ζ) for ζ ∈ SR, and thus the

rewritten formula is nothing but the Poisson integral for the real and imaginary parts of H.

As a side benefit, we also record the representation H(z)−i const = 1
2πR

∫
SR

ζ+z
ζ−z Re H(ζ) dH1(ζ) for z ∈ BR of the

holomorphic function H, up to a purely imaginary constant, in terms of boundary values of the real part only. This
representation follows directly from the Poisson integral formula Re H(z) = 1

2πR

∫
SR

(
Re ζ+z

ζ−z
)

Re H(z) dH1(z) and the

fact that the real part determines the imaginary part of H up to a constant.

(3) Many properties of harmonic functions are closely connected to the Poisson
integral formula.

For instance, since PR(0, y−a) = 1
Hn−1(SR(a))

is constant in y ∈ SR(a), the evaluation of

the Poisson integral in the center x = a of the relevant ball BR(a) gives just the ordinary
mean value. Thus, the Poisson integral formula for center points reduces to the
spherical mean value property.

Moreover, from the Poisson integral formula one can also read off the following special
Harnack inequality with sharp constants: If h ∈ C2(BR(a)) is a non-negative harmonic
function on BR(a) ⊂ Rn, then it holds

Rn−2 R−|x−a|
(R+|x−a|)n−1

h(a) ≤ h(x) ≤ Rn−2 R+|x−a|
(R−|x−a|)n−1

h(a) for x ∈ BR(a)

and

sup
Br(a)

h ≤
(
R+r

R−r

)n
inf

Br(a)
h for r ∈ (0, R) .

More on the deduction of these inequalities and the optimality of the involved constants will
be said in the exercise class.

For further properties related to the Poisson integral formula we refer to the subsequent
Section 2.9.

(4) By exchange of derivative and integral (which is easy to justify) one can deduce the Poisson
integral formula for the derivatives: If h ∈ C2(BR(a)) ∩ C0(BR(a)) is harmonic on
BR(a) and α ∈ Nn

0 is an arbitrary multi-index, then there holds

∂αh(x) =

∫
SR(a)

h(y)

(
∂

∂x

)α
PR(x−a, y−a) dHn−1(y) for all x ∈ BR(a) .

Remarks (Green function and Green function representation for other domains).
Here, by F we always denote the fundamental solution of the Laplace equation on Rn.

(1) For n ≥ 3, the full space Rn has the Green function GRn given by GRn(x, y) = F (y−x)
for x, y ∈ Rn. In contrast, the two-dimensional plane R2 does not have a Green function.

Proof. The first claim follows directly from the properties of F , where the decisive fact is
lim|y|→∞ F (y) = 0 in dimensions n ≥ 3. To show the non-existence claim on R2, suppose
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the contrary. Then F−GR2(0, · ) would extend to a harmonic function h0 on R2, and from
lim|y|→∞GR2(0, y) = 0 we would get lim|y|→∞ h0(y) = lim|y|→∞ F (y) =∞. Thus, h0 would
posses an interior minimum point and would necessarily be constant by the strong minimum
principle. Clearly this contradicts lim|y|→∞ h0(y) =∞, and thus we have indeed shown the
non-existence claim.

(2) The half-space Hn
..= (0,∞)×Rn−1 in Rn has — this is easily verified from the definition

— the Green function GHn given by

GHn(x, y) = F (y−x)− F (y−x−) for x, y ∈ Hn

with the reflection x− ..= x−2x1e1 of x at ∂Hn = {0}×Rn−1. Similar to the case of balls,
also GHn(x, · ) has an interpretation as the electric potential induce by a unit point charge
at x an an antipolar unit point charge at x∗. Moreover, we remark that F (y−x) and
F (y−x−) individually tend to zero for Hn 3 y → ∞ in case n ≥ 3, while in case n = 2
they tend to ∞ and only their difference satisfies, due to cancellation, the requirement
limHn3y→∞GHn(x, y) = 0 on the Green function.

The corresponding Green function representation for solutions h of the Dirichlet problem

∆h ≡ 0 on Hn , h(0, · ) = ϕ on Rn−1

with ϕ ∈ C0(Rn−1) takes the form

h(t, x′) =
2t

nωn

∫
Rn−1

ϕ(y)

(t2 + |y−x′|2)
n
2

dy for (t, x′) ∈ Hn .

However, the representation only applies if the additional boundary point ∞ is suitably
taken into account by imposing certain decay conditions on ϕ and h, respectively. Without
such conditions the integral need not converge and uniqueness in the Dirichlet problem
need not hold (where the basic non-uniqueness examples are given by hα(t, x′) ..= αt, while
uniqueness holds under the assumptions of the Phragmén-Lindelöf principle on Hn).

The proof that the above formula indeed defines solutions of the Dirichlet problem can be
carried out more or less along the lines of the Poisson integral formula. Alternatively, one
can also exploit a direct connection between the ball and the half-space case, which draws on
the observation that reflection of the domain at S1 in the sense of Ω 7→ Ω∗ ..= {x∗ : x ∈ Ω}
transforms

(
B 1

2
( 1

2
e1)
)∗

= e1+Hn (where e1 is the first canonical basis vector in Rn) and on

the Kelvin transformation: Indeed, for u : Ω→ R on Ω \Rn \ {0}, its Kelvin transform
u∗ : Ω∗ → R on Ω∗ is defined by u∗(y) ..= |y|2−nu(y∗) for y ∈ Ω∗. It is easy to check that
this is an involutory operation (i.e. (u∗)∗ = u), and with some more effort one can also
verify ∆(u∗)(y) = |y|−4(∆u)∗(y) for u ∈ C2(Ω) and y ∈ Ω∗. In particular, this mean that
the Kelvin transformation preserves harmonicity and carries solutions of Dirichlet problems
on B 1

2
( 1

2
e1) into solutions of Dirichlet problems on e1+Hn. A proof of the representation

formula on Hn via this correspondence will be treated in the exercises.

(3) For some simple domains with symmetries, the Green function G is a finite linear combi-
nation of shifted fundamental solutions and indeed corresponds to the potential induced by
finitely many point charges placed at suitable reflection points. Therefore, explicit formulas,
which are adaptions of those for balls and half-spaces, can also be obtained for half-balls
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(4 charges), quarter-balls (8 charges), quarter-spaces (4 charges), and complements
of balls (2 charges), for instance. In these cases the charges and there positions can indeed
be guessed from intuition and pictures. As an example, the case of the unit half-ball will be
treated in the exercises.

In a similar way, for cubes and infinite strips, one can think of infinitely many charges
and obtain a series expansion of the Green function at least.

(4) For general domains Ω, in contrast, there is no hope for an explicit representation
of the Green function GΩ, and not even its existence is clear. However, even if existence
of GΩ were at hand, in order to obtain solutions via the Green function representation we
would also need that (∂ν)yGΩ(x, y) exists for y ∈ ∂Ω and has properties similar to those of
the Poisson kernel needed in the PIF proof. These are complicated matters which cannot
be approached without a more elaborate theory. Thus, the Green function approach is
not well-suited for the existence theory on general domains Ω, and here we indeed
give up on that approach. However, we will return to the Dirichlet problem in the later
Section 2.10, and then, by a different strategy, we will indeed establish the solvability of the
Dirichlet problem for harmonic functions on quite general domains Ω. We remark that, once
this is achieved, as side benefit we also obtain the existence of the Green function GΩ and
the availability of the the Green function representation on Ω (at least up to the discussion
of C1 up-to-the-boundary regularity of GΩ(x, · )).

Remarks (Green functions of the second kind; Neumann problem). Consider a Gauss
domain Ω in Rn.

(1) For the Neumann problem

∆u = f on Ω , ∂νu = ψ on ∂Ω

with prescribed f ∈ C0(Ω) and ψ ∈ C0(∂Ω), the second term in Green’s representation
formula is ‘bad’ in the sense that it involves the non-prescribed boundary values u ∂Ω.
Thus, in connection with the Neumann problem one naturally attempts to eliminate this
second term rather than the first one, which is ‘bad’ in the Dirichlet but ‘good’ in the
Neumann case. In line with the previous approach, one may then hope to replace the
normal derivative y 7→ (∂ν)yF (x−y) of the fundamental solution in this second term with
y 7→ (∂ν)yF (x−y)− ∂νhx(y), where the corrector functions hx with x ∈ Ω are harmonic on
Ω with ∂νhx(y) = (∂ν)yF (x−y) for all y ∈ ∂Ω. This cannot work out as stated, however,
since we know from Sections 2.1 and 2.3 that it holds∫
∂Ω
∂νhx(y) dHn−1(y) = 0 but

∫
∂Ω

(∂ν)yF (x−y) dHn−1(y) = 1 .

Hence, we can hope at best that (∂ν)yF (x−y) and ∂νhx(y) differ by the constantHn−1(∂Ω)
−1

only, that is,

(∂ν)yF (x−y)− ∂νhx(y) = Hn−1(∂Ω)
−1

for all x ∈ Ω , y ∈ ∂Ω .
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(2) On the basis of the considerations in (1) we introduce the following terminology:

Definition (Green function of the second kind, Neumann function). We call a
function GN : {(x, y) ∈ Ω×Ω : y 6= x} → R the Green function of the second kind for
Ω or the Neumann function of Ω if it satisfies the following two conditions:

(a) For every x ∈ Ω, the function y 7→ F (x−y)−GN(x, y) on Ω \ {x} can be extended to a
harmonic function on Ω.

(b) For every x ∈ Ω, the function GN(x, · ) ∈ C1(Ω \ {x}) has constant normal derivative

∂ν(GN(x, · )) ≡ Hn−1(∂Ω)
−1

on ∂Ω.

(3) The Green function of the second kind is unique up to constants in the following sense: If
GN and G̃N are Green functions of the second kind for Ω, then there exists constants Cx ∈ R
such that G̃N(x, y) = GN(x, y)+Cx for all x, y ∈ Ω. This readily follows from the observation
that the harmonic extensions of y 7→ F (x−y)−GN(x, y) and y 7→ F (x−y)−G̃N(x, y) solve
the same Neumann problem with a solution unique up to constants; see Section 2.3.

Furthermore, if a Green function GN of the second kind for Ω is chosen in such a way that
x 7→

∫
∂ΩG

N(x, y) dHn−1(y) is constant on Ω (where the constancy can always be ensured
by a suitable choice of the previously mentioned Cx), then GN is symmetric in the sense
of GN(y, x) = GN(x, y) for all x, y ∈ Ω with y 6= x. This can be proved by the reasoning
used for symmetry already in the Dirichlet case.

(4) IfGN is a Green function of the second kind for Ω, we can follow the reasoning in the Dirichlet
case once more (which essentially means that we combine Green’s representation formula
with Green’s second identity for harmonic corrector functions) to obtain the following Green
function representation: For u ∈ C2(Ω) ∩ C1(Ω), setting f ..= ∆u and ψ ..= ∂νu ∂Ω, we
have

u(x) = −
∫
∂Ω
udHn−1 −

∫
∂Ω
GN(x, y)ψ(y) dHn−1(y) +

∫
∂Ω
GN(x, y)f(y) dHn−1(y)

for all x ∈ Ω. Here, the term −
∫
∂Ω udHn−1 is an x-independent constant whose occurrence

is not at all surprising since the solution of the Neumann problem is unique only up to
constants.

(5) The Green function GN
B1

of the second kind for the unit ball B1 ⊂ Rn is given by fully
explicit formulas (only) in dimension n = 2 and dimension n = 3. Indeed, one
instance of such a Green function is given, for x, y ∈ B1 with y 6= x, by

GN
B1

(x, y) =
1

2π

[
log |y−x|+ log(|x| |y−x∗|)

]
if n = 2 ,

GN
B1

(x, y) = − 1

4π

[
1

|y−x|
+

1

|x| |y−x∗|
− log(1−x · y+|x| |y−x∗|)

]
if n = 3

(with x∗ ..= x
|x|2 and convention |x| |y−x∗| = 1 for y 6= 0 = x, as used earlier). For n = 2,

this means that GN
B1

(x, y) = F (y−x) + F (|x|(y−x∗)) differs from the Green function in the
Dirichlet case only in the sign between the two terms, and clearly F (|x|(y−x∗)) is harmonic
in y ∈ B1 as required by (2a) above. For n = 3, we have GN

B1
(x, y) = F (y−x)+F (|x|(y−x∗))

+ 1
4π log(1−x·y+|x||y−x∗|), where harmonicity of F (|x|(y−x∗)) in y ∈ B1 is evident, while
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harmonicity of log(1−x · y+|x| |y−x∗|) in y ∈ B1 can be checked by computation. Fur-
thermore, in both cases one can verify the requirement (2b) for the normal derivative by
explicit computation. The above instance of GN

B1
also has the properties from (3) that∫

S1
GN

B1
(x, y) dHn−1(y) is constant in x ∈ B1 (with value 0 for n = 2 and value −2+ log 2

for n = 3; this follows from the coincidence F (y−x) = F (|x|(y−x∗)) for y ∈ S1 and the
spherical mean value property for harmonic functions) and that GN

B1
is symmetric.

For further background information, constructive derivations of the formulas in dimension
n ∈ {2, 3}, and series expansions of GN

B1
for n ≥ 4, we refer to [6, Sections 2.10, 2.11, 2.12].

(6) In order to write out the Green function representation and deduce an existence
result for the Neumann problem on B1 ⊂ Rn, n ∈ {2, 3}, we first observe that the
formulas in (5) simplify for y ∈ S1 since |x||y−x∗| = |y−x| holds in this case. Going with
the simplified formulas into the general Green function representation of (4), we obtain for
the harmonic case f = ∆h ≡ 0 with −

∫
S1
hdHn−1 = 0 or equivalently with h(0) = 0:

Theorem (solvability of the Neumann problem on the 2d disc and the 3d ball).
Consider n ∈ {2, 3}, the unit disc/ball B1 ⊂ Rn, the unit circle/sphere S1 = ∂B1 ⊂ Rn,
and ψ ∈ C0(S1). Setting, for x ∈ B1,

h(x) ..= − 1

π

∫
S1

(
log |y−x|

)
ψ(y) dH1(y) if n = 2 ,

h(x) ..=
1

4π

∫
S1

(
2

|y−x|
− log(1−x·y+|y−x|)

)
ψ(y) dH2(y) if n = 3 ,

we obtain a harmonic function h on B1 with limB13x→x0 x ·∇h(x) = ψ(x0) − −
∫

S1
ψ dHn−1

for all x0 ∈ S1. In particular, if ψ has zero mean, i.e.∫
S1

ψ dHn−1 = 0 , (∗)

then h ∈ C2(B1) with h(0) = 0 solves the Neumann problem

∆h ≡ 0 on B1 , lim
B13x→x0

x ·∇h(x) = ψ(x0) for all x0 ∈ S1 .

