Graph Theory 2

7th problem set

due January 19th, 10am https://bit.ly/3siKemc

Exercise 1

[1 point]

[1 point]

[1 point]

Formulate an *induced version* of the counting lemma for partite copies and deduce it from the counting lemma for cliques (Proposition 2.1).

Exercise 2

The general counting lemma implies that every (ε, d) -regular pair (X, Y) contains at most $(d^4 + 4\varepsilon)|X|^2|Y|^2$ partite homomorphism of C_4 , i.e., there are at most $(d^4 + 4\varepsilon)|X|^2|Y|^2$ closed walks xyx'y'x in G such that $x, x' \in X$ and $y, y' \in Y$.

Provide a matching lower bound for all (not necessarily ε -regular) bipartite graphs $G = (X \cup Y, E)$ with |E| = d|X||Y|, i.e., show that G contains at least $d^4|X|^2|Y|^2$ partite homomorphism of C_4 .

Exercise 3

Show that the exceptional class V_0 in *Szemerédi's regularity lemma* can be avoided by redistributing its vertices. In particular, show that the assertion

(i) $V = \bigcup_{i=0}^{t} V_i$ with $|V_0| \leq \varepsilon |V|$ and $|V_1| = \cdots = |V_t|$

in the regularity lemma can be replaced by

$$(i')$$
 $V = \bigcup_{i=1}^{t} V_i$ and $|V_1| \leq \cdots \leq |V_t| \leq |V_1| + 1$.

Exercise 4

[1 point]

Let (X, Y) be an (ε, d) -regular pair with $d^3 > \varepsilon > 0$. What can you say about the size of a largest matching in such a pair? What can you say if in addition we assume that |X| = |Y| =: m and minimum degree is at least dm?