Graph Theory 2

Exercise Sheet 1

due on Oktober 26, 1pm

http://bit.ly/2kYKM1V

Exercise 1 (§2.20)

[1 Punkt]

[1 Punkt]

[1 Punkt]

[1 Punkt]

Show that a graph G = (V, E) contains a matching with k edges if and only if

$$q(G-S) \leqslant |S| + |V| - 2k$$

for all sets $S \subseteq V$, where q(G - S) denotes the number of odd components in G - S.

Exercise 2 (§2.25)

For cubic graphs, Lemma 2.3.1 is considerably stronger than the Erdős-Pósa theorem. Extend the lemma to arbitrary multigraphs of minimum degree ≥ 3 , by finding a function $g: \mathbb{N} \to \mathbb{N}$ such that every multigraph of minimum degree ≥ 3 and order at least g(k) contains k disjoint cycles, for all $k \in \mathbb{N}$. Alternatively, show that no such function g exists.

Exercise 3 (§2.27)

Show that if G has two edge-disjoint spanning trees, it has a connected spanning subgraph all whose degrees are even.

Exercise 4 (§2.30)

A graph G is called *balanced* if $\varepsilon(H) \leq \varepsilon(G)$ for every subgraph $H \subseteq G$, where $\varepsilon(H) = \frac{|E(H)|}{|V(H)|}$.

- (i) Find a few natural classes of balanced graphs.
- (ii) Give an example of a graph which is not balanced.
- (*iii*) Show that the arboricity of a balanced graph is bounded from above by its average degree. Is it even bounded by ε ? Or by $\varepsilon + 1$?
- (*iv*) Characterise the graphs G satisfying $\varepsilon(H) \ge \varepsilon(G)$ for every induced subgraph $H \subseteq G$ on at least two vertices.

Written Exercise (§2.22)

Derive Hall's marriage theorem from Tutte's theorem.