Sketch of proof. Harmonicity of h can be checked, as usual, by differentiation under the
integral. In order to verify the boundary conditions, one computes, for y ∈ S1,

x ·∇x
(
− 1

π
log |y−x|

)
= P1(x, y)− 1

2π
if n = 2 ,

x ·∇x
1

4π

(
2

|y−x|
− log(1−x·y+|y−x|)

)
= P1(x, y)− 1

4π
if n = 3

and thus establishes a connection with the Poisson kernel P1. This readily gives

x ·∇h(x) =

∫
S1

P1(x, y)ψ(y) dHn−1(y)−−
∫

S1

ψ dHn−1 −→
x→x0

ψ(x0)−−
∫

S1

ψ dHn−1

for x0 ∈ S1, where the convergence results from the known fact that the Poisson integral
solves the Dirichlet problem. Finally, from the above formulas one also reads off h(0) = 0 in
case n = 2 and h(0) = (2− log 2)−

∫
S1
ψ dH2 in case n = 3. This establishes all claims (with

the indicated simplifications in the particular case
∫

S1
ψ dHn−1 = 0).

54



2.8. Green’s representation formula and the Poisson integral 55

We emphasize that the zero-mean hypothesis (∗) above and the corresponding require-
ment

∫
∂Ω ψ dHn−1 = 0 for general Gauss domains Ω are basic necessary and sufficient

conditions for solvability of the Neumann problem. Indeed, the sufficiency of (∗) for
solvability on the 2d disc and the 3d ball is demonstrated by the preceding theorem, while
the necessity of the general condition for obtaining an harmonic h ∈ C2(Ω) ∩ C1(Ω) with
∂νh = ψ on ∂Ω is clear from the observation

∫
∂Ω ψ dHn−1 =

∫
∂Ω ∂νhdHn−1 = 0.

Further Remarks (Green functions of the second kind on unbounded domains).
Consider an unbounded open set Ω in Rn whose boundary ∂Ω is C1 in a neighborhood of
Hn−1-a.e. boundary point.

(7) For unbounded Ω, the situation differs from the one described in Remark (1) above insofar
that

∫
∂Ω ∂νhdHn−1 need no longer vanish for harmonic h but can take arbitrary values.

Thus, one may reasonably hope to find Green functions of the second kind whose boundary
normal derivative is not only constant but even zero, and indeed we coin the following
definition: We call a function GN : {(x, y) ∈ Ω×Ω : y 6= x} → R the Green function of
the second kind for Ω if, for every x ∈ Ω, the function y 7→ F (x−y)−GN(x, y) extends
harmonicly to Ω and it holds ∂ν(GN(x, · )) ≡ 0 on ∂Ω together with limΩ3y→∞G

N(x, y) = 0.

(8) For the half-space Hn
..= (0,∞)×Rn−1 ⊂ Rn in dimension n ≥ 3, the unique Green

function of the second kind GN
Hn

in the sense of (7) is given by the explicit formula

GN
Hn(x, y) = F (y−x) + F (y−x−) for x, y ∈ Hn

(with fundamental solution F and x− ..= x−2x1e1, as used earlier). This function is easily
seen to satisfy the above conditions and differs from its Dirichlet counterpart only in the sign
between the two terms. The corresponding Green function representation for solutions
h of the Neumann problem on Hn, n ≥ 3,

∆h ≡ 0 on Hn , ∂1h(0, · ) = ψ on Rn−1 , lim
Hn3x→∞

h(x) = 0

with ψ ∈ C0(Rn−1) reads

h(t, x′) =
2

n(n−2)ωn

∫
Rn−1

ψ(y)

(t2+|y−x′|2)
n−2

2

dy for t ∈ (0,∞) , x′ ∈ Rn−1

and is valid under suitable assumptions on the decay of h and ψ, respectively, at ∞.

The half-plane H2
..= (0,∞)×R ⊂ R2 in dimension 2, in contrast, does not have a

Green function of the second kind in the sense of (7). This follows by a simple reflection
argument from the earlier observation that the plane R2 does not posses a Green function (of
the first kind). Still, the formula (which is more or less suggested by the higher-dimensional
considerations)

h(t, x′) =
1

2π

∫
R

ψ(y) log(t2+(y−x′)2) dy for t ∈ (0,∞) , x′ ∈ R

is a sort-of Green function representation for the Neumann problem on H2 and is
valid, once more, under suitable assumptions on h or ψ. The solutions h obtained from this
formula cannot be expected, in general, to satisfy the decay limH23x→∞ h(x) = 0 at∞, since
the integrand does not tend to 0 for (t, x′)→∞. However, in the special case

∫
R
ψ dy = 0,

the formula can be rewritten as h(t, x′) = 1
2π

∫
R
ψ(y)

[
log(t2+(y−x′)2)− log(1+t2+x′2)

]
dy,

and then in view of limH23(t,x′)→∞ log(t2+(y−x′)2)− log(1+t2+x′2) = 0 one may expect the
decay limH23x→∞ h(x) = 0 again.
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2.9 Isolated singularities, analyticity, and reflection principles

The first result of this section is essentially based on two crucial ingredients: One is the solvability
of the Dirichlet problem for harmonic functions on balls, the other is the comparison with the
fundamental solution F (which is implemented via several different applications of maximum
and comparison principles).

Theorem (on isolated singularities). Consider an open set Ω in Rn, a point a ∈ Rn, and a
harmonic function h on Ω\{a} (which is again open and has a as an isolated boundary point).

(I) Removable singularity theorem: If limx→a
h(x)

|F (x−a)| = 0 holds, then h has an extension
to a harmonic function on all of Ω.

(II) If either lim supx→a
h+(x)
|F (x−a)| < ∞ or lim supx→a

h−(x)
|F (x−a)| < ∞ holds, then there exist a

constant c ∈ R and a harmonic function h0 on all of Ω such that

h(x) = cF (x−a) + h0(x)

holds for all x ∈ Ω \ {a}.

Remarks (on the isolated-singularity theorem).

(1) Part (I) says: If a harmonic function h grows at isolated singularity a slower than the
fundamental solution at 0, then the singularity is artificial and can be removed.

(2) Part (II) can be expressed as follows: If, for an harmonic function h, either h+ or h−
grows at an isolated singularity at most as fast as the fundamental solution at 0, then h
exhibits at this singularity, quite precisely, the behavior of a multiple of the fundamental
solution. Roughly speaking this means that a harmonic function h can only have an isolated
singularity ‘worse’ than the one of the fundamental solution if both h+ and h− tend to ∞
(at least along some sequences) faster than the fundamental solution .

(3) Specifically and most crucially, Part (II) applies to every non-positive harmonic function on
Ω \ {a} (then c ≥ 0) and every non-negative harmonic function on Ω \ {a} (then c ≤ 0).

Proof of Part (I), i.e. the removable singularity theorem. We choose a ball Br(a) ⊂ Ω and con-
sider the solution h0 ∈ C2(Br(a)) ∩ C0(Br(a)) of the Dirichlet problem ∆h0 ≡ 0 on Br(a) and
h0 = h on Sr(a) (where existence of h0 is known from either Section 2.5 or Section 2.8). Apply-
ing an earlier Phragmén-Lindelöf principle (see Remark (3) on such principles in Section 2.4) to
both h−h0 and h0−h on Br(a) \ {a}, we deduce from h−h0 ≡ 0 on Sr(a) that h−h0 ≡ 0 also
on Br(a) \ {a}. We now extend h by setting h(a) ..= h0(a). Then h = h0 is harmonic on Br(a),
and by assumption h is harmonic on Ω \ {a}. Thus, the extended h is harmonic on all of Ω.

In the next lemma we record a partial assertion of Part (II) of the theorem. The lemma
is crucially based on the Harnack inequality, and its proof will be treated in the exercise class.
Here we will take it as given and use it as a tool in establishing the more general claim in (II).

Lemma. Consider an open set Ω in Rn with 0 ∈ Ω. Then, for every non-negative harmonic
function h on Ω \ {0}, we have

lim sup
x→0

h(x)

|F (x)|
≤ C lim inf

x→0

h(x)

|F (x)|
<∞

with some constant C ∈ [1,∞) which depends solely on the space dimension n.
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Proof for Part (II) of the theorem. For simplicity of notation we assume a = 0, and we only

treat the case lim supx→0
h−(x)
|F (x)| < ∞. We then choose L ∈ R with L > lim supx→0

h−(x)
|F (x)| and

observe lim infx→0
h(x)−LF (x)
|F (x)| > 0 (since F is negative near 0). In particular, the harmonic

function h−LF is positive near 0, and since it suffices to establish the claim for h−LF instead
of h and on a small ball instead of Ω, we can and do indeed assume h ≥ 0 on Ω from now on.
By the preceding lemma we then have lim supx→0

h(x)
|F (x)| < ∞. Thus, there exist a ball Br ⊂ Ω

with center 0 and radius r < 1 (the last restriction only relevant for n = 2 in order to stay in
the region where F < 0) and a constant c ∈ [0,∞) such that h ≤ c|F | = −cF holds on Br \ {0}.
Taking M ..= maxSr h ≥ 0, this gives specifically h−M ≤ −cF on Br \ {0}, and indeed we now
fix c ∈ [0,∞) as smallest possible constant13 in the inequality

h−M ≤ −cF on Br \ {0} .

Next we record that the auxiliary harmonic function h̃ ..= M−h−cF on Ω is non-negative on

Br \{0}, and in addition we will show lim infx→0
h̃(x)
|F (x)| = 0. Once we achieve this, by the lemma

we get even limx→0
h̃(x)
|F (x)| = 0, and by the removable singularity theorem h̃ extends to a harmonic

function h0 on Ω. With h = M−h0−cF on Ω \ {0} we then arrive at the claim of (II) (with

−c instead of c and M−h0 instead of h0). It remains to show lim infx→0
h̃(x)
|F (x)| = 0. However,

if this were not the case, it would mean h̃
|F | ≥ ε on Bδ \ {0} for some ε ∈ (0,∞) and some

δ ∈ (0, r). Recalling the choice of h̃ and rearranging terms, we would get h−M ≤ −(c−ε)F on
Bδ \ {0}. For c−ε < 0 this is clearly impossible, since h is non-negative, while −(c−ε)F goes
to −∞ at 0. For c−ε ≥ 0, however, we have h−M ≤ 0 ≤ −(c−ε)F on the sphere Sr, and then
from h−M ≤ −(c−ε)F on both Bδ \ {0} and Sr we infer, by the comparison principle for the
harmonic functions h−M and −(c−ε)F , that h−M ≤ −(c−ε)F holds also on Br \{0}. This last
inequality contradicts the choice of c as the smallest possible constant in the above inequality.

Thus, we indeed have lim infx→0
h̃(x)
|F (x)| = 0 as required, and the proof is complete.

The next result shows that harmonic function are, in a sense, even better than C∞.

Theorem (analyticity of harmonic functions). If h is harmonic on an open set Ω in Rn,
then h is indeed real-analytic on Ω.

Remark (on analyticity in multiple variables). A function f : Ω→ R is called (real-)analytic
on Ω or function of class Cω on Ω if every point a ∈ Ω has a neighborhood U on which f
can be expanded as a (uniformly) convergent power series

∑
α∈Nn0

cα(x−a)α with coefficients

cα ∈ R and center a, that means more precisely limm→∞
∑
|α|≤m cα(x−a)α = f(x) converges

(uniformly) for x ∈ U . If this is the case, then f is also of class C∞ on Ω, and the power
series is necessarily the Taylor series of f at a, that is, its coefficients are the Taylor coefficients
cα = 1

α1!α2!·...·αn!∂
αf(a).

We now record some consequences of analyticity:

Corollary (identity theorem). If h is harmonic on a connected open set Ω in Rn with either
h ≡ 0 on a non-empty open subset of Ω or ∂αh(x0) = 0 for all α ∈ Nn

0 at one point x0 ∈ Ω,
then h ≡ 0 holds on all of Ω.

13Indeed, the smallest constant exists, since there is at least one admissible constant by the preceding reasoning,
and then the smallest one can simply be obtained as the infimum of all admissible constants.
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Proof. The set S ..= {x ∈ Ω : ∂αh(x) = 0 for all α ∈ Nn
0} is non-empty, since contains either

the open subset or the point x0 from the assumption. It is also open, since the Taylor series at
a ∈ S is the null series, and thus, by analyticity, h vanishes on a neighborhood of a and that
neighborhood is contained in S. Finally, since all ∂αh are continuous, S is also closed in Ω. In
conclusion, S is non-empty, open, and closed in the connected set Ω. This implies S = Ω.

Corollary (refined strong maximum/minimum principle). If h is harmonic on a con-
nected open set Ω in Rn and if there exists a local maximum or minimum point of h in Ω, then
h is constant on Ω.

Proof. Clearly, the local maximum/minimum point is a global maximum/minimum point for h
restricted to an open neighborhood of this point. By the strong maximum/minimum principle,
h is constant on the neighborhood, and by the identity theorem, h is constant even on Ω.

Finally, we turn to the proof of the analyticity result which is crucially based on estimates for
the derivatives of harmonic functions. Indeed suitable estimates can be obtained in (at least) two
ways: One can either rely on the Poisson integral formula for the derivatives and estimate the
derivatives of the Poisson kernel, or one can use a comparably elementary induction argument.
Here, we follow the latter approach whose outcome is summarized in the following lemma:

Lemma (refined interior estimates for harmonic functions). Consider a harmonic func-
tion h on an open set Ω in Rn and a ball Br(a) ⊂ Ω. Then, for every m ∈ N0, we have

|Dmh(a)| ≤ 2n

ωnrn

(
2nm

r

)m
‖h‖1;Br(a) ,

where |Dmh(a)| ..= supv1,v2,...,vm∈Sn−1
1
|Dmh(a)(v1, v2, . . . , vm)| denotes the operator norm of the

symmetric m-linear mapping Dmh(a) ∈ Lmsym(Rn).

