
REGULARITY LEMMA AND APPLICATIONS

MATHIAS SCHACHT

Abstract. We present Szemerédi’s regularity lemma and a few standard applications,
including the removal lemma for cliques, Roth’s theorem on arithmetic progressions, and
the Ramsey-Turán theorem for K4.

§1. The regularity lemma

Let G “ pV,Eq be a graph ε ą 0 and d ě 0. We say a pair pX, Y q of disjoint subsets
of V is pε, dq-regular, if for all subsets X 1 Ď X and Y 1 Ď Y we have

ˇ

ˇeGpX
1, Y 1q ´ d|X 1

||Y 1|
ˇ

ˇ ď ε|X||Y | .

Moreover, a pair pX, Y q is ε-regular, if it is pε, dq-regular for d “ dpX, Y q :“ eGpX,Y q
|X||Y |

, where
we use the convention dpX, Y q “ 0 when |X||Y | “ 0. We remark that this definition
slightly differs from the original formulation of Szemerédi [44], where the error on the
right-hand side is of the form ε|X 1||Y 1| and one requires |X 1| ě ε|X| and |Y 1| ě ε|Y |.
However, both versions are equivalent up to the order of ε.

It is easy to see that any pε, dq-regular pair pX, Y q is approximately degree regular, in
the sense that

ÿ

xPX

ˇ

ˇ|Npxq X Y | ´ d|Y |
ˇ

ˇ ď 3ε|X||Y | and
ÿ

yPY

ˇ

ˇ|Npyq XX| ´ d|X|
ˇ

ˇ ď 3ε|X||Y | ,

i.e., most vertices in X have p1 ˘ εqd|Y | neighbours in Y and most vertices in Y have
p1˘ εqd|X| neighbours in X. On the other hand, the uniform edge distribution imposed by
ε-regularity is a much stronger property, as it is easy to come up with vertex degree regular
graphs that are not ε-regular. Due to this Szemerédi’s regularity lemma is sometimes
referred to as uniformity lemma.

Theorem 1.1 (Szemerédi’s regularity lemma). For every ε ą 0 and t0 P N there is some
T0 “ T0pε, t0q such that every graph G “ pV,Eq with |V | “ n ě T0 admits a vertex partition
V0 Ÿ V1 Ÿ . . . Ÿ Vt “ V satisfying the following properties:

(i ) |V0| ď εn and |V1| “ ¨ ¨ ¨ “ |Vt|,
(ii ) t0 ď t ď T0, and
(iii ) all but at most εt2 pairs pVi, Vjq with 1 ď i ă j ď t are ε-regular.

1
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The proof of Theorem 1.1 makes use of the index of a partition. For a partition
P “ pV1, . . . , Vtq of V we define its index by

indpPq “ 1
|V |2

ÿ

1ďiăjďt
d2
pVi, Vjq|Vi||Vj| .

It follows from the definition of the index that

0 ď indpPq ď 1
2 (1.1)

for any partition P of V .
The following two lemmas are simple consequences of the Cauchy-Schwarz inequality

and the and key observations for the proof of Theorem 1.1. The first lemma implies that
the index is monotone under refinements of partition.

Lemma 1.2. Let G “ pV,Eq be a graph. For disjoint sets U , W Ď V with partitions
U1 Ÿ . . . Ÿ Us “ U and W1 Ÿ . . . ŸWt “ W we have

ÿ

iPrss

ÿ

jPrts

d2
pUi,Wjq|Ui||Wj| ě d2

pU,W q|U ||W | .

In particular, if Q and P are partitions of V and Q refines P, then indpQq ě indpPq.

Proof. If U or W is empty, then the inequality is trivial. Otherwise we obtain from the
Cauchy-Schwarz inequality
ÿ

iPrss

ÿ

jPrts

´

dpUi,Wjq

b

|Ui||Wj|

¯2 ÿ

iPrss

ÿ

jPrts

´
b

|Ui||Wj|

¯2
ě

ˆ

ÿ

iPrss

ÿ

jPrts

dpUi,Wjq|Ui||Wj|

˙2

.

