Graph Theory 2

10th problem set

due February 9th, 10am https://bit.ly/3pNrt8W

Exercise 1

[1 point]

[1 point]

Let $m, n \in \mathbb{N}$, and assume that m-1 divides n-1. Show that for every tree T with m vertices the Ramsey number $R^{(2)}(T, K_{1,n})$ equals m+n-1.

Exercise 2

We say an infinite family \mathscr{G} of finite graphs has the *Ramsey property*, if for every integer $r \ge 2$ and every $H \in \mathscr{G}$ there is some $G \in \mathscr{G}$ satisfying $G \longrightarrow (H)_r$, i.e., every *r*-colouring of E(G)yields a monochromatic copy of H.

- (i) Which examples of families having the Ramsey property do you know from class?
- (ii) Prove or disprove that the set of hypercubes has the Ramsey property.
- (*iii*) Find a family with the Ramsey property and prove it directly (without using results from class).

Exercise 3

We write $G \longrightarrow (H)_r^I$ for graphs G, H, I, and an integer $r \ge 2$, if every *r*-colouring of the copies of I in G yields a subgraph $H_0 \subseteq G$ isomorphic to H such that all copies of I in H_0 are monochromatic.

- (i) For $I = K_2$, Ramsey's theorem fasserts that for every H and r there is some G such that $G \longrightarrow (H)_r^{K_2}$. Does the same hold for some graph I with at least three vertices?
- (*ii*) Find graphs I and H such that $G \longrightarrow (H)_2^I$ fails for all graphs G.

Exercise 4

[1 point]

[1 point]

Erdős established for every integer $r \ge 2$ the existence of a graph G with chromatic number and girth at least r by a probabilistic argument. Present a constructive proof of this result by partite construction as given by Nešetřil and Rödl in [A short proof of the existence of highly chromatic graphs without short cycles, J. Combinat. Theory B, 27 (1979), pp. 225-227].