Remark. The estimates in the lemma resemble those obtained in Section 2.6 by taking deriva-
tives of a mollification kernel η. However, as the decisive advantage, the present lemma provides
better and more explicit constants. The underlying reason for this lies in the fact that mollifi-
cation kernels (with compact support) are not analytic themselves and thus cannot be expected
to yield constants which are suitable for a proof of analyticity. (In contrast, the Poisson kernel
is analytic, which is the basis for the alternative approach mentioned above.)

Proof of the lemma. We first show by induction on m ∈ N0 that, for Bm%(a) ⊂ Ω, we have

|Dmh(a)| ≤
(
n

%

)m
sup

Bm%(a)
|h| .

Since this claim trivially holds for m = 0, we can directly proceed to the induction step, in
which we assume the estimate for Dmh(a) with m ∈ N0 and establish it for Dm+1h(a) in
case B(m+1)%(a) ⊂ Ω. To this end, we consider v1, v2, . . . , vm, w ∈ Sn−1

1 and g ..= ∂vm . . . ∂v2∂v1h.
Using the mean value property and the divergence theorem for ∂wg = div(gw), we find |∂wg(a)| =

1
ωn%n

∣∣ ∫
B%(a) ∂wg dx

∣∣ ≤ 1
ωn%n

∫
S%(a) |g|dH

n−1 ≤ n
% supS%(a) |g|, and in view of the above choices we

infer |Dm+1h(a)| ≤ n
% supS%(a) |Dmh|. By the induction hypothesis, we can control the right-

hand side of the last estimate through |Dmh(b)| ≤
(
n
%

)m
supBm%(b) |h| ≤

(
n
%

)m
supB(m+1)%(a) |h|

at each point b ∈ B%(a), and thus we arrive at |Dm+1h(a)| ≤
(
n
%

)m+1
supB(m+1)%(a) |h|. This
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completes the induction. Combining the outcome of the induction argument with % = r
2m and

the mean value estimate |h(b)| ≤ 1
ωn(r/2)n ‖h‖1;Br(a) for b ∈ Br/2(a), we finally end up with

|Dmh(a)| ≤
(

2nm
r

)m
supBr/2(a) |h| ≤ 2n

ωnrn

(
2nm
r

)m‖h‖1;Br(a).

Proof of the analyticity theorem. Fix a ball B2r(a) ⊂ Ω. We estimate, for m ∈ N, the remainder

Rm−1
a h(x) ..= h(x) −

∑m−1
k=0

1
k!D

kh(a)(x−a, x−a, . . . , x−a) = h(x) −
∑
|α|≤m−1

∂αh(a)
α! (x−a)α in

the Taylor formula. To this end, we use the well-known Lagrange estimate for the remainder
Rm−1
a h, the estimate ‖Dmh(x)‖ ≤ 2n

ωnrn

(
2nm
r

)m‖h‖1;B2r(a) for x ∈ Br(a) from the preceding

lemma and the observation14 that m! ≥ (me )m for m ∈ N. We infer

|Rm−1
a h(x)| ≤ |x−a|

m

m!
sup

Br(a)
|Dmh| ≤ 2n

ωnrn

(
2en|x−a|

r

)m
‖h‖1;B2r(a)

for x ∈ Br(a), and thus we have shown limm→∞Rm−1
a h(x) = 0 in case |x−a| < r/(2en) (and in

fact we can also read off that the convergence is uniform in x ∈ Br/(3en)(a)). This means that
the Taylor series of h at an arbitrary point a ∈ Ω converges (uniformly) on a neighborhood of a
and coincides with h itself there. So, we have established analyticity of h.

Finally, as the last topic of this section, we discuss the possibility to extend harmonic func-
tions by reflection:

Theorem (reflection principles for harmonic functions). Consider an open set Ω in Rn, and
decompose it into Ω+

..= {x ∈ Ω : x1 > 0}, Ω− ..= {x ∈ Ω : x1 < 0}, and Ω0
..= {x ∈ Ω : x1 = 0}.

Moreover, assume that Ω is symmetric with respect to reflection at the hyperplane {0}×Rn−1,
that is {x− : x ∈ Ω} = Ω with the notation x− ..= x−2x1e1 = (−x1, x2, x3, . . . , xn) for x ∈ Rn.

(I) Odd reflection principle: If h ∈ C2(Ω+) ∩C0(Ω+ ∪Ω0) is harmonic on Ω+ with zero
boundary values h ≡ 0 on Ω0, then odd reflection

h(x) ..=

{
h(x) for x ∈ Ω+ ∪ Ω0

−h(x−) for x ∈ Ω−

defines a harmonic function h on Ω.

(II) Even reflection principle: If h ∈ C2(Ω+)∩C1(Ω+∪Ω0) is harmonic on Ω+ with zero
boundary normal derivative ∂1h ≡ 0 on Ω0, then even reflection

h(x) ..=

{
h(x) for x ∈ Ω+ ∪ Ω0

h(x−) for x ∈ Ω−

defines a harmonic function h on Ω.

Remarks (on the reflection principles).

(1) In both reflection principles it is clear that h is harmonic on Ω+ ∪ Ω− (simply by taking
into account ∆x[h(x−)] = (∆h)(x−)). The essential non-trivial claim, however, is C2

14This observation can be proved by an induction argument (based on the estimate
(
1+ 1

m

)m ≤ e). Alternatively
it can be viewed — at least for m� 1 which suffices for our purposes — as a consequence of the famous Stirling
formula limm→∞

m!
(m

e
)m
√
m

=
√

2π, which describes the growth of the factorials.
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regularity of h across Ω0 (i.e. on an open neighborhood of Ω0 in Ω). With this regularity
is at hand it becomes evident that h is harmonic across Ω0 (by continuity of ∆h) and then
also smooth and analytic across Ω0 (by earlier theorems).

(2) In particular, the reflection principles yield Cω boundary regularity of harmonic
functions in the specific cases considered: If h ∈ C2(Ω+) ∩ C0(Ω+ ∪ Ω0) is harmonic on
Ω+, then we already know analyticity h ∈ Cω(Ω+) in the interior. Beyond that, in case
of zero Dirichlet boundary values on the boundary portion Ω0, the odd reflection principle
implies even up-to-the-boundary analyticity h ∈ Cω(Ω+∪Ω0). Similarly, the even reflection
principle yields up-to-the-boundary analyticity in case of zero Neumann boundary values
on the boundary portion Ω0.

(3) For the even reflection principle, it suffices to impose only the slightly weaker hypotheses
h ∈ C2(Ω+)∩C0(Ω+ ∪Ω0), ∂1h ∈ C0(Ω+ ∪Ω0) instead of h ∈ C2(Ω+)∩C1(Ω+ ∪Ω0). This
will be clear from one of the proofs at least.

Next we provide two alternative proofs for the odd reflection principle.

1st proof for Part (I) of the theorem. Since h vanishes on Ω0, we clearly have h ∈ C0(Ω). For
a ∈ Ω, we set ra ..= |a1| > 0 in case a ∈ Ω+ ∪ Ω− and ra ..=∞ in case a ∈ Ω0. With this choice
of ra we claim −

∫
Br(a) hdx = h(a) for every ball Br(a) ⊂ Ω with r ∈ (0, ra). Indeed, in case

a ∈ Ω± this claim is immediate from the mean value property of the harmonic function h on
Ω±, since the choice of ra ensures Br(a) ⊂ Ω±. In case a ∈ Ω0, we first find

∫
Br(a)∩Ω+

h(x) dx =∫
Br(a)∩Ω−

h(x−) dx, by reflection of the variable, and then end up with −
∫

Br(a) hdx = 0 = h(a).

All in all, we have thus shown that h ∈ C0(Ω) satisfies the mean value property on balls with
radii r ∈ (0, ra), and then harmonicity of h on Ω follows by the characterization lemma in
Section 2.7.

2nd proof for Part (I) of the theorem. Since h vanishes on Ω0, we clearly have h ∈ C0(Ω). For
a ∈ Ω0 and Br(a) ⊂ Ω, the Poisson integral formula

h0(x) ..=

∫
SR(a)

h(y)Pr(x, y) dHn−1(y)

=

∫
Sr(a)∩Ω+

h(y)Pr(x, y) dHn−1(y)−
∫

Sr(a)∩Ω−

h(y−)Pr(x, y) dHn−1(y)

for x ∈ Br(a) provides a harmonic function h0 ∈ C2(Br(a)) ∩ C0(Br(a)) with h0 = h on Sr(a).
Specifically, for x ∈ Br(a) ∩ Ω0, by reflection of the y-variable and the fact that Pr(x, y

−) =
Pr(x, y) for x1 = 0 we infer that the integral on Sr(a) ∩ Ω+ equals the one on Sr(a) ∩ Ω−.
Thus, these integrals cancel out, and we read off that h0 vanishes on Br(a)∩Ω0. Consequently,
h−h0 ∈ C2(Br(a)∩Ω±)∩C0(Br(a) ∩ Ω±) is harmonic on Br(a)∩Ω± with zero boundary values.
Applying earlier maximum/uniqueness principles on Br(a) ∩ Ω±, we conclude that h = h0 is
harmonic on all of Br(a). Since every a ∈ Ω0 is contained in a suitable ball Br(a), this proves
that h is harmonic across Ω0.

Here, the second proof of (I) can be adapted to establish the even reflection principle in Part
(II) of theorem. This adaption and also alternative approach to (II) by reduction to (I) will be
treated in the exercises.
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Further Remarks (on the reflection principles).

(4) Similar principles for the reflection at the unit sphere S1 are based on the Kelvin transform
(defined by u∗(y) ..= |y|2−nu(y∗); see Remark (2) on Green functions in Section 2.8).

In detail, these principles apply on an open set Ω in Rn \ {0} which is symmetric with respect to reflection at S1, and
on such Ω they can be stated as follows:

Odd reflection principle: If h ∈ C2(Ω ∩ B1) ∩ C0(Ω ∩ B1) is harmonic on Ω ∩ B1 with h ≡ 0 on Ω ∩ S1, then

h(x) ..=
{
h(x) for x ∈ Ω ∩ B1

−h∗(x) for x ∈ Ω \ B1

defines a harmonic function h on Ω.

Even reflection principle: If h ∈ C2(Ω ∩ B1) ∩ C1(Ω ∩ B1) is harmonic on Ω ∩ B1 with ∂νh ≡ 0 on Ω ∩ S1 (where ν
denotes the outward unit normal to B1), then

h(x) ..=
{
h(x) for x ∈ Ω ∩ B1

h∗(x) for x ∈ Ω \ B1

defines a harmonic function h on Ω.

Sketch of proof. We first argue that we have the boundary regularity h ∈ C1(Ω∩B1) also in case of the odd reflection
principle. Indeed, this follows from the boundary regularity recorded in the above Remark (2) for flat boundaries,
since the Kelvin transformation connects the Dirichlet problem on (parts of) B1 to the one on (parts of) the half-space
Hn; compare Remark (2) in Section 2.8 once more. With the regularity h ∈ C2(Ω∩B1)∩C1(Ω∩B1) at hand it is then
straightforward to check by computations of derivatives of h∗ that h ∈ C2(Ω\S1)∩C1(Ω) holds in the situation of both
principles. Moreover, since the Kelvin transformation preserves harmonicity, h is harmonic on Ω \ S1. From Green’s
first identity we next obtain

∫
Ω∩B1

∇h ·∇ϕ dx =
∫
Ω∩S1

∂νhϕ dHn−1 and
∫
Ω\B1

∇h ·∇ϕ = −
∫
Ω∩S1

∂νhϕ dHn−1 for

all ϕ ∈ C∞cpt(Ω) (even with zero right-hand sides in the situation of the even reflection principle). Adding up these

two equations, we conclude that h is weakly harmonic and thus harmonic on Ω.

(5) There are reflection principles (with applications to boundary regularity) also for other
PDEs.

2.10 Perron’s method for the Dirichlet problem on general do-
mains

In this section we return to the existence issue in the Dirichlet problem for harmonic functions

∆h ≡ 0 on Ω , h = ϕ on ∂Ω , (DP)

on (quite) general domains Ω. Indeed, in the sequel we will generally assume that Ω is a bounded
open set in Rn. We will see, however, that this alone does suffice for solutions h to exist and
that more assumptions on Ω will come into play.

We now describe an elegant method, known as the Perron method, for solving the Dirichlet
problem on general domains. This method, which decisively draws on Section 2.7, has the
advantage that it produces a candidate (in fact the only candidate) for a solution very quickly:

Definition (subfunction for the Dirichlet problem). Consider a bounded open set Ω in Rn and
a bounded function ϕ : ∂Ω→ R. A subfunction u for the boundary values ϕ is a subharmonic
function u ∈ C0(Ω) (in the generalized sense of Section 2.7) such that lim supΩ3x→a u(x) ≤ ϕ(a)
holds for all a ∈ ∂Ω
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Definition (Perron function). Consider a bounded open set Ω in Rn and a bounded function
ϕ : ∂Ω→ R. The Perron function h for ϕ is the function h : Ω→ R obtained as the pointwise
supremum of all subfunctions for ϕ, that is

h(x) ..= sup{u(x) : u is a subfunction for ϕ} for all x ∈ Ω .

Remarks (on the definition of the Perron function). Consider a bounded open set Ω in Rn and
a bounded function ϕ : ∂Ω→ R.

(1) The supremum in the definition of the Perron function h is always finite, and indeed we
have

inf
∂Ω
ϕ ≤ h ≤ sup

∂Ω
ϕ on Ω .

Proof. The left-hand inequality results from the fact that the constant function with value
inf∂Ω ϕ is a subfunction for ϕ. The right-hand inequality follows from the observation that
every subfunction u for ϕ satisfies u ≤ sup∂Ω ϕ on Ω by the weak maximum principle (in a
form recorded towards the end of Section 2.4).

(2) If there exists a solution h0 ∈ C2(Ω)∩C0(Ω) of the Dirichlet problem (DP), then this
solution h0 necessarily equals the Perron function h. Thus, the Perron function is
a perfectly reasonable candidate for a solution and indeed yields a solution whenever
one exists at all.

Proof. Since h0 is a subfunction for ϕ, the Perron function h satisfies, by its very definition,
h ≥ h0 on Ω. Moreover, by a comparison principle, every subfunction u for ϕ satisfies u ≤ h0

on Ω, and from this we infer, again by definition, h ≤ h0 on Ω.