Consequently, since
ÿ

iPrss

ÿ

jPrts

dpUi,Wjq|Ui||Wj| “ epU,W q “ dpV,W q|U ||W |

and
ř

iPrss

ř

jPrts |Ui||Wj| “ |U ||W | we infer
ÿ

iPrss

ÿ

jPrts

d2
pUi,Wjq|Ui||Wj| ě

d2pU,W q|U |2|W |2

|U ||W |
“ d2

pU,W q|U ||W | ,

as claimed. �

The next lemma shows that the index increases, if we split a pair along a “witness of
irregularity.”

Lemma 1.3. Let G “ pV,Eq be a graph. For disjoint sets U , W Ď V with U 1 Ÿ U2 “ U

and W 1 ŸW 2 “ W satisfying

epU2,W 2
q “ dpU,W q|U2||W 2

| ` η|U ||W | (1.2)
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for some η P R, we have

d2
pU 1,W 1

q|U 1||W 1
|`d2

pU 1,W 2
q|U 1||W 2

|`d2
pU2,W 1

q|U2||W 1
| (1.3)

`d2
pU2,W 2

q|U2||W 2
|ě

`

d2
pU,W q`η2˘

|U ||W | .

Proof. The lemma is trivial if |U ||W | “ 0 and for η “ 0 it follows from Lemma 1.2. Hence,
in view of (1.2) we may also assume η ą 0 and |U ||W | ą |U2||W 2| ą 0.

Starting with the left-hand side we apply the Cauchy-Schwarz inequality as in the proof
of Lemma 1.2, but this time only to the first three terms of the sum, and obtain

left-hand side of (1.3) ě
`

epU,W q ´ epU2,W 2q
˘2

|U ||W | ´ |U2||W 2|
` d2

pU2,W 2
q|U2||W 2

| .

Using epU,W q “ dpU,W q|U ||W |, epU2,W 2q “ dpU2,W 2q|U2||W 2|, and substituting (1.2)
yields
`

epU,W q ´ epU2,W 2q
˘2

|U ||W | ´ |U2||W 2|
` d2

pU2,W 2
q|U2||W 2

| “ d2
pU,W q|U ||W | ` η2

|U ||W |
|U ||W |

|U2||W 2|
,

which concludes the proof. �

After these preparations we establish Theorem 1.1.

Proof of Theorem 1.1. Let ε ą 0 and t0 ě 1 be given. Starting with t0 we define a sequence
of integers ptiqiPN recursively through

ti “
Qti´12i`ti´1

ε

U

(1.4)

and we set
T0 “ tr2{ε3s ,

i.e., T0 is given by a tower-type function of height polyp1{εq. Given a graph G “ pV,Eq
with n “ |V | ě T0 we prove the existence of a partition P satisfying properties (i )–(iii ) of
Theorem 1.1.

Starting with an arbitrary partition P0 “ pV 0
0 , V

0
1 , . . . , V

0
t0q with |V

0
s | “ tn{t0u for s P rt0s

and
|V 0

0 | ă t0
(1.4)
ď

ε

2t1 ď
ε

2T0 ď
ε

2n (1.5)

we shall consider a sequence of partitions P i “ pV i
0 , V

i
1 . . . , V

i
si
q of V all of which satisfy

properties (i ) and (ii ) with T0 replaced by ti. Moreover, the partition P i will be almost
a refinement of P i´1, with the exception that V i

0 might be a superset of V i´1
0 . In order

to work with refinements we shall consider partitions P i
0, which are obtained from P i by

splitting the exceptional class V i
0 into singletons. This way we will obtain a sequence of

refinements
P0

0 ě P1
0 ě ¨ ¨ ¨ ě P i

0
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with non-decreasing index (see Lemma 1.2). Furthermore, working under the assumption
that P i´1 fails to satisfy property (iii ) of Theorem 1.1, will enable us to show via Lemma 1.3,
that in addition indpP i

0q ě indpP i´1
0 q ` ε3

4 . In view of (1.1) this can happen not more than
2{ε3 times, which means for some i ď r2{ε3s we arrive at a partition P i satisfying all three
properties (i )–(iii ) of Theorem 1.1. Below we give the details of the described approach.

