Graph Theory 2

Exercise Sheet 10

due on January 18, 1pm

http://bit.ly/2AQOkHU

Exercise 1

[1 point]

[1 point]

[1 point]

For graphs G and H and an integer $q \ge 1$ we use the arrow notation $G \longrightarrow (H)_q$ of Erdős, Hajnal, and Rado as a shorthand for the validity of the statement that every colouring $\varphi \colon E(G) \rightarrow [q]$ yields a monochromatic copy of H. Prove or disprove the following statements.

- (i) For every $q \ge 1$ and every path P there is a path Q such that $Q \longrightarrow (P)_q$.
- (*ii*) For every $q \ge 1$ and every star S there is a star T such that $T \longrightarrow (S)_q$.
- (*iii*) For every $q \ge 1$ and every tree T there is a tree Z such that $Z \longrightarrow (T)_q$.

Exercise 2 (§9.9)

Show that for every integer $q \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that, for every partition of [n] into q sets, at least one of the subsets contains numbers x, y, z such that x + y = z.

Hint: Ramsey's theorem for triangles.

Exercise 3 (§9.13)

Let $m, n \in \mathbb{N}$, and assume that m - 1 divides n - 1. Show that for every tree T with m vertices the Ramsey number $R(T, K_{1,n})$ equals m + n - 1, i.e., m + n - 1 is the smallest integer N, such that every two-colouring of the edges of K_N with colours red and blue either yields a red copy of T or a blue copy of $K_{1,n}$.

Exercise 4 (§9.18)

[1 point]

Show that, given any two graphs H_1 and H_2 , there exists a graph $G = G(H_1, H_2)$ such that, for every vertex colouring $\varphi \colon V(G) \to [2]$ of G with colours 1 and 2, there is either an induced copy of H_1 coloured 1 or an induced copy of H_2 coloured 2 in G. Does the proof extend for more than two colours?

Written Exercise (§9.14)

We denote by R(F;q) the smallest inter N such that every q-colouring of the edges of K_N yields a monochromatic copy of F. Prove $2^q < R(K_3;q) \leq 3q!$ for every integer $q \geq 1$.