Regardless of the preceding remark it is not at all obvious and still needs to be proved
under suitable assumptions that the Perron function for ϕ actually solves the Dirichlet
problem (DP). One out of two major steps in this direction is addressed in the following
theorem.

Theorem (harmonicity of the Perron function). Consider a bounded open set Ω in Rn

and a bounded function ϕ : ∂Ω→ R. Then the Perron function h for ϕ is harmonic on Ω.

In order to approach the proof of this theorem we first establish an auxiliary lemma:

Lemma (harmonic replacement). Consider an open set Ω in Rn, a ball BR(a) ⊂ Ω, and
a subharmonic function u on Ω which is continuous on SR(a). Then there exists a function
h ∈ C2(BR(a))∩C0(BR(a)) which is harmonic on BR(a) and satisfies h = u on SR(a). Moreover,
by setting

u(x) ..=

{
h(x) for x ∈ BR(a)

u(x) for x ∈ Ω \ BR(a)
,

we obtain a new subharmonic function u on Ω which satisfies u ≥ u on Ω.

The function u in the lemma is sometimes called the harmonic replacement of u (with regard
to the ball BR(a)).
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Proof of the lemma. The existence of h is known from Section 2.5 and Section 2.8, respectively.
Moreover, from the comparison principle in Section 2.7 we infer h ≥ u on BR(a) and thus u ≥ u
on Ω. To complete the proof we show that u is subharmonic. To this end, as seen in Section
2.7, it suffices to verify u(x) ≤ −

∫
Br(x) udy whenever Br(x) ⊂ Ω with r ∈ (0, rx), where rx are

arbitrary positive numbers. Indeed, in case x ∈ BR(a) with r < rx ..= R−|x−a| > 0, we have
Br(x) ⊂ BR(a) and u(x) = h(x) = −

∫
Br(x) hdy = −

∫
Br(x) udy by the mean value property of h. In

case x ∈ Ω \BR(a) the subharmonicity of u implies u(x) = u(x) ≤ −
∫

Br(x) udy ≤ −
∫

Br(x) udy even
for arbitrary r < rx ..=∞.

Proof of the theorem. We fix an arbitrary ball BR(a) ⊂ Ω. The definition of the Perron function
h yields a sequence (uk)k∈N of subfunctions for ϕ such that limk→∞ uk(a) = h(a). Possibly
replacing uk with the pointwise maximum max{u1, u2, . . . , uk} (which is still subharmonic; see
Section 2.7), we can assume that the sequence is non-decreasing, that is, uk+1 ≥ uk on Ω for all
k ∈ N. Since subfunctions are continuous by definition, we can apply the lemma and consider
the harmonic replacements uk of uk, here all taken with regard to the fixed ball BR(a). By
the lemma, the uk are still subharmonic on Ω and hence subfunctions for ϕ. In particular, the
maximum principle yields the uniform bound uk ≤ sup∂Ω ϕ on Ω for all k ∈ N. Moreover,
since the comparison principle implies h1 ≤ h2 ≤ h3 ≤ . . . for the harmonic functions hk in
the definition of uk, we also get uk+1 ≥ uk on Ω for all k ∈ N. Now, the Harnack convergence
theorem from Section 2.6 applies to the monotonous sequence (uk)k∈N and guarantees that the
on-BR(a)-harmonic functions uk converge for k →∞ to a harmonic limit function h on BR(a).
Since the Perron function h lies above all the subfunctions uk, it also lies above h on BR(a), that
is, h ≤ h on BR(a). However, in view of h(a) = limk→∞ uk(a) ≥ limk→∞ uk(a) = h(a), we have
equality h(a) = h(a) at the center point a. Next we use a contradiction argument to show h = h
even on the full ball BR(a). Indeed, assume that this is false and there exists some x ∈ BR(a) with
h(x) < h(x). Then, by definition of the Perron function, h(x) < u∗(x) holds for some subfunction
u∗ for ϕ. Furthermore, the functions u∗k

..= max{uk, u∗} and their harmonic replacements u∗k,
still taken with regard to BR(a), are subfunctions for ϕ with u∗k+1 ≥ u∗k on Ω for all k ∈ N. As

before, the Harnack convergence theorem then yields a harmonic limit function h∗ ..= limk→∞ u
∗
k

on BR(a) with h∗(a) = h(a). In view of u∗k ≥ uk we have u∗k ≥ uk and h∗ ≥ h on BR(a). Thus,
h−h∗ is a non-positive harmonic function on BR(a) with h(a)−h∗(a) = h(a)−h(a) = 0, and
the strong maximum principle implies the coincidence h = h∗ on all of BR(a). With this, we
finally arrive at h(x) = h∗(x) ≥ u∗1(x) ≥ u∗1(x) ≥ u∗(x) which contradicts the choice of u∗ above.
Thus, we have proved that h = h is harmonic on BR(a). Since we have worked on arbitrary ball
BR(a) ⊂ Ω, this means that the Perron function h is harmonic on Ω.

The second step in the existence program consists in proving that the Perron function attains
the prescribed boundary values. In fact, the next theorem characterizes situations in which this
is the case with the help of some more terminology:

Definition (barriers and regular boundary points). Consider an open set Ω in Rn.

(I) A function b : Ω → R is called an (upper) barrier for a boundary point a ∈ ∂Ω on Ω
if b is continuous on Ω∪ {a}, superharmonic on Ω, and lower semicontinuous on Ω with
b > 0 on Ω \ {a} and b(a) = 0.

(II) We say that there exists a local barrier for a boundary point a ∈ ∂Ω if there exist some
r > 0 and a barrier for a on Ω ∩ Br(a). A boundary point a ∈ ∂Ω is called (a) regular
(boundary point) for Ω if a local barrier for a exists.
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Theorem (regular boundary points and attainment of boundary values). For a bounded
open set Ω in Rn and a boundary point a ∈ ∂Ω, the following assertions are equivalent :

(1) The point a is a regular boundary point for Ω, that is, there exists a local barrier for a.

(1′) There is a barrier for a on Ω.

(2) For every ϕ ∈ C0(∂Ω), the Perron function h for ϕ satisfies limΩ3x→a h(x) = ϕ(a).

(2′) For every bounded ϕ : ∂Ω → R which is continuous at a, the Perron function h for ϕ
satisfies limΩ3x→a h(x) = ϕ(a).

Proof of the implication (1) =⇒ (1′). By assumption there exist some r > 0 and a barrier b
for a on Ω ∩ B2r(a). It follows from the lower semicontinuity of b on Ω ∩ B2r(a) and b > 0 on
Ω ∩ B2r(a)\{a} that b0 ..= min

Ω∩B2r(a)\Br(a)
b exists and is positive. We now claim that a barrier

b̃ for a on Ω is obtained by setting b̃ ..= min{b, b0} on Ω∩B2r(a) and b̃ ..= b0 on Ω\Br(a) (where
both these sets are open in Ω and the definitions coincide on their overlap). Indeed, continuity,
superharmonicity, and lower semicontinuity carry over from b to min{b, b0} and then, by locality,
to b̃; compare Section 2.7 for the operations with superharmonicity. Moreover, we clearly have
b̃ > 0 on Ω \ {a} and b̃(a) = 0. So, b̃ is a barrier for a on Ω as claimed.

Next we establish the implication which is crucial for the existence theory.

Proof of the implication (1′) =⇒ (2′). By assumption there exists a barrier b for a on Ω. We
consider a bounded ϕ : ∂Ω→ R which is continuous at a and an arbitrary ε > 0. Thanks to the
continuity of ϕ at a we can fix a δ > 0 such that

|ϕ−ϕ(a)| ≤ ε on Bδ(a) ∩ Ω .

Since sup∂Ω |ϕ| is finite and min∂Ω\Bδ(a) b is positive, we can next fix some C ∈ [0,∞) such that

2 sup
∂Ω
|ϕ| ≤ C min

∂Ω\Bδ(a)
b .

Finally, since b is continuous on Ω ∪ {a} with b(a) = 0, we can find some δ̃ ∈ (0, δ] such that

Cb ≤ ε on B
δ̃
(a) ∩ Ω .

Now, the superharmonicity of b implies that ϕ(a)−ε−Cb is subharmonic on Ω. In addition,
ϕ(a)−ε−Cb is upper semicontinuous on Ω and ≤ ϕ on ∂Ω by the first two choices above (and
the fact that Cb ≥ 0 on Ω). All in all, ϕ(a)−ε−Cb is a subfunction for ϕ, and analogously
ϕ(a)+ε+Cb is a super function for ϕ (which can be defined by saying that −(ϕ(a)+ε+Cb) is a
subfunction for −ϕ). For the Perron function h for ϕ, these considerations yield

ϕ(a)−ε−Cb ≤ h ≤ ϕ(a)+ε+Cb on Ω ,

where the left-hand inequality follows directly from the definition of the Perron function, while
the right-hand inequality rests also on the observation that every subfunction for ϕ stays below
the superfunction ϕ(a)+ε+Cb. In other words, we have shown |h−ϕ(a)| ≤ ε+Cb on Ω, and
taking into account the choice of δ̃ we end up with

|h−ϕ(a)| ≤ 2ε on B
δ̃
(a) ∩ Ω .

Since we started with an arbitrary ε > 0, we have indeed shown limΩ3x→a h(x) = ϕ(a).
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At this stage, we record that the implication (2′) =⇒ (2) is trivial. Thus, we can complete
the proof of the theorem by providing:

Proof of the implication (2) =⇒ (1). Setting u(x) ..= |x−a| for x ∈ Rn, we obtain a continuous
convex function u on Rn. In particular, u is subharmonic on Rn and on Ω (compare Section
2.7) and is a subfunction for its boundary values ϕ ..= u ∂Ω ∈ C0(∂Ω). Consequently, the
Perron function h for ϕ satisfies h ≥ u on Ω. Moreover, from the previous theorem and the
assumption (2) we infer that h is harmonic, thus superharmonic and continuous, on Ω with
limΩ3x→a h(x) = u(a) = 0. When we extend h by setting h(y) ..= lim infΩ3x→y h(x) for y ∈ ∂Ω,
then h is also lower semicontinuous on Ω with h ≥ u > 0 on Ω and h(a) = 0. All in all, h is a
barrier for a on (even all of) Ω.

Combining the last two theorems, we can indeed solve the Dirichlet problem for harmonic
functions on a bounded open set Ω in Rn under a necessary and sufficient condition,
namely regularity, at the boundary ∂Ω. We summarize this situation and moreover provide
a sufficient geometric criterion for regularity in the next theorem:

Main Theorem (Dirichlet problem for harmonic functions on general domains).
Consider a bounded open set Ω in Rn.

(I) The Dirichlet problem

∆h ≡ 0 on Ω , h = ϕ on ∂Ω

has, for every ϕ ∈ C0(∂Ω), a (unique) solution h ∈ C2(Ω) ∩ C0(Ω) if and only if
all boundary points of Ω are regular for Ω.

(II) If Ω satisfies an exterior ball condition at a boundary point a ∈ ∂Ω, that is, there exist
y ∈ Rn and r > 0 with Br(y) ∩Ω = {a}, then the boundary point a is regular for Ω.

In particular, if Ω satisfies an exterior ball condition at every boundary point in ∂Ω, then the
Dirichlet problem with an arbitrary continuous boundary datum has a (unique) solution.

Proof. We first prove (I). On one hand, if the Dirichlet problem is generally solvable, then
condition (2) in the previous theorem is satisfied for every a ∈ ∂Ω, and that theorem then yields
that all a ∈ ∂Ω are regular for Ω. On the other hand, if all points a ∈ ∂Ω are regular for Ω, then
the last two theorem imply that the Perron function h for given ϕ ∈ C0(∂Ω) is harmonic on Ω
with limΩ3x→a h(x) = ϕ(a), that is, it extends continuously to Ω and solves the above Dirichlet
problem.

In order to prove (II) it suffices to provide a local barrier for a. Indeed, using the ball Br(y)
of the exterior ball condition and setting

b(x) ..=

{
r2−n − |x−y|2−n if n ≥ 3

− log r + log |x−y| if n = 2

for x ∈ Rn \ {y}, we obtain a harmonic function on Rn \ {y}, which is strictly positive on
Rn \Br(y) and vanishes on Sr(y) . In particular, in view of Ω \ {a} ⊂ Rn \Br(y) and a ∈ Sr(y),
this means that b is barrier for a on (even all of) Ω.
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With the above theorem, the existence issue for the Dirichlet problem is reduced to the
question if the domain under consideration has only regular boundary points. Thus, we now
discuss the latter and still non-trivial question in some detail — without detailed proofs and full
background explanations, however.

Remarks (on regular and irregular boundary points).

(0) Regularity (and thus also irregularity) of a boundary point a ∈ ∂Ω for an open set Ω is a
local property of Ω near a, that is, it depends only on Ω ∩ Br(a) with arbitrarily small
r > 0.

Moreover, regularity of a boundary point a ∈ ∂Ω for Ω is preserved when Ω is made
smaller. More precisely, if a is regular for Ω, and Ω̃ is an open subset of Ω with a ∈ ∂Ω̃,
then a is regular also for Ω̃.

Both these properties are immediate from the definition of regularity, and the first one may,
in fact, be seen as an advantage of using local barriers in this definition.

(1) Convex domains Ω ⊂ Rn satisfy an exterior ball condition at every point a ∈ ∂Ω. In
fact, in this case there exists even a half-space H = {y ∈ Rn : ν · (y−a) > 0} with ν ∈ Sn−1

1

such that Ω ∩H = ∅, and as a consequence we have Ω ∩ Br(a+rν) = {a} for every r > 0.

An open set Ω ⊂ Rn has a C2 boundary if, for every a ∈ ∂Ω, there exist δ > 0, T ∈ O(Rn),
and f ∈ C2(Rn−1) such that Ω ∩ Br(a) = T ({(x, y) ∈ Rn−1×R : y < f(x)}) ∩ Br(a), that
is, Ω coincides locally near a with the rotated subgraph of a C2 function. Starting from the
observation that C2 functions are locally majorized by parabolas, one can prove that C2

subgraphs and then also open sets in Rn with C2 boundary satisfy an exterior ball
condition at every boundary point.