Suppose for some i ě 1 we are given a partition P i´1 “ pV i´1
0 , V i´1

1 , . . . , V i´1
si´1
q of V

satisfying

|V i´1
0 | ď

`

1´ 2´i
˘

εn , |V i´1
1 | “ ¨ ¨ ¨ “ |V i´1

si´1
| , and si´1 ď ti´1 , (1.6)

but failing to satisfy property (iii ) of Theorem 1.1. We shall construct a partition
P i “ pV i

0 , V
i

1 , . . . , V
i
si
q of V such that

|V i
0 | ď

`

1´ 2´pi`1q˘εn , |V i
1 | “ ¨ ¨ ¨ “ |V

i
si
| , and si ď ti , (1.7)

and, in addition, P i´1
0 ě P i

0 and

indpP i
0q ě indpP i´1

0 q `
ε3

4 . (1.8)

The initial partition P0 satisfies (1.6) for i “ 1 and s0 “ t0 (see (1.5)) and (1.7) estab-
lishes (1.6) for i ` 1, which allows us to proceed by induction. Since (1.8) can hold for
at most 2{ε3 indices i, this procedure must eventually end with a partition Pj satisfying
properties (i )–(iii ) of Theorem 1.1.

It is left to construct P i from P i´1 such that (1.7) and (1.8) hold. Given P i´1 let I
be the set of all pairs ta, bu P rsi´1s

p2q of indices such that pV i´1
a , V i´1

b q is not ε-regular.
Assuming that P i´1 fails to satisfy property (iii ) of Theorem 1.1 implies

|I| ą εs2
i´1 . (1.9)

In particular, for every ta, bu P I there are sets U b
a Ď V i´1

a and Ua
b Ď V i´1

b such that

epU b
a, U

a
b q “ dpV i´1

a , V i´1
b q|U b

a||U
a
b | ` ηab|V

i´1
a ||V i´1

b | ,

for some ηab P R with |ηab| ą ε.
We consider the auxiliary partition Q given by the coarsest common refinement of P i´1,

that also refines all partitions
`

U b
a, V r U b

a

˘

and
`

Ua
b , V r Ua

b

˘

for all ta, bu P I. In
particular, V i´1

0 is a class in Q and every partition class Q from Q with Q Ď V i´1
a is either

contained in U b
a or it is contained in V i´1 r U b

a whenever ta, bu P I. Since every vertex
class V i´1

a from P i´1 can be involved in at most si´1 ´ 1 pairs that are not ε-regular, we
know that Q has besides the exceptional class V i´1

0 at most

si´12si´1´1
ď

1
2ti´12ti´1 (1.10)
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other classes. Moreover, by definition the partition Q0, which splits the class V i´1
0

from Q into singletons, refines P i´1
0 . Applying Lemma 1.3 to every pV i´1

a , V i´1
b q with

1 ď a ă b ď si´1 and ta, bu P I and applying Lemma 1.2 to all pairs yields

indpQ0q ě indpP i´1
0 q `

1
n2

ÿ

ta,buPI

η2
ab|V

i´1
a ||V i´1

b |

(1.9)
ě indpP i´1

0 q `
1
n2 ¨ εs

2
i´1 ¨ ε

2
ˆ

n´ |V i´1
0 |

si´1

˙2

(1.6)
ě indpP i´1

0 q `
ε3

4 . (1.11)

Finally, we derive P i from Q. For that we split every classes Q ‰ V i´1
0 from Q into as many

sets of size rn{tis as possible and we add the remainders to V i´1
0 . Let P i “ pV i

0 , V
i

1 , . . . , V
i
si
q

the resulting partition. Obviously, |V i
1 | “ ¨ ¨ ¨ “ |V

i
si
| and si ď ti. Moreover,

P i
0 ď Q0 ď P i´1

0 ,

and by Lemma 1.2 we have

indpP i
0q ě indpQ0q

(1.11)
ě indpP i´1

0 q `
ε3

4 .

