Graph Theory 2

9th problem set

due February 2nd, 10am

https://bit.ly/3t48gla

Exercise 1

Prove an upper bound for the off-diagonal graph Ramsey number $\mathbb{R}^{(2)}(K_3, K_n)$ that is polynomial in n.

Exercise 2

Prove $2^r < R^{(2)}(3;r) < 3r!$ for the r-colour Ramsey number for graph triangles.

Exercise 3

Show that for any given graph H there exists a graph G = (V, E) such that for every vertex 2-colouring of V there exists an induced copy of H in G with all vertices of the same colour.

Exercise 4

A family \mathcal{F} of sets is called a *weak* Δ -system if every two sets have intersections of the same size and it is a Δ -system if every two sets have in fact the same intersection.

- (i) Show that for all integers $m, k \ge 2$ there exists an M such that every family \mathcal{F} of k-element sets with $|\mathcal{F}| = M$ contains a weak Δ -system $\mathcal{F}' \subseteq \mathcal{F}$ with $|\mathcal{F}'| \ge m$.
- (*ii*) Show that for all integers $m, k \ge 2$ there exists an M such that every weak Δ -system \mathcal{F} of k-element sets with $|\mathcal{F}| = M$ contains a Δ -system $\mathcal{F}' \subseteq \mathcal{F}$ with $|\mathcal{F}'| \ge m$.

[1 point]

[1 point]

[1 point]