An open set Ω ⊂ Rn is called C2-quasiconvex if, for every a ∈ ∂Ω, there exist r > 0, a
convex open set C in Rn, and a C2 diffeomorphism Φ from Rn on an open subset of Rn

such that Ω ∩ Br(a) = Φ(C) ∩ Br(a), that is, Ω coincides locally near a with the image of
a convex set under a C2 diffeomorphism. This notion includes both convex domains and
open sets with C2 boundary, and still C2-quasiconvex open sets in Rn can be shown to
satisfy an exterior ball condition at every boundary point.

In conclusion, the above theorem thus guarantees the solvability of the Dirichlet
problem for harmonic functions on all these domains Ω and thus on a quite rich
class of Ωs.

(2) However, the exterior ball condition is only sufficient, not necessary for regularity and can,
in fact, be weakened as follows:

If an open set Ω ⊂ Rn satisfies an exterior cone condition at a ∈ ∂Ω, that is, there exists
a non-empty open cone15 C ⊂ Rn with vertex at the origin such that Ω ∩ (a+C) = {a},
then a is still regular for Ω.

Specifically in two dimensions, a point a ∈ ∂Ω is even regular for an open set Ω ⊂ R2,
if Ω merely satisfies an exterior segment condition at a, that is, there exists y ∈ R2

such that the line segment from a to y does not intersect Ω. In order to prove this, it
suffices to consider the basic case of the disc-with-a-cut D∗ ..= B2

1 \ ((−∞, 0]×{0}).
15Here a set C ⊂ Rn is a cone with vertex at the origin if x ∈ C implies R>0x ⊂ C.
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However, the solvability of the Dirichlet problem on D∗ (and with this also the regularity
of all boundary points of D∗) then follows from the solvability of the Dirichlet problem
on the half-disc D+

..= B2
1 ∩ ((0,∞)×R), since harmonic functions h on D∗ correspond via

h̃(x) ..= h(x2
1−x2

2, 2x1x2) to harmonic functions h̃ on D+. Here the background reason for the
correspondency is that R2 → R2, x 7→ (x2

1−x2
2, 2x1x2) can be identified with the holomorphic

map C→ C, z 7→ z2, but clearly one can also compute ∆h̃(x) = 4|x|2∆h(x2
1−x2

2, 2x1x2) and
thus check the correspondency ‘by hands’.

(3) Examples for irregular boundary points are isolated boundary points, points near
which the boundary is covered by finitely many C1-submanifolds of dimension
m−2, and in case n ≥ 3 also certain sharp interior cusps.

(4) In principle, though it is not always easy to check, there is even a necessary and
sufficient criterion for regularity, the Wiener criterion or Wiener test: A boundary
point a ∈ ∂Ω is regular for an open set Ω in Rn if and only if there holds

∞∑
k=0

2(n−2)kCap2

(
B2−k(a) \ Ω

)
=∞ ,

where the harmonic capacity of 2-capacity Cap2 is the set function defined by

Cap2(K) ..= inf

{∫
Rn
|∇u|2 dx : u ∈ C1

cpt(R
n) , u ≥ 1 on K

}
for compact K ⊂ Rn .

The theory of (this) capacity and the proof of the Wiener criterion go beyond the scope of
this lecture. We briefly mention, however, that one can show the estimates

const(n)L n(K)
n−2
n ≤ Cap2(K) ≤ const(n)Hn−2(K) for compact K ⊂ Rn

(where the left-hand term shall be read as 0 in case n = 2, L2(K) = 0). Thus, the 2-capacity
of K is related to the measures L n(K) and Hn−2(K) and may — though it does not truly
behave like a measure itself — be regarded as an indicator value for a sort-of size of K.
In this light, the Wiener criterion indeed expresses that the complement Br(a) \ Ω of Ω in
Br(a) does not decrease, in way quantified via Cap2, too fast for r ↘ 0.

2.11 The Newton potential as a solution of the Poisson equation

We first introduce a class of function spaces, which will be an important tool in this section.

Definition (Hölder spaces).

(I) Consider a function g : X → RN on a metric space X and α ∈ (0, 1]. We say that g is
α-Hölder continuous or Hölder continuous with exponent α on X if there exists
a constant C ∈ [0,∞) such that

|g(y)−g(x)| ≤ CdX (y, x)α holds for all x, y ∈ X .

The smallest possible constant

[g ]α;X
..= sup

x,y∈X
y 6=x

|g(y)−g(x)|
dX (y, x)α

∈ [0,∞)
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in the inequality is then called the Hölder constant or the (α)-Hölder seminorm
of g on X . We complement this definition for the case of the exponent α = 0 with the
convention that g is 0-Hölder-continuous on X if it is continuous and bounded on X , with
corresponding seminorm [g ]0;X

..= oscX g ..= supx,y∈X |g(y)−g(x)| ∈ [0,∞).

(II) Consider an open set Ω in Rn, a non-negative integer k ∈ N0, and an exponent α ∈ [0, 1].
The Hölder space Ck,α(Ω) consists of all functions u ∈ Ck(Ω) such that ∂βu is bounded
on Ω for all β ∈ Nn

0 with |β| ≤ k and additionally α-Hölder-continuous on Ω in case
|β| = k. This space is equipped with the Ck,α-norm

‖u‖Ck,α(Ω)
..= max
|β|≤k

(
sup

Ω
|∂βu|

)
+ max
|β|=k

[∂βu]α;Ω .

The Hölder space Ck,α(Ω,RN ) of RN -valued functions u is defined analogously.

It is straightforward to verify that the Hölder spaces are indeed Banach spaces with the
given norms, and thus we refrain from explicating any details on this.

Remarks (on Hölder spaces).

(1) Hölder continuous functions with Hölder exponent 1 are also called Lipschitz continuous
functions. Correspondingly, in case of the exponent 1, the Hölder constant is also known as
Lipschitz constant.

(2) The local Hölder space Ck,α
loc (Ω) consists of all u ∈ Ck(Ω) such that, for every x ∈ Ω, there

exists some open neighborhood O of x with u O ∈ Ck,α(O). The space Ck,αcpt (Ω) consists of

all u ∈ Ck,α(Ω) with compact support in Ω.

(3) In case of convex Ω there holds16 Ck+1,α(Ω) ⊂ Ck,1(Ω), and an inductive application of this
fact shows that, for u ∈ Ck,α(Ω), the lower-order partial derivatives ∂βu with |β| ≤ k−1 are

all Lipschitz continuous on Ω. Specifically, Ck+1,α
loc (Ω) ⊂ Ck,1

loc(Ω) holds even on arbitrary Ω,

and thus all derivatives ∂βu with |β| ≤ k of u ∈ Ck,α
loc (Ω) are always continuous.

(4) The space Ck,0
loc(Ω) is nothing but the standard space Ck(Ω) of k-times continuously differ-

entiable functions on Ω.

Now we turn to a systematic treatment of the Poisson equation

∆u = f on Ω

with given right-hand side f : Ω → R and unknown u : Ω → R. In the case Ω = Rn, the last
term in Green’s representation formula from Section 2.8 provides a candidate solution, for which
we introduce a specific name:

Definition (Newton potential). For f ∈ L∞cpt(R
n), the Newton potential Nf : Rn → R of

f is defined as the convolution of f with the fundamental solution F , that is,

Nf (x) ..= (F∗f)(x) =

∫
Rn
F (x−y)f(y) dy for x ∈ Rn .

16To prove this assertion one reasons that boundedness of ∇∂βu on Ω implies Lipschitz continuity of ∂βu on Ω
by the standard estimate |∂βu(y)−∂βu(x)| =

∣∣ ∫ 1

0
∇∂βu(x+t(y−x))·(y−x) dt

∣∣ ≤ ( supΩ |∇∂βu|
)
|y−x|.
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In this definition, the integral exists with finite value, since we have F ∈ L1
loc(R

n) and
f ∈ L∞cpt(R

n). In particular, thanks to the compact support assumption on f , the fact that
F /∈ L1(Rn) does not cause trouble.

Remarks (on basic solution properties of the Newton potential).

(1) The heuristic equation “∆F = δ0” from Section 2.1 suggests the heuristic computation

∆Nf (x) =

∫
Rn

∆F (x−y)f(y) dy =

∫
Rn
f(x−z)∆F (z) dz =

∫
Rn
f(x−z) dδ0(z) = f(x)

for x ∈ Rn. Thus, one may conjecture (though not yet on a very solid basis) that Nf solves
the Poisson equation with right-hand side f , that is,

∆Nf = f on Rn .

(2) The prediction of (1) is actually correct in many situations, and for

f ∈ C2
cpt(Ω)

we now provide a fully valid quick proof: We first rewrite the definition of Nf as Nf (x) =∫
Rn
f(x−z)F (z) dz for x ∈ Rn. Then, since the pure second derivatives ∂2

i f are bounded
on Rn with compact support and F ∈ L1

loc(R
n) holds, the differentiation

∆Nf (x) =

∫
Rn

∆f(x−z)F (z) dz = lim
ε↘0

∫
Rn\Bε

[
∆zf(x−z)

]
F (z) dz

is justified. For fixed x ∈ Rn we choose a radius R ∈ (0,∞) with x− spt f ⊂ BR. Then the
domain of the last integral can be replaced by BR \ Bε, and from Green’s second identity
(with vanishing boundary term on SR) and the fact that ∆F ≡ 0 on BR \ Bε we infer∫

Rn\Bε

[
∆zf(x−z)

]
F (z) dz

=

[ ∫
Sε

z
|z| ·∇f(x−z)F (z) dHn−1(z) +

∫
Sε

z
|z| ·∇F (z)f(x−z) dHn−1(z)

]
.

Using the explicit form of F — as in the proof of Green’s representation formula in Section
2.8 — we see that the first integral on the right-hand side vanishes in the limit ε ↘ 0,
while the second integral turns out to be the mean value integral −

∫
Sε
f(x−z) dHn−1(z).

Summarizing and using the continuity of f , we thus conclude

∆Nf (x) = lim
ε↘0
−
∫

Sε

f(x−z) dHn−1(z) = f(x) for all x ∈ Rn .

(3) The C2 assumption on the right-hand side f in (2) is artificial, since the Poisson
equation ∆u = f does not at all involve derivatives of f . However, if we merely assume

f ∈ L∞cpt(R
n) ,
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by similar arguments we can show at least that Nf ∈ L∞loc(R
n) is generally a very weak

solution of the Poisson equation in the sense that∫
Rn

Nf∆ϕdx =

∫
Rn
fϕdx for all ϕ ∈ C∞cpt(R

n) .

Indeed, in order to prove this, we fix ϕ ∈ C∞cpt(R
n) and rewrite with Fubini’s theorem∫

Rn
Nf∆ϕdx =

∫
Rn

∫
Rn
F (x−y)f(y) dy∆ϕ(x) dx

=

∫
Rn
f(y)

∫
Rn
F (z)∆ϕ(y+z) dz dy .

For arbitrary y ∈ Rn we choose L ∈ (0,∞) with sptϕ ⊂ BL(y). Then, based on Green’s
second identity, the harmonicity of F on Rn \ {0}, and the form of ∇F we compute, once
more in the spirit of Section 2.8,∫

Rn
F (z)∆ϕ(y+z) dz

= lim
ε↘0

∫
BL\Bε

F (z)∆ϕ(y+z) dz

= lim
ε↘0

[
−
∫

Sε

F (z) z
|z| ·∇ϕ(y+z) dHn−1(z) +

∫
Sε

z
|z| ·∇F (z)ϕ(y+z) dHn−1(z)

]
= lim

ε↘0
−
∫

Sε

ϕ(y+z) dHn−1(z) = ϕ(y) .

Inserting the result of the last computation in the preceding equality, we end up with∫
Rn

Nf∆ϕdx =

∫
Rn
fϕdy for all ϕ ∈ C∞cpt(R

n) ,

that is, with the claimed weak solution property.

(4) In the sequel we further refine these observations to natural results which do not require the
C2 assumption for the right-hand side f , but still yield solutions in a better sense than just
the very weak one. These refinements, however, require more elaborate regularity estimates
in Hölder spaces:

Theorem (regularity and solution properties of the Newton potential).

(I) Suppose

f ∈ L∞cpt(R
n) .

Then the Newton potential u ..= Nf satisfies

u ∈ C1,α
loc (Rn) for all α ∈ [0, 1)

with corresponding estimate

‖u‖C1,α(Ω) ≤ const(n, α,R)‖f‖∞;Rn
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for all bounded open subsets Ω of Rn with bound diam(Ω∪ spt f) ≤ R <∞. Moreover, u
is a weak solution of the Poisson equation ∆u = f on Rn in the sense that

−
∫
Rn
∇u ·∇ϕdx =

∫
Rn
fϕdx for all ϕ ∈ C∞cpt(R

n) .

(II) Suppose
f ∈ C0,α

cpt(R
n) for some α ∈ (0, 1) .

Then the Newton potential u ..= Nf satisfies

u ∈ C2,α
loc (Rn)

with corresponding estimate

‖u‖C2,α(Ω) ≤ const(n, α,R)‖f‖C0,α(Rn)

for all bounded open subsets Ω of Rn with bound diam(Ω∪ spt f) ≤ R <∞. Moreover, u
is a classical solution of the Poisson equation ∆u = f on Rn.