Finally, we observe
ˇ

ˇV i
0 r V i´1

0
ˇ

ˇ

(1.10)
ď

1
2ti´12ti´1 ¨

`

rn{tis´ 1
˘

ď
ti´12ti´1

2ti
n

(1.4)
ď

ε

2i`1n ,

which combined with (1.6) implies |V i
0 | ď p1´2´pi`1qqεn. Consequently, we established (1.7)

and (1.8) for the partition P i, which concludes the proof of Theorem 1.1. �

The proof of the regularity lemma shows that setting

T0 “ 222.
. .

2t0

for a tower of twos of height polyp1{εq suffices. Somewhat surprisingly it turned out that
this type of bound is “essentially” best possible. This was shown by Gowers [21] (see
also [17, 29] for subsequently found improved lower bound constructions).

§2. The counting lemma

In many applications the regularity lemma is used in conjunction with some lemma
that embeds a given graph in a suitable collection of ε-regular pairs. In fact, often we
do not only find one copy, but many copies of the given graph, which is established by
the counting lemma. For the special case of cliques K` it states that if all

`

`
2

˘

pairs of an
`-partite graph G are ε-regular, then the number of cliques in G is close to the expected
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number of K` in a random `-partite graph on the same vertex partition and with the same
edge densities.

Proposition 2.1 (Counting lemma). Let ε ą 0 and let G “ pV1 Ÿ . . . Ÿ V`, EGq be an
`-partite graph. If every bipartite pair pVi, Vjq is pε, dijq-regular for some dij ě 0, then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇK`pGq
ˇ

ˇ´
ź

1ďiăjď`
dij ¨

ź

iPr`s

|Vi|

ˇ

ˇ

ˇ

ˇ

ď ε

ˆ

`

2

˙

ź

iPr`s

|Vi| ,

where K`pGq is the set of copies of K` in G.

The proof of Proposition 2.1 yields a more general result (see Proposition 2.2 below)
and we introduce the necessary notation below.

For graphs F and G we denote by HompF,Gq the set of graph homomorphisms ϕ from F

to G, i.e., ϕ : V pF q Ñ V pGq and ϕpiqϕpjq P EpGq, whenever ij P EpF q. For graph
homomorphisms we simply write ϕ : F Ñ G and we denote by hompF,Gq the number of
homomorphisms |HompF,Gq|. Note that injective homomorphisms correspond to labeled
copies of F in G.

Suppose ϕ P HompF,Rq for some graph R with vertex set V pRq “ rts and suppose
G “ pV1 Ÿ . . . Ÿ Vt, EGq is a t-partite graph. We denote by HomϕpF,Gq the set of ϕ-partite
homomorphism, i.e., HomϕpF,Gq contains those ψ P HompF,Gq which in addition satisfy

ψpwq P Vϕpwq

for every w P V pF q. Again we write homϕpF,Gq for the number of ϕ-partite homomor-
phisms. Note that, in the special case when ϕ is injective, then ϕ yields a of F in G and,
therefore, the following counting lemma is a generalisation of Proposition 2.1.

Proposition 2.2 (Counting lemma). Let ϕ P HompF,Rq for graphs F “ pU,EF q and
R “ prts, ERq and let ε ą 0. If G “ pV1 Ÿ . . . Ÿ Vt, EGq is a t-partite graph such that for
every edge ij P ER the pair pVi, Vjq is pε, dijq-regular for some dij ě 0, then

ˇ

ˇ

ˇ

ˇ

homϕpF,Gq ´
ź

uwPEF

dϕuw ¨
ź

uPU

|Vϕpuq|

ˇ

ˇ

ˇ

ˇ

ď ε|EF |
ź

uPU

|Vϕpuq| ,

where dϕuw “ dϕpuqϕpwq.

