Graph Theory 2

4th problem set

due December 8th, 10am https://bit.ly/39w8D0F

Exercise 1

[1 point]

For a graph G = (V, E) let $A(G) = (a_{uv})_{u,v \in V} \in \mathbb{R}^{|V| \times |V|}$ be its adjacency matrix over the reals with rows and columns indexed by the vertices, i.e., $a_{uv} = 1$ if $uv \in E$ and 0 otherwise. In particular, A(G) is a symmetric square matrix with zeros on its diagonal. Owing to the symmetry, all its eigenvalues are real, which we denote by $\lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_{|V|}(G)$. Moreover, for every integer $k \ge 0$ the eigenvalues of the k-th power A_G^k are $\lambda_1^k(G), \lambda_2^k(G), \ldots, \lambda_{|V|}^k(G)$.

Find a graph theoretic interpretation of $\sum_{i=1}^{|V|} \lambda_i^k(G)$ for every $k \ge 0$ and prove it.

Exercise 2

[1 point]

[1 point]

[1 point]

- (i) Find a 2-connected (multi)graph that has two non-isomorphic plane duals.
- (*ii*) Show that the plane dual of a 3-connected graph is also 3-connected.

Exercise 3

Let G^* be an abstract dual of G, and let $e = e^*$ be an edge. Show that

- (i) G^*/e^* is an abstract dual of G e.
- (*ii*) $G^* e^*$ is an abstract dual of G/e.

Exercise 4

Prove the following statements:

- (i) Every orientation of a bipartite graph has a kernel.
- (*ii*) Every bipartite planar graph is 3-list-colourable.
- (*iii*) Show that $K_{2,4}$ is not 2-list-colourable.