Proof of Statement (I). We first show that we have u ∈ C1(Rn) with gradient given by

∇u(x) =

∫
Rn
∇F (x−y)f(y) dy for x ∈ Rn . (∗)

Here, the integral on the right-hand side exists with finite value in Rn, since we have ∇F ∈
L1

loc(R
n,Rn) and f ∈ L∞cpt(R

n). We emphasize, however, that the identity (∗) cannot be derived
directly from the definition of u as Newton potential of f by the usual exchange of differentiation
and integration, since there exists no x-independent majorant for the mappings y 7→ ∇F (x−y)
with singularity at x. However, we now circumvent this problem by “cutting out” the singularity
as follows. We choose a C∞ function η : R→ [0, 1] with η ≡ 0 on (−∞, 1] and η ≡ 1 on [2,∞).
Then, for ε > 0, we set

uε(x) ..=

∫
Rn
F (x−y)η

(
|x−y|
ε

)
f(y) dy ∈ R for x ∈ Rn ,

and we infer pointwise convergence limε↘ uε(x) = u(x) for x ∈ Rn from the dominated con-
vergence theorem with majorant y 7→ |F (x−y)f(y)|. For uε, we indeed have (exchange of
differentiation and integration now justified, since z 7→ F (z)η(|z|/ε) is smooth on Rn and thus
y 7→ ∇x

[
F (x−y)η(|x−y|/ε)

]
is bounded on spt f)

∇uε(x) =

∫
Rn
∇x
[
F (x−y)η

(
|x−y|
ε

)]
f(y) dy

=

∫
Rn
∇F (x−y)η

(
|x−y|
ε

)
f(y) dy +

1

ε

∫
Rn
F (x−y)η′

(
|x−y|
ε

)
x−y
|x−y|f(y) dy

Using this formula and taking into account η′ ≡ 0 on Rn \ B2ε, it is not difficult to estimate∣∣∣∣∇uε(x)−
∫
Rn
∇F (x−y)f(y) dy

∣∣∣∣
≤
[ ∫

x− spt f
|∇F (z)|

∣∣∣η( |z|ε )−1
∣∣∣ dz +

1

ε

∫
B2ε

|F | dz
(

sup
Rn
|η′|
)]
‖f‖∞;Rn −→

ε↘0
0 ,
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where the former integral vanishes in the limit by dominated convergence with majorant |∇F |,
while the latter term is controlled through the explicit form of the fundamental solution F .
Indeed, with this we have shown

lim
ε↘0
∇uε(x) =

∫
Rn
∇F (x−y)f(y) dy locally uniformly in x ∈ Rn

(where “locally” stems from the fact that one occurrence of x in the domain of integration in
the previous estimate could not be eliminated). Combining the locally uniform convergence of
the gradients with the previously observed pointwise convergence limε↘0 uε = u, we conclude
that we have u ∈ C1(Rn) and that ∇u is indeed given by (∗).

With the knowledge that u ∈ C1(Rn) holds, the claimed weak solution property follows
via a simple integration by parts from the very weak solution property obtained in Remark
(3). Alternatively, at this stage, one may deduce the same from Remark (3) via a mollification
argument which is discussed in the exercises.

Finally, we come to the C1,α estimate. For bounded open Ω ⊂ Rn and x, x̃ ∈ Ω with
d ..= |x̃−x| > 0, we obtain from (∗) the basic estimate

|∇u(x̃)−∇u(x)| ≤
∫

spt f
|∇F (x̃−y)−∇F (x−y)|dy ‖f‖∞;Rn .

For y /∈ B2d(x), the line segment [x−y, x̃−y] from x−y /∈ B2d to x̃−y has length d and thus
stays outside B|x−y|/2. Using this and the fact that ∇2F is homogeneous of degree −n, we gain
the control |∇F (x̃−y) −∇F (x−y)| ≤ d sup[x−y,x̃−y] |∇2F | ≤ const(n)d|x−y|−n for y /∈ B2d(x).
For y ∈ B2d(x) ⊂ B3d(x̃), in contrast, since ∇F is homogeneous of degree 1−n, we directly
get |∇F (x̃−y) − ∇F (x−y)| ≤ const(n)

[
|x̃−y|1−n + |x−y|1−n

]
. Using these two estimates and

observing also d ≤ R and spt f ⊂ BR(x) (by the choice of R in the statement of the theorem),
we end up with

|∇u(x̃)−∇u(x)|

≤ const(n)

[
d

∫
B2R(x)\B2d(x)

|x−y|−n dy +

∫
B3d(x̃)

|x̃−y|1−n dy +

∫
B2d(x)

|x−y|1−n dy

]
‖f‖∞;Rn .

Explicit computation of the integrals on the right-hand side in spherical coordinates then gives

|∇u(x̃)−∇u(x)| ≤ const(n)
[
d log R

d + d
]
‖f‖∞;Rn ≤ const(n, α)R1−αdα‖f‖∞;Rn

for all exponents α ∈ (0, 1). Thus, we have shown α-Hölder continuity of all partial derivatives
∂iu, i ∈ {1, 2, . . . , n} for all α ∈ (0, 1) with corresponding gradient Hölder estimate

[∂iu]α;Ω ≤ const(n, α)R1−α‖f‖∞;Rn .

We combine this with the (much) simpler estimates

|u(x)| ≤
∫

BR(x)
|F (x−y)|dy ‖f‖∞;Rn ≤ const(n,R)‖f‖∞;Rn for x ∈ Ω ,

|∂iu(x)| ≤
∫

BR(x)
|∇F (x−y)| dy ‖f‖∞;Rn ≤ const(n,R)‖f‖∞;Rn for x ∈ Ω

and arrive at the claim
‖u‖C1,α(Ω) ≤ const(n, α,R)‖f‖∞;Rn .

This completes the proof of Statement (I).
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Proof of Statement (II). Here, we are first concerned with the claim that u ∈ C2(Rn) holds and
the second derivatives ∂i∂ju, i, j ∈ {1, 2, . . . , n}, of u are given by

∂i∂ju(x) =

∫
B2R(x)

∂i∂jF (x−y)
(
f(y)−f(x)

)
dy +

δij
n
f(x) for x ∈ Ω , (∗∗)

where Ω and R satisfy the requirements from the statement, specifically spt f ⊂ BR(x). We
emphasize that one may not hope — though it is a tempting conjecture in view of the analogy
with (∗) — for ∂i∂ju(x) =

∫
B2R(x) ∂i∂jF (x−y)f(y) dy, since ∂i∂jF is homogeneous of degree −n

and thus the latter integral does not even converge whenever f(x) 6= 0. In contrast, the integral
on the right-hand side of (∗∗) does exist with finite real value, since we assumed f ∈ C0,α

cpt(R
n) and

thus the integrand is majorized, up to a multiplicative constant, by the L1 function y 7→ |y−x|α−n
on BR(x). In order to establish (∗∗) we proceed similar to the proof of Statement (I) and choose
once more a C∞ function η : R → [0, 1] with η ≡ 0 on (−∞, 1] and η ≡ 1 on [2,∞). Then, for
ε > 0, we set

gjε(x) ..=

∫
B2R(x)

∂jF (x−y)η
(
|x−y|
ε

)
f(y) dy for x ∈ Ω .

The dominated convergence theorem, the inclusion spt f ⊂ BR(x), and the identity (∗) from the
previous proof then yield pointwise convergence limε↘0 g

j
ε(x) =

∫
Rn
∂jF (x−y)f(y) dy = ∂ju(x)

for x ∈ Ω. Moreover, on the level of gjε we can again differentiate and obtain

∂ig
j
ε(x) =

∫
B2R(x)

∂

∂xi

[
∂jF (x−y)η

(
|x−y|
ε

)]
f(y) dy

=

∫
B2R(x)

∂

∂xi

[
∂jF (x−y)η

(
|x−y|
ε

)](
f(y)−f(x)

)
dy

+ f(x)

∫
B2R(x)

∂

∂xi

[
∂jF (x−y)η

(
|x−y|
ε

)]
dy .

In order to simplify the last term for 0 < ε� 1, we first apply the divergence theorem and then
take into account that in case ε ≤ R it holds η(|x−y|/ε) = 1 for y ∈ S2R(x). In this way, we
find ∫

B2R(x)

∂

∂xi

[
∂jF (x−y)η

(
|x−y|
ε

)]
dy = −

∫
B2R(x)

∂

∂yi

[
∂jF (x−y)η

(
|x−y|
ε

)]
dy

= −
∫

S2R(x)
∂jF (x−y) yi−xi

|yi−xi| dy = −
∫

S1

zjzi dz =
δij
n
,

and in summary we get

∂ig
j
ε(x) =

∫
B2R(x)

∂

∂xi

[
∂jF (x−y)η

(
|x−y|
ε

)](
f(y)−f(x)

)
dy +

δij
n
f(x) .

Using this formula, computing the xi-derivative with the product rule, and taking into account
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η′ ≡ 0 on Rn \ B2ε, it is not difficult to estimate∣∣∣∣∂igjε(x)−
∫

B2R(x)
∂i∂jF (x−y)

(
f(y)−f(x)

)
dy − δij

n
f(x)

∣∣∣∣
≤
∫

B2R(x)
|∂i∂jF (x−y)|

∣∣∣η( |x−y|ε

)
−1
∣∣∣ ∣∣f(y)−f(x)

∣∣dy
+

1

ε

∫
B2R(x)

|F (x−y)|
∣∣∣η′( |x−y|ε

)∣∣∣ ∣∣f(y)−f(x)
∣∣dy

≤ const(n)

[ ∫
B2ε(x)

|x−y|α−n dy +
1

ε

∫
B2ε(x)

|x−y|1+α−n dy

]
[f ]α;Rn

≤ const(n, α)εα[f ]α;Rn −→
ε↘0

0 .

Hence we obtain

lim
ε↘0

∂ig
j
ε(x) =

∫
B2R(x)

∂i∂jF (x−y)
(
f(y)−f(x)

)
dy +

δij
n
f(x) uniformly in x ∈ Ω .

Recalling that we already know u ∈ C1(Rn) and limε↘0 g
j
ε = ∇u on Ω, we can thus conclude

that we have u ∈ C2(Rn) and that the second derivatives ∂i∂ju are indeed given by (∗∗).
With the knowledge that u ∈ C2(Rn) holds, the very weak solution property of Remark

(3) implies in a standard way that u is a classical solution of the Poisson equation ∆u = f on
Rn. Alternatively, at this stage, one may deduce the same from Remark (3) via a mollification
argument.

Finally, we turn to the C2,α estimate. For bounded open Ω ⊂ Rn and x, x̃ ∈ Ω with
d ..= |x−x̃| > 0, we first obtain from (∗∗) the initial estimate

|∂i∂ju(x)−∂i∂ju(x̃)| ≤ T1 + T2 + T3

with the three right-hand side terms

T1
..=

∣∣∣∣ ∫
B2R(x)

[
∂i∂jF (x−y)

(
f(y)−f(x)

)
− ∂i∂jF (x̃−y)

(
f(y)−f(x̃)

)]
dy

∣∣∣∣ ,
T2

..=

∫
B2R(x)∆B2R(x̃)

|∂i∂jF (x̃−y)|
∣∣f(y)−f(x̃)

∣∣dy ,
T3

..=
1

n

∣∣f(x)−f(x̃)
∣∣

(where we used the notation A∆B ..= (A\B)∪ (B\A) for the symmetric difference of sets A and
B). Clearly, for T3 we have the simple estimate

T3 ≤ const(n)dα[f ]α;Rn .

Moreover, observing first B2R(x)∆B2R(x̃) ⊂ B2R+d(x̃) \ B2R−d(x̃) and d ≤ R, we get

L n
(
B2R(x)∆B2R(x̃)

)
≤ ωn(2R+d)n−ωn(2R−d)n ≤ const(n)dRn−1 .

Thus, with the homogeneity of ∂i∂jF we can estimate

T2 ≤ const(n)

∫
B2R(x)∆B2R(x̃)

|x̃−y|α−n dy [f ]α;Rn

≤ const(n)L n
(
B2R(x)∆B2R(x̃)

)
(2R−d)α−n[f ]α;Rn

≤ const(n)dRα−1[f ]α;Rn ≤ const(n)dα[f ]α;Rn .
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For the main term T1, we first split the domain of integration into B2R(x) \ B2d(x) and B2d(x)
and then decompose it further as

T1 ≤ T 1
1 + T 2

1 + T 3
1

with

T 1
1

..=

∫
B2R(x)\B2d(x)

∣∣∂i∂jF (x−y)−∂i∂jF (x̃−y)
∣∣ ∣∣f(y)−f(x)

∣∣dy
T 2

1
..=

∣∣∣∣ ∫
B2R(x)\B2d(x)

∂i∂jF (x̃−y) dy

∣∣∣∣ ∣∣f(x)−f(x̃)
∣∣

T 3
1

..=

∫
B2d(x)

[
|∂i∂jF (x−y)|

∣∣f(y)−f(x)
∣∣− |∂i∂jF (x̃−y)|

∣∣f(y)−f(x̃)
∣∣]dy

In order to bound T 1
1 , we consider y ∈ Rn \B2d(x), and, by the same reasoning as in the proof of

Statement (I), we infer |∂i∂jF (x−y)−∂i∂jF (x̃−y)| ≤ d sup[x̃−y,x−y] |∇∂i∂jF | ≤ const(n)d|x−y|1−n
for such y. Thus, we obtain

T 1
1 ≤ const(n)d

∫
Rn\B2d(x)

|x−y|α−1−n dy [f ]α;Rn ≤ const(n, α)dα[f ]α;Rn

For T 2
1 , an application of the divergence theorem on the annulus B2R(x) \ B2d(x) yields

T 2
1 ≤ dα

∫
S2d(x)∪S2R(x)

|∂jF (x̃−y)| dy [f ]α;Rn

≤ dα

nωn

∫
S2d(x)∪S2R(x)

|x̃−y|1−n dy [f ]α;Rn ≤ 2ndα[f ]α;Rn ,

where in the last step we have taken into account |x̃−y|1−n ≤ d1−n for y ∈ S2d(x) ⊂ Rn \Bd(x̃)
and |x̃−y|1−n ≤ (2R−d)1−n ≤ R1−n for y ∈ S2R(x) ⊂ Rn \ B2R−d(x̃). Finally, an estimation in
the spirit of the proof of Statement (I) leaves us with

T 3
1 ≤ const(n)

∫
B2d(x)

[
|x−y|α−n + |x̃−y|α−n

]
dy [f ]α;Rn

≤ const(n)

[ ∫
B2d(x)

|x−y|α−n dy +

∫
B3d(x̃)

|x̃−y|α−n dy

]
[f ]α;Rn

≤ const(n, α)dα[f ]α;Rn .

Collecting the estimates for T1, T2, T3, T 1
1 , T 3

1 , T 3
1 , we end up with

|∂i∂ju(x)−∂i∂ju(x̃)| ≤ const(n, α)dα[f ]α;Rn for all x, x̃ ∈ Ω ,

that is, with α-Hölder continuity of all second-order derivatives ∂i∂ju of u and with the bound

[∂i∂ju]α;Ω ≤ const(n, α)[f ]α;Rn .