For example, in the case when R contains some clique K` on vertices i1, . . . , i`, then
Proposition 2.2 guarantees a copy of any `-chromatic graph F “ pU,EF q in GrVi1 Ÿ . . .ŸVi`s
with all

`

`
2

˘

pairs being ε-regular of density at least d as long as

ε ă
d|EF |

|EF |
and |Vi1 | “ ¨ ¨ ¨ “ |Vi` | “ m is sufficiently large.
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Indeed in this situation Proposition 2.2 yields at least pd|EF | ´ ε|EF |qm
|U | “ Ωpm|U |q

homomorphism from F to G. At most Opm|U |´1q “ opm|U |q of these homomorphism are
not injective and, hence, for sufficiently large m there is an (in fact, there are Ωpm|U |q)
injective homomorphism(s) in HompF,Gq, which gives rise to labeled copies of F in G.

Proof of Proposition 2.2. The proposition is clearly true for graphs F with at most one
edge and we proceed by induction on |EF |. Let graphs F “ pU,EF q, R “ prts, ERq, and
G “ pV1 Ÿ . . . Ÿ Vt, EGq and a homomorphism ϕ P HompF,Rq be given.

Fix some edge ab P EF and consider the spanning subgraph F 1 “ F ´ ab of F obtained
by removing the edge ab from F . We count the ϕ-partite homomorphisms from F to G by

homϕpF,Gq “
ÿ

ψPHomϕpF 1,Gq

1EG
`

ψpaq, ψpbq
˘

,

where 1EG denotes the indicator function of the edge set of G, i.e., 1EGpu, vq “ 1 if uv P EG
and 0 otherwise. In order to apply the induction assumption for F 1, we rewrite the sum in
the form

homϕpF,Gq “
ÿ

ψPHomϕpF 1,Gq

´

1EG
`

ψpaq, ψpbq
˘

´ dϕab ` d
ϕ
ab

¯

“
ÿ

ψPHomϕpF 1,Gq

´

1EG
`

ψpaq, ψpbq
˘

´ dϕab

¯

` dϕab ¨ homϕpF
1, Gq .

Owing to the induction assumption, we have

ˇ

ˇ

ˇ

ˇ

dϕab ¨ homϕpF
1, Gq´

ź

uwPEF

dϕuw
ź

uPU

|Vϕpuq|

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

dϕab ¨ homϕpF
1, Gq´dϕab ¨

ź

uwPEF 1

dϕuw
ź

uPU

|Vϕpuq|

ˇ

ˇ

ˇ

ˇ

ď dϕab ¨ ε
`

|EF | ´ 1
˘

ź

uPU

|Vϕpuq|

ď ε
`

|EF | ´ 1
˘

ź

uPU

|Vϕpuq|

and, therefore, proving

ˇ

ˇ

ˇ

ˇ

ÿ

ψPHomϕpF 1,Gq

´

1EG
`

ψpaq, ψpbq
˘

´ dϕab

¯

ˇ

ˇ

ˇ

ˇ

ď ε
ź

uPU

|Vϕpuq| (2.1)

completes the inductive step. For the proof of (2.1) we consider the induced subgraph F ˚

obtained from F by removing the vertices a and b. Moreover, let ϕ˚ be the homomorphism
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ϕ : F Ñ R restricted to U˚ “ U r ta, bu. With this notation at hand we observe
ˇ

ˇ

ˇ

ˇ

ÿ

ψPHomϕpF 1,Gq

´

1EG
`

ψpaq, ψpbq
˘

´ dϕab

¯

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ψ˚PHomϕ˚ pF
˚,Gq

ÿ

ψPHomϕpF 1,Gq
ψ|U˚”ψ

˚

´

1EG
`

ψpaq, ψpbq
˘

´ dϕab

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

ψ˚PHomϕ˚ pF
˚,Gq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ψPHomϕpF 1,Gq
ψ|U˚”ψ

˚

´

1EG
`

ψpaq, ψpbq
˘

´ dϕab

¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

The inner sum runs over all extension ψ of a fixed partite homomorphism ψ˚ of F ˚ to a
homomorphism of F 1. In particular, ψpaq must be in the neighbourhood of ψ˚puq for every
u P NF 1paq, i.e.,

ψpaq P Wa , where Wa “ Vϕpaq X
č

uPNF 1 paq

NG

`

ψ˚puq
˘

.

