Graph Theory 2

Exercise Sheet 11

due on January 25, 1pm

http://bit.ly/2DJmb79

Exercise 1 (\$9.5)

Construct a graph on \mathbb{R} that has neither a complete nor an edgeless induced subgraph on $|\mathbb{R}| = 2^{\aleph_0}$ vertices. (So Ramsey's theorem does not extend to uncountable sets.)

Hint: Choose a well-ordering of \mathbb{R} , and compare it with the natural ordering. For countability arguments, use the rationals.

Exercise 2 (§10.6)

A graph G = (V, E) is *t*-tough for some real number t > 0, if for every nonempty set $S \subseteq V$ the graph G - S has at most $\lfloor |S|/t \rfloor$ components.

(i) Show that every Hamiltonian graph is 1-tough.

(ii) Find a graph that is 1-tough but not Hamiltonian.

Exercise 3 (§10.10)

[1 point]

[1 point]

[1 point]

[1 point]

The *r*-th power G^r of a graph G is defined on the same vertex set with vertices being adjacent, if their distance in G is at most r. Prove that the square G^2 of a k-connected graph G is k-tough.

Exercise 4 (§10.14)

Show by induction on |V(G)| (possibly with strengthened induction assumption) that the third power G^3 of any connected graph G contains a Hamiltonian cycle.

Written Exercise

Deduce the following asymmetric, multicolour version from the symmetric 2-colour case of the induced Ramsey theorem for graphs (Theorem 9.3.1): For every integer $q \ge 1$ and graphs F_1, \ldots, F_q there exists a graph G such that for every q-colouring $\varphi \colon E(G) \to [q]$ there is some $i \in [q]$ and an induced copy of F_i in G with all edges in $\varphi^{-1}(i)$.