In order to reach an estimate for the full C2,α-norm we additionally record simple sup-estimates
for u, ∂iu, and ∂i∂ju. Indeed, the estimates

|u(x)| ≤ const(n,R) sup
Rn
|f | , |∂iu(x)| ≤ const(n,R) sup

Rn
|f | for x ∈ Ω
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have already been recorded at the end of the proof of Statement (I). Furthermore, rewriting
∂i∂ju via (∗∗), we find

|∂i∂ju(x)| ≤
∫

B2R(x)
|∂i∂jF (x−y)|

∣∣f(y)−f(x)
∣∣ dy + 1

n |f(x)|

≤ const(n)

∫
B2R(x)

|x−y|α−n dy [f ]α;Rn + sup
Rn
|f |

≤ const(n, α,R)[f ]α;Rn + sup
Rn
|f |

for x ∈ Ω. All in all, we have estimated the Hölder seminorm [∂i∂ju]α;Ω of ∂i∂ju and the suprema
of u, ∂iu, and ∂i∂ju on Ω, and we get

‖u‖C2,α(Ω) ≤ const(n, α,R)‖f‖C0,α(Rn) .

This is the last claim, and thus the proof of the theorem is complete.

Corollary (Ck+2,α estimates for the Newton potential). Consider k ∈ N0 and α ∈ (0, 1).

Then, for f ∈ Ck,α
cpt(Rn), we have Nf ∈ Ck+2,α

loc (Rn) with

‖Nf‖Ck+2,α(Ω) ≤ const(n, k, α,R)‖f‖Ck,α(Rn)

for all bounded open subsets Ω of Rn with diam(Ω ∪ spt f) ≤ R <∞.

Proof. For every β ∈ Nn
0 with |β| ≤ k, since ∂βf ∈ C0

cpt(R
n) is bounded with compact support

and F ∈ L1
loc(R

n) holds, we can justify the necessary exchange of differentiation and integration
to get

∂β(Nf ) = N∂βf on Rn .

Combining this with the C2,α estimate from Statement (II) of the previous theorem, we find
(for Ω as in the statements)

‖Nf‖Ck+2,α(Ω) ≤
∑
|β|≤k

‖∂βNf‖C2,α(Ω) =
∑
|β|≤k

‖N∂βf‖C2,α(Ω) ≤ const(n, α,R)
∑
|β|≤k

‖∂βf‖C0,α(Rn) .

In addition, by distinguishing the cases |x−y| < 1 and |x−y| ≥ 1 in the definition of the
Hölder seminorm we see [g]C0,α(Rn) ≤ 2 supRn |g|+ supRn |∇g| for arbitrary g ∈ C0,α(Rn). As a
consequence we have

‖∂βf‖C0,α(Rn) ≤ 3 sup
Rn
|∂βf |+

n∑
i=1

sup
Rn
|∂β+eif | ≤ (n+3)‖f‖Ck,α(Rn) in case |β| ≤ k−1 ,

while we trivially have

‖∂βf‖C0,α(Rn) ≤ ‖f‖Ck,α(Rn) in case |β| = k .

Using the last two estimates on the right-hand side of the estimate for ‖Nf‖Ck+2,α(Ω), we arrive at

the claimed estimate. Specifically, we read off Nf ∈ Ck+2,α
loc (Rn), and the proof is complete.

Corollary (interior Ck+2,α regularity for the Poisson equation). Consider an open set

Ω in Rn, k ∈ N0, and α ∈ (0, 1). Then, every u ∈ C2(Ω) with ∆u ∈ Ck,α
loc (Ω) satisfies indeed

u ∈ Ck+2,α
loc (Ω). Specifically, every u ∈ C2(Ω) with ∆u ∈ C∞(Ω) satisfies in fact u ∈ C∞(Ω).
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Proof. Consider u ∈ C2(Ω) with ∆u ∈ Ck,α
loc (Ω). For x ∈ Ω, we choose ε > 0 and f ∈ Ck,α

cpt(Rn)
with ∆u = f on Bε(x) ⊂ Ω. By Statement (II) in the last theorem, we have Nf ∈ C2(Rn)
with ∆Nf = f on Rn. Therefore, u−Nf is harmonic and thus C∞ on Bε(x), while the previous

corollary gives that Nf is Ck+2,α on Bε(x). So, we have u = u−Nf + Nf ∈ Ck+2,α
loc (Bε(x)) and,

all in all, also u ∈ Ck+2,α
loc (Ω).

For u ∈ C2(Ω) with ∆u ∈ C∞(Ω), the statement just proven applies for arbitrary k ∈ N0,
α ∈ (0, 1) and gives u ∈ Ck+2(Ω) for arbitrarily large k ∈ N.

Remark. In rough summary the last corollary asserts that solutions u of the Poisson equa-
tion ∆u = f on Ω are always “two degrees better” than the right-hand side f . How-
ever, some care is needed, since this applies only in Hölder spaces with intermediate exponent
α ∈ (0, 1), but not in the limit cases α = 0 and α = 1. For instance, on the unit disc
B1 ⊂ R2, a function u ∈

⋂
α∈[0,1) C1,α

loc (B1) with ∆u ∈ C0(B1), but ∂2
1 unbounded near 0 and thus

u /∈ C1,1
loc(B1) ⊃ C2(B1) is given by u(x) ..= (x2

1−x2
2)
√
− log |x| for x ∈ B1 \ {0} and u(0) ..= 0.

The special solution Nf of the Poisson equation ∆Nf = f on Rn also provides a starting
point for solving the general Dirichlet problem

∆u = f on Ω , u = ϕ on ∂Ω .

Indeed, solutions u can be obtained as sums u = Nf+h of Nf and solutions h of the half-
homogeneous Dirichlet problem

∆h = 0 on Ω , h = u−Nf on ∂Ω .

However, the latter is just a Dirichlet problem for a harmonic function h (which corrects the
boundary values of Nf ) and has been solved in a large generality in Section 2.10. So, all the tools
for the solution of the the general problem are at hand, and the above simple idea can be worked
out to obtain the following statement on existence, regularity, and a-priori estimates for
solutions u.

Main Theorem (on the Dirichlet problem for the Poisson equation). Consider a bounded
open set Ω in Rn such that all points in ∂Ω are regular for Ω in the sense of Section 2.10, k ∈ N0,
and α ∈ (0, 1). Then, for every ϕ ∈ C0(∂Ω) and every f ∈ Ck,α

loc (Ω) ∩ L∞(Ω), there exists a
unique solution u ∈ C2(Ω) ∩ C0(Ω) to the Dirichlet problem for the Poisson equation

∆u = f on Ω u = ϕ on ∂Ω , (DP)

and indeed this solution satisfies u ∈ Ck+2,α
loc (Ω) with interior a-priori estimate

‖u‖Ck+2,α(Ω′) ≤
const(n, k, α,R)

dk+2+α

(
‖f‖Ck,α(Ω′′) + sup

Ω
|f |+ sup

∂Ω
|ϕ|
)

whenever Ω′ ⊂ Ω′′, Ω′′ ⊂ Ω

for open sets Ω, Ω′, Ω′′ in Rn with d ..= min{1, dist(Ω′,Rn \ Ω′′)} and diam Ω ≤ R <∞.

Before spelling out the proof, we first record a basic observation which will be useful at a
couple of points: If, for d > 0, we denote by Ud/2(Ω) the (d/2)-neighborhood of an open set
Ω ⊂ Rn, then we have the auxiliary estimate

[g ]α;Ω ≤ 2d−α sup
Ω
|g|+ d1−α sup

Ud/2(Ω)
|∇g| for g ∈ C1(Ud/2(Ω)) . (2.1)

Indeed, (2.1) is easily obtained from an elementary estimate for |g(y)−g(x)|
|y−x|α in case |y−x| ≥ d and

a straightforward estimate via the gradient in case |y−x| < d.
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Proof. For a given solution u ∈ C2(Ω)∩C0(Ω) of (DP), the regularity u ∈ Ck+2,α
loc (Ω) has already

been obtained in the preceding corollary. Next, we quantify the reasoning used there in order to
establish the interior a-priori estimate for such a given solution u. To this end, we first choose a
cut-off function η ∈ C∞cpt(R

n) with η ≡ 1 on Ud/2(Ω′), with spt η ⊂ Ω′′, and with ‖D`η‖∞;Rn ≤
const(n, `)d−` for all ` ∈ N0. Such a function can be obtained, for instance as mollification of the
characteristic function of the 3d/4-neighborhood U3d/4(Ω′) with mollification radius d/5. With

η at hand, we introduce f0
..= ηf and observe ‖f0‖Ck,α(Rn) ≤ const(n, k)d−k−α‖f‖Ck,α(Ω′′). We

now set h ..= u−Nf0 and rely on the auxiliary estimate (2.1) (with d/2 in place of d) in order to
derive

‖u‖Ck+2,α(Ω′) ≤ ‖Nf0‖Ck+2,α(Ω′) + ‖h‖Ck+2,α(Ω′)

≤ const(n, k, α)
(
‖Nf0‖Ck+2,α(Ω′) + d−α sup

`≤k+2
sup
Ω′
|D`h|+ d1−α sup

Ud/4(Ω′)
|Dk+3h|

)
.

We further estimate the right-hand side via the estimates for the Newton potential in an earlier
corollary, the interior estimates for the harmonic function h on Ud/2(Ω′) (see Section 2.6), and

the previously observed control for the Ck,α-norm of f0. This leaves us with

‖u‖Ck+2,α(Ω′) ≤ const(n, k, α,R)
(
‖f0‖Ck,α(Rn) + d−k−2−α sup

Ω′′
|h|
)

≤ const(n, k, α,R)

dk+2+α

(
‖f‖Ck,α(Ω′′) + sup

Ω
|u|+ sup

Ω
|Nf0 |

)
.

In addition, we have

sup
Ω
|u| ≤ const(R)

(
sup

Ω
|f |+ sup

Ω
|ϕ|
)
, sup

Ω
|Nf0 | ≤ const(n,R) sup

Rn
|f0| ≤ const(n,R) sup

Ω
|f |

by the corollary on continuous dependence in Section 2.4 and an easy estimate for the Newton
potential (which is also contained in the first theorem of this section). All in all, we thus arrive
at

‖u‖Ck+2,α(Ω′) ≤
const(n, k, α,R)

dk+2+α

(
‖f‖Ck,α(Ω′′) + sup

Ω
|f |+ sup

Ω
|ϕ|
)
,

which is the claimed interior a-priori estimate.
It remains to prove, for f ∈ C0,α

loc (Ω) ∩ L∞(Ω) with α ∈ (0, 1), the existence of a solution
u ∈ C2(Ω)∩C0(Ω) to the Dirichlet problem. To this end, for arbitrary i ∈ N, we consider a cut-off
function ηi ∈ C∞(Rn) with 1Ω2/i

≤ η ≤ 1Ω1/i
onRn (where Ωδ = {x ∈ Rn : dist(x,Rn\Ω) > δ}).

We then introduce fi ..= ηif ∈ C0,α
cpt(R

n) and obtain from the theorem on the Newton potential
that Nfi is a C2-solution of

∆Nfi = fi on Rn

with
‖Nfi‖C1,α(Ω) ≤ const(n, α,R)‖fi‖∞;Rn ≤ const(n, α,R)‖f‖∞;Rn .

In particular, (Nfi)i∈N is a sequence of equi-Lipschitz and pointwisely bounded functions, and the
Arzelà-Ascoli theorem implies that a subsequence (Nfi`

)`∈N converges uniformly on Ω. Taking
into account the regularity of all boundary points of Ω, the main theorem of Section 2.10 provides,
for each i ∈ N, a solution hi ∈ C2(Ω) ∩ C0(Ω) of the Dirichlet problem

∆h ≡ 0 on Ω , hi = ϕ−Nfi on ∂Ω .
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Consequently, ui ..= Nfi + hi ∈ C2(Ω) ∩ C0(Ω) solves the Dirichlet problem

∆ui = fi on Ω , ui = ϕ on ∂Ω ,

and we are led to discuss the convergence of these problems for i → ∞. Since the maximum
principle gives ‖hi−hj‖∞;Rn ≤ ‖Nfi−Nfj‖∞;Ω for all i, j ∈ N, as a first step, the uniform Cauchy
property carries over from (Nfi`

)`∈N to (hi`)`∈N. As a consequence, the solutions (ui`)`∈N
converge uniformly on Ω. Since all ui are continuous up ∂Ω and coincide with ϕ there, the
convergence is in fact uniform on Ω with limit function u ∈ C0(Ω) such that u = ϕ on ∂Ω.
Finally, we can apply the case k = 0 of the already established interior a-priori estimate to the
solutions ui to obtain

‖ui‖C2,α(Ω′) ≤
const(n, α,R)

d2+α

(
‖fi‖C0,α(Ω′′) + sup

Ω
|fi|+ sup

∂Ω
|ϕ|
)

for all i ∈ N and all open sets Ω′, Ω′′ which satisfy the requirements made in the theorem. On
the right-hand side of this estimate, we can uniformly bound supΩ |fi| ≤ supΩ |f | for all i ∈ N
and ‖fi‖C0,α(Ω′′) = ‖f‖C0,α(Ω′′) for those i ∈ N with i ≥ 2/dist(Ω′′,Rn \Ω). Thus, for every open

Ω′ with Ω′ ⊂ Ω, the Hölder norms ‖ui‖C2,α(Ω′) remain bounded for i→∞, and the Arzelà-Ascoli
theorem ensures that a further subsequence of the Hessians (∇2ui`)`∈N converges uniformly on
Ω′. By a basic analysis result, u is then C2 on Ω′, and the uniform limit is ∇2u. In particular,
we may pass to the limit i → ∞ (along the subsequence) in the solution property ∆ui = fi to
infer ∆u = f on Ω′. Since each x ∈ Ω is contained in a suitable Ω′, all in all we have shown
that u ∈ C2(Ω) ∩ C0(Ω) satisfies ∆u = f on Ω and u = ϕ on ∂Ω, that is, u is the searched-for
solution of (DP).

2.12 On the eigenvalue problem for the Laplace operator

In close analogy to the notions of eigenvalues and eigenvectors in linear algebra, we now introduce
eigenvalues and eigenfunctions related to (the Dirichlet problem for) the Laplace operator ∆,
and we then establish some of the most basic results in the theory of these objects. For a reason
that will explained below we prefer, in fact, to coin the notions for the operator −∆ rather than
for ∆ itself.

Definitions (eigenvalue equation, eigenvalues, eigenfunctions). Consider a bounded open
subset Ω of Rn.