Similarly, we require ψpbq P Wb “ Vϕpbq X
Ş

uPNF 1 pbq
NG

`

ψ˚puq
˘

, which leads to
ˇ

ˇ

ˇ

ˇ

ÿ

ψPHomϕpF 1,Gq

´

1EG
`

ψpaq, ψpbq
˘

´ dϕab

¯

ˇ

ˇ

ˇ

ˇ

ď
ÿ

ψ˚PHomϕ˚ pF
˚,Gq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

waPWa
wbPWb

`

1EGpwa, wbq ´ d
ϕ
ab

˘

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

ψ˚PHomϕ˚ pF
˚,Gq

ˇ

ˇ

ˇ

ˇ

eG
`

Wa,Wb

˘

´ dϕab
ˇ

ˇWa

ˇ

ˇ

ˇ

ˇWb

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď homϕ˚pF
˚, Gq ¨ ε

ˇ

ˇVϕpaq
ˇ

ˇ

ˇ

ˇVϕpbq
ˇ

ˇ ,

where we used the ε-regularity of pVϕpaq, Vϕpbqq. Since

homϕ˚pF
˚, Gq ď

ź

uPU˚

ˇ

ˇVϕ˚puq
ˇ

ˇ “
ź

uPUrta,bu

ˇ

ˇVϕpuq
ˇ

ˇ

the estimate (2.1) follows, which concludes the proof of the proposition. �

§3. The removal lemma

The removal lemma follows from a combined application of the regularity lemma and the
counting lemma. The removal lemma asserts that for every graph H the following is true,
if the number of copies of F in a large graph G “ pV,Eq is at most op|V ||V pF q|q then one
can remove op|V |2q edges from G in such a way that the resulting graph is F -free. The case
F “ K3 was essentially proved by Ruzsa and Szemerédi [36], where a preliminary version
of the regularity lemma from [43] was used. Erdős, Frankl, and Rödl [11] proved a very
similar result for general F and, in fact, the same proof yields the removal lemma as well.
The removal lemma in the form as stated below first appeared in the work Alon, Duke,
Lefmann, Rödl, and Yuster [1] for cliques and in the work of Füredi [19] for general F .
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Theorem 3.1 (Removal lemma). For every graph F and % ą 0 there exist η ą 0 and n0

such that the following holds.
If G “ pV,Eq with |V | “ n ě n0 contains at most ηn|V pF q| labeled copies of F , then there

exists a set E˚ Ď E with |E˚| ď %n2 such that G1 “ pV,E r E˚q is F -free.

Proof. Let F “ pU,EF q and % ą 0 be given. The theorem is void for graphs F with no
edges and for % ě 1{2. Hence, we may assume |EF | ą 0 and % ă 1{2.

For an intended application of the regularity lemma we set

ε “
%|EF |

8 ¨ |EF |
ď
%

8 and t0 “
Q2
%

U

. (3.1)

and Theorem 1.1 yields T0 “ T0pε, t0q. We then fix the promised constants

η “
%|EF |

3 ¨ p2T0q|U |
and n0 “ max

!

