Graph Theory 2

3rd problem set

due December 1st, 10am
https://bit.ly/33cQIIB

Exercise 1

[1 point]

[1 point]

[1 point]

[1 point]

Prove or disprove that in a connected graph the minimal edge sets containing an edge from every spanning tree are precisely its bonds.

Exercise 2

Prove or disprove that the cycles and the cuts in a graph together generate its edge space.

Exercise 3

Prove or disprove that a 2-connected plane graph is bipartite if and only if every face is bounded by an even cycle.

Exercise 4

Find an algebraic proof of Euler's formula for 2-connected plane graphs along the following lines: Define the *face space* \mathcal{F} (over \mathbb{F}_2) of such a graph in analogy to its vertex space \mathcal{V} and edge space \mathcal{E} . Define *boundary maps* $\mathcal{F} \longrightarrow \mathcal{E} \longrightarrow \mathcal{V}$ in the obvious way, specifying them first on single faces or edges (i.e., on the standard bases of \mathcal{F} and \mathcal{E}) and then extending these maps linearly to all of \mathcal{F} and \mathcal{E} . Determine the kernels and images of these homomorphisms, and derive Euler's formula from the dimensions of those subspaces of \mathcal{F} , \mathcal{E} , and \mathcal{V} .