(I) The partial differential equation

−∆u = λu on Ω

with parameter λ ∈ R is called the eigenvalue equation for the operator −∆ on
Ω or the Helmholtz equation on Ω. If this equation is satisfied for some λ ∈ R and
some u ∈ C2(Ω) which is not constant zero, then we call λ an eigenvalue and u an
eigenfunction for the operator −∆ on Ω.

(II) If both the eigenvalue equation and the zero Dirichlet boundary condition

−∆u = λu on Ω

u ≡ 0 on ∂Ω
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are satisfied for some λ ∈ R and some u ∈ C2(Ω) ∩ C0(Ω) which is not constant zero,
then we call λ an eigenvalue and u an eigenfunction to the Dirichlet problem for
the operator −∆ on Ω.

Remarks (on the eigenvalue problem). Consider a bounded open subset Ω of Rn.

(1) If u is an eigenfunction to the Dirichlet problem for −∆ on Ω with corresponding eigenvalue
λ, then we have ∫

Ω
|∇u|2 dx = −

∫
Ω
u∆udx = λ

∫
Ω
u2 dx <∞ ,

where the first equality is based17 on an integration by parts, the second equality results from
the eigenvalue equation, and the finiteness of the last integral follows from the requirement
u ∈ C0(Ω). In particular, this ensures ∇u ∈ L2(Ω,Rn) for eigenfunctions u and λ ≥ 0 for
eigenvalues λ. Moreover, by uniqueness in the Dirichlet problem for harmonic functions,
the possibility λ = 0 is also ruled out, and we can conclude that eigenvalues to the
Dirichlet problem for −∆ on Ω are always positive. In this sense of having only
positive eigenvalues, −∆ is a positive operator, and the intention of the initial sign
convention is just to work with this operator rather than with its “negative” counterpart ∆.

(2) In principle, one can also admit complex eigenvalues and complex-valued eigenfunctions in
the above definitions. However, the reasoning in Remark (1) can be adapted to show that,
still, all eigenvalues to the Dirichlet problem for −∆ are positive real numbers, and thus the
complex-valued eigenfunctions have real-valued eigenfunctions as their real and imaginary
parts. Thus, the complex setting does not bring any truly new information, and this explains
why we have preferred to stick to the real setting in the above definitions.

(3) The eigenfunctions (to the Dirichlet problem) for −∆ on Ω for a fixed eigenvalue λ, together
with the zero function, form a real vector space. This vector space is called the eigenspace
for the eigenvalue λ.

(4) One can reasonably combine the eigenvalue equation with another homogeneous boundary
condition, for instance the zero Neumann boundary condition, instead of the zero Dirichlet
boundary condition. However, in the literature this seems to be considered much more
rarely.

In the next theorem we summarize basic results on the Dirichlet eigenvalues problem for the
Laplace operator.

17For a Gauss domain Ω and u ∈ C2(Ω)∩C1(Ω) such that u ≡ 0 on ∂Ω, the divergence theorem, applied to the
vector field u∇u ∈ C1(Ω)∩C0(Ω) with zero boundary values, quickly shows

∫
Ω
|∇u|2 dx = −

∫
Ω
u∆u dx. However,

the following reasoning yields the same identity even in the more general setting of the remark: We set η(t) ..= 0
for t ∈ [0, 1], η(t) ..= (t−1)2/4 for t ∈ [1, 3], η(t) ..= t−2 for t ∈ [3,∞), and then extend to an odd function
η ∈ C1(R). Abbreviating ηε(t) ..= εη(t/ε) for t ∈ R, we then have ηε(u) ∈ C2

cpt(Ω) with ∇[ηε(u)] = η′ε(u)∇u on
Ω for every ε > 0. Thus, integration by parts for the compactly supported test function ηε(u) gives∫

Ω

η′ε(u)|∇u|2 dx

∫
Ω

∇[ηε(u)] ·∇u dx = −
∫

Ω

ηε(u) ∆u dx = −
∫

Ω

ηε(u)udx for every ε > 0 .

Since we have limε↘0

∫
Ω
η′ε(u)|∇u|2 dx =

∫
Ω
|∇u|2 dx and limε↘0

∫
Ω
ηε(u)u dx =

∫
Ω
u2 dx by the monotone con-

vergence theorem and the dominated convergence theorem, respectively, we may indeed pass to the limit ε ↘ 0
in this equality and obtain the above claim.
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Theorem (on the Dirichlet eigenvalue problem for the Laplace operator). Fix a bounded
open set Ω in Rn. Then the eigenvalues, eigenfunctions, and eigenspaces in the Dirichlet problem
for −∆ on Ω have the following properties:

(I) The eigenvalues are positive real numbers, the set of eigenvalues is at most
countable, and the set of eigenvalues has no cluster point in R (which, however,
leaves ∞ as a possible cluster point).

(II) The eigenspaces are finite-dimensional.

(III) The eigenspaces are pairwise orthogonal to each other in the sense that∫
Ω
uv dx = 0 =

∫
Ω
∇u ·∇v dx

holds whenever u and v are eigenfunctions to different eigenvalues.

(IV) The eigenfunctions are C∞ functions on Ω.

We directly proceed to the proofs of all four parts of the theorem:

Proof of Part (IV). Fix an arbitrary α ∈ (0, 1), for instance α = 1
2 . Since an eigenfunction u

satisfies u ∈ C2(Ω) by definition, we trivially get u ∈ C1,α
loc (Ω) as well. By interior regularity

theory from Section 2.11 for the Poisson equation ∆u = −λu on Ω we infer that u is two degrees
better than −λu ∈ C1,α

loc (Ω), that is, u ∈ C3,α
loc (Ω). However, then interior regularity also yields

u ∈ C5,α
loc (Ω), and then even u ∈ C7,α

loc (Ω). Inductively we conclude u ∈ C∞(Ω).

Proof of Part (III). If u is an eigenfunction to an eigenvalue λ and v is an eigenfunction to an
eigenvalue ν, the eigenvalue equations and suitable18 integrations by parts give

λ

∫
Ω
u v dx = −

∫
Ω

(∆u) v =

∫
Ω
∇u ·∇v dx = −

∫
Ω
u∆v dx = ν

∫
Ω
u v dx .

Thus, in the case λ 6= ν of different eigenvalues, we infer first
∫

Ω u v dx = 0 and then also∫
Ω∇u ·∇v dx = 0.

Proof of Part (I). We already know from Remark (1) that the eigenvalues are positive real
numbers.

Moreover, once we show that they have no cluster point in R, the countability claim follows.
Indeed, assume that the set of eigenvalues were uncountable. Then, for some sufficiently large

18Similar to the computation in Remark (1) above, the integrations by parts work easily for a Gauss domain
Ω and u, v ∈ C2(Ω) ∩C1(Ω). However, they can also be justified without such extra assumptions: Using ηε from
Footnote 17 and the test function ηε(v) ∈ C2

cpt(Ω), we infer

λ

∫
Ω

u v dx = lim
ε↘0

λ

∫
Ω

u ηε(v) dx = lim
ε↘0

∫
Ω

(−∆u) ηε(v) = lim
ε↘0

∫
Ω

η′ε(v)∇u ·∇v dx =

∫
Ω

∇u ·∇v dx ,

where the convergences are ensured by dominated convergence and the second convergence draws on 0 ≤ η′ε ≤ 1
on R and the fact that ∇u,∇v ∈ L2(Ω,Rn) by Remark (1) and thus also ∇u · ∇v ∈ L1(Ω). Testing with
ηε(u) ∈ C2

cpt(Ω), we analogously get ∫
Ω

∇u ·∇v dx = ν

∫
Ω

u v dx ,

and all in all we end up with the claims made in the above proof.
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n ∈ N, there would be infinitely many eigenvalues in (0, n]. However, by the Bolzano-Weierstraß
theorem, these eigenvalues would necessarily have a cluster point in (0, n].

So, we are left to rule out the existence of a cluster point in R. In order to reach a contra-
diction, suppose the converse, that is, the existence of eigenfunctions uk to eigenvalues λk for all
k ∈ N such that λ ..= limk→∞ λk ∈ R exists, but λk 6= λ holds for all k ∈ N. In this situation,
since the eigenfunctions uk are not constantly zero, we have supΩ |uk| > 0 for all k ∈ N. Then,
possibly passing from uk to uk/ supΩ |uk|, which is still and eigenfunction to the eigenvalue λk,
we can indeed assume supΩ |uk| = 1 for all k ∈ N. We now introduce fk ∈ L∞(Rn) ∩ C2(Ω)
by setting fk ..= −λkuk on Ω and fk ..≡ 0 on Rn \ Ω and proceed quite analogous to the last
reasoning in Section 2.11. Fixing an arbitrary α ∈ (0, 1), by C1,α estimates for the Newton
potential, we first bound

‖Nfk‖C1,α(U) ≤ const(n, α, U)‖fk‖∞;Rn ≤ const(n, α, U)|λk| −→
k→∞

const(n, α, U)|λ|

on any bounded open neighborhood U of Ω. The Arzelà-Ascoli theorem then yields a sub-
sequence such that (Nfki

)i∈N and (∇Nfki
)i∈N converge uniformly on Ω. Taking into account

∆uk = fk = ∆Nfk on Ω and uk ≡ 0 on ∂Ω, the functions hk ..= uk−Nfk are harmonic on
Ω with hk = −Nfk on ∂Ω. Via the maximum principle we can thus ensure the Cauchy prop-
erty supΩ |hkj−hki | ≤ sup∂Ω |Nfkj

−Nfki
| → 0 for i, j → ∞ and deduce uniform convergence of

(hki)i∈N on Ω. In conclusion, the C0(Ω) functions uki = hki+Nfki
with uki ≡ 0 on ∂Ω con-

verge for i → ∞ uniformly on Ω to a limit u ∈ C0(Ω) with u ≡ 0 on ∂Ω. Moreover, since
we assume supΩ |uk| = 1, we also get supΩ |u| = 1 and in particular u 6≡ 0 on Ω. In addi-
tion, we infer from the Weierstraß type convergence theorem in Section 2.6 that the gradients
∇hki and thus also ∇uki converge for i → ∞ locally uniformly on Ω, and this in turn ensures
supi∈N ‖uki‖C0,α(Ω′′) <∞ for all open sets Ω′′ with Ω′′ ⊂ Ω. Now we employ the interior a-priori
estimate19 from Section 2.11. We find

‖uk‖C2,α(Ω′) ≤ const(n, α,Ω,Ω′,Ω′′)
(
‖fk‖C0,α(Ω′′) + sup

Ω
|fk|
)

≤ const(n, α,Ω,Ω′,Ω′′)|λk|
(
‖uk‖C0,α(Ω′′) + 1

)
whenever Ω′, Ω′′ are open sets with Ω′ ⊂ Ω′′ and Ω′′ ⊂ Ω. Since we have bounded the right-
hand side (at least along a subsequence), another application of the Arzelà-Ascoli theorem yields
uniform convergence of (a further subsequence of) the Hessians ∇2uki to ∇2u and the Laplacians
∆uki to ∆u on every open Ω′ with Ω′ ⊂ Ω. This is finally enough to conclude u ∈ C2(Ω) and
pass to the limit k → ∞ along subsequences in the eigenvalue equations −∆uk = λkuk on Ω.
All in all, we end up with an eigenfunction u to a new eigenvalue λ which differs from all λk.
But then, involving the conclusion of Part (III), we arrive at∫

Ω
u2 dx = lim

i→∞

∫
Ω
ukiudx = 0 .

This contradicts the earlier observation that u 6≡ 0 on Ω and thus completes the proof.

19The a-priori estimate has been stated in Section 2.11 under the assumption that Ω has only regular boundary
points, but still, here we do not need this assumption. This can be checked by inspection of the earlier proof
(where the assumption was needed for existence only). Alternatively, it can be justified by applying the a-priori
estimate on a smooth domain slightly smaller than Ω.
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Proof of Part (II). We argue once more by contradiction and start by assuming the converse
of the claim, that is, the existence of an eigenvalue λ and infinitely many linearly independent
eigenfunctions u1, u2, u3, . . . to this eigenvalue. By the Gram-Schmidt process for the L2 inner
product, we can assume

∫
Ω uk u` dx = 0 for k 6= ` in N. As in the proof of Part (I), we can

further arrange for supΩ |uk| = 1 and establish uniform convergence of a subsequence uki on Ω
to a limit u ∈ C0(Ω) with u 6≡ 0 on Ω. Then we observe∫

Ω
u2 dx = lim

i→∞

∫
Ω
ukiudx = lim

i→∞
lim
j→∞

∫
Ω
ukiukj dx︸ ︷︷ ︸

=0 for j>i

= 0

and reach a contradiction to u 6≡ 0 on Ω. This completes the proof.

Before closing the section, we add — without proofs or full details — some more comments
on the eigenvalue problem.

Further Remarks (on the eigenvalue problem). Consider a bounded open subset Ω of Rn

(1) One can show that there are always infinitely many eigenvalues to the Dirichlet problem for
−∆ on Ω and there exists an orthonormal Hilbert space basis out of eigenfunctions
in L2(Ω). Since the set of eigenvalues is countable ⊂ (0,∞) and has no finite cluster point,
the first assertion implies that the eigenvalues form a strictly increasing sequence
(λk)k∈N in (0,∞) with infinite limit limk→∞ λk =∞. In particular, we may speak of the
first eigenvalue λ1. If Ω is connected, it can be further shown that this first eigenvalue λ1

is always simple (that is, the corresponding eigenspace has dimensions 1) with eigen-
functions of constant sign (that is, every eigenfunction to λ1 is either positive on all of
Ω or negative on all of Ω).

The proofs of these facts are typically carried out in a functional analysis framework and
are not addressed here.

(2) For special domains Ω such as balls or cuboids, the eigenvalues and eigenfunctions to
the Dirichlet problem for −∆ on Ω can be computed quite explicitly. This is partially
explicated in the exercises.

(3) A famous question asks whether the domain Ω is uniquely determined by the sequences of
eigenvalues to the Dirichlet problem for −∆ on Ω. Since the eigenvalues have an interpre-
tation as resonant oscillation frequencies of an Ω-shaped elastic membrane with clamped
boundary, the question can be roughly rephrased as ‘Can one hear the shape of a
drum?’. Indeed, answering this question has been a famous open problem for a while.
Nowadays it is known, however, that the answer is ‘No!’ in general, but ‘Yes!’ under
the considerable extra assumptions on Ω (e.g. if Ω is a 2-dimensional convex domain with
analytic boundary).
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