FACHBEREICH MATHEMATIK

Lecturer: Prof. Mathias Schacht

Assistant: Oliver Ebsen

UNIVERSITÄT HAMBURG FALL 2017/18 DECEMBER 7TH, 2017

Graph Theory 2

Exercise Sheet 8

due on December 14, 1pm

http://bit.ly/2AuJF09

Exercise 1 [1 point]

In class we defined a pair (X,Y) in a graph G=(V,E) for nonempty, disjoint sets $X,Y\subseteq V$ to be (ε,d) -regular pair, if for all $X'\subseteq X$ and $Y'\subseteq Y$ we have

$$|e_G(X',Y')-d|X'||Y'|| \leq \varepsilon |X||Y|.$$

Show that this definition is equivalent to the one in the textbook [Diestel, *Graph Theory*, 5th ed., p. 187/188]. More precisely, show that for every $\varepsilon > 0$ there is some $\delta > 0$ such that every (δ, d) -regular pair satisfying the definition above is ε -regular following the definition from the textbook and in the opposite direction that every δ -regular pair satisfying the textbook definition is (ε, d) -regular as defined above with $d = d(X, Y) := \frac{e_G(X, Y)}{|X||Y|}$.

Exercise 2 [1 point]

Show that the exceptional class V_0 in Szemer'edi's regularity lemma can be avoided by redistributing its vertices. In particular, show that the assertion

(i)
$$V = \bigcup_{i=0}^t V_i$$
, $|V_0| \leq \varepsilon |V|$, and $|V_1| = \cdots = |V_t|$

in the regularity lemma can be replaced by

$$(i') \ V = \bigcup_{i=1}^{t} V_i \text{ and } |V_1| \leqslant \cdots \leqslant |V_t| \leqslant |V_1| + 1.$$

Exercise 3 [1 point]

In the special case of triangles the *counting lemma* asserts that if all bipartite pairs (V_i, V_j) of a tripartite graph $G = (V_1 \cup V_2 \cup V_3, E)$ are (ε, d_{ij}) -regular for some $\varepsilon > 0$ and $d_{ij} \in [0, 1]$ for $1 \le i < j \le 3$, then the number of triangles in G is "close" to $d_{12}d_{13}d_{23}|V_1||V_2||V_3|$.

Is a similar assertion true, if only two, or if only one of the three pairs is ε -regular? If so, what would be an appropriate generalisation for arbitrary fixed graphs F instead of K_3 ?

Exercise 4 [1 point]

Let (X, Y) be an (ε, d) -regular pair in some graph G = (V, E) for some $d^3 > 4\varepsilon > 0$. What can you say about the size of a largest matching in the induced bipartite graph G[X, Y]? What can you say if we in addition assume that |X| = |Y| =: m and minimum degree of G[X, Y] is at least dm/2.

Written Exercise

Let $G = (X \cup Y, E)$ be a nonempty, bipartite graph of density $d := \frac{|E|}{|X||Y|} > 0$.

- (i) Show that G contains at least $d^4|X|^2|Y|^2$ closed walks of length 4 starting in X. Hint: Cauchy-Schwarz inequality
- (ii) Show that the lower bound is approximately optimal if (X, Y) is in addition (ε, d) -regular. Hint: Define a notion of δ -approximately optimal and show for all $\delta > 0$, there is $\varepsilon > 0$ s.t. ...