T0,
Q

|U |

η

U)

. (3.2)

Let G “ pV,Eq be a graph with |V | “ n ě n0 that contains at most ηn|U | labeled copies
of F . In other words, the number of injective homomorphisms in HompF,Gq is at most ηn|U |.
Since there are at most

|U |n|U |´1
“
|U |

n
n|U | ď

|U |

n0
n|U | ď ηn|U |

non-injective homomorphisms, we have

hompF,Gq ď 2ηn|U | . (3.3)

We apply the regularity lemma with the chosen parameters ε and t0 to G and obtain a
partition V0 Ÿ V1 Ÿ . . . Ÿ Vt “ V with

2
%

(3.1)
ď t0 ď t ď T0 (3.4)

such that |V0| ď εn, |V1| “ ¨ ¨ ¨ “ |Vt|, and all but at most εt2 pairs pVi, Vjq are ε-regular.
Next we select the edges for E˚. We include an edge xy of G in E˚ if at least one of the

following statements holds
(a ) x or y is in V0, or
(b ) xy P EGpViq for some i P rts, or
(c ) xy P EGpVi, Vjq for 1 ď i ă j ď t such that pVi, Vjq is not ε-regular, or
(d ) xy P EGpVi, Vjq for 1 ď i ă j ď t such that dpVi, Vjq ă %.

It is left to show that E˚ has the desired properties, i.e.,

|E˚| ď %n2 and G1 “ pV,E r E˚q is F -free.

For the upper bound on |E˚| we observe that there are
‚ at most |V0| ¨ n ď εn2 edges satisfying (a ),
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‚ at most t ¨
`

n{t
2

˘

ă n2

2t edges satisfying (b ),
‚ at most εt2 ¨ pn{tq2 “ εn2 edges satisfying (c ),
‚ less than

`

t
2

˘

¨ % ¨ pn{tq2 ă %n2{2 edges satisfying (d ).

Consequently, we derive the promised upper bound

|E˚| ă
´

ε`
1
2t ` ε`

%

2

¯

n2 (3.4)
ď

´

ε`
%

4 ` ε`
%

2

¯

n2 (3.1)
ď %n2 . (3.5)

In order to verify that G1 is F -free, we suppose for a contradiction that G1 contains some
copy of F . It follows from the definition of E˚ that every edge of this copy lies in some
ε-regular pair of density at least %. This gives rise to some homomorphism ϕ : F Ñ R for
the reduced graph R defined by

V pRq “ rts and ij P EpRq ðñ pVi, Vjq is pε, dijq-regular for some dij ě % .

In particuar, ϕ, F , R, and G1 satisfy the assumptions of the counting lemma (Proposi-
tion 2.2), which yields

hompF,Gq ě homϕpF,G
1
qě

ˆ

ź

uwPEF

dϕuw ´ ε |EF |

˙

ź

uPU

|Vϕpuq|

ě
`

%|EF | ´ ε |EF |
˘

´

p1´ εqn
t

¯|U | (3.1)
ě

7
8%
|EF |

´ n

2T0

¯|U | (3.2)
ą 2ηn|U | ,

which contradicts (3.3) and concludes the proof of the removal lemma. �

The removal lemma was generalised in several ways. Alon, Fischer, Krievelevich, and
Szegedy [2] obtained a version for induced subgraphs. More precisely, this result asserts
that any large graph G “ pV,Eq containing at most op|V ||VF |q induced copies of F can be
changed in op|V |2q places by removing and adding edges such that the resulting graph G1

contains no induced copy of F at all. Further extensions of Alon and Shapira [3,4] allow to
forbid not only a single graph F , but a possibly infinite family of graphs F . These results
rely on an iterated version of the regularity lemma and had some applications in the area
of property testing in theoretical computer science.

Another line of research concerns quantitative aspects of the removal lemma. Owing to
the use of the regularity lemma in the proof of the removal lemma, the constant η “ ηpF, %q

is the reciprocal of some tower-type function of height polynomial in 1{% and |V pF q| and
obtaining a better dependency is of great interest in extremal graph theory. Currently,
the best dependency is due to Fox [15], who improved the height of the tower from a
polynomial to a logarithmic dependency.
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§4. Triangle removal lemma and Roth’s theorem

Ruzsa and Szemerédi [36] established