Graph Theory 2

2nd problem set

due November 24th, 10am
https://bit.ly/3lFwcaK

Exercise 1

Let G be a k-linked graph. Show that

- (i) G is (2k-1)-connected;
- (*ii*) if $s_1, \ldots, s_k, t_1, \ldots, t_k$ are not necessarily distinct vertices of G such that $s_i \neq t_i$ for all i, then G contains independent paths $P_i = s_i \ldots t_i$ for $i = 1, \ldots, k$, i.e., no two of these paths share an internal vertex.

Exercise 2

A central open problem for linkages in graphs is to determine for every $k \in \mathbb{N}$ the minimal integer f(k) such that every f(k)-connected graph is k-linked. In the lecture we have seen that $f(k) \leq 2^{\binom{k}{2}}$ and currently the best published upper bound due to Thomas and Wollan asserts $f(k) \leq 10k$.

In the other direction, Watkins found an infinite sequence of 5-connected graphs $(G_n)_{n \in \mathbb{N}}$ with $|V(G_n)| \longrightarrow \infty$ with none of them being 2-linked. In particular, this shows that $f(2) \ge 6$ and a simple modification of these graphs can be used to derive $f(k) \ge 2k + 2$ for every $k \ge 2$, which was conjectured to be optimal by Thomassen. However, this was disproved by Jørgensen, who showed that for every $k \ge 1$ there is a (3k - 3)-connected graph that is not k-linked. All known constructions that disprove Thomassen's conjecture are realised by small graphs only, i.e., the number of vertices is bounded by a function of k. In fact, for large graphs (number of vertices unbounded in terms of k) it is believed that Thomassen's conjecture holds.

- (i) For every $k \in \mathbb{N}$ find a lower bound for f(k) as close as possible to Jørgensen's bound.
- (*ii*) Show $f(2) \ge 6$. Can you find an infinite sequence like Watkins?

Hint: Consider nearly maximal planar graphs.

Exercise 3

[1 point]

[1 point]

Show directly that every k^2 -linked graph contains a topological minor of K_k .

Exercise 4

Prove that the edge set of any graph G can be written as a disjoint union $E(G) = C \cup B$ with C and B being elements from the cycle space $\mathcal{C}(G)$ and the cut space $\mathcal{B}(G)$, respectively.

[1 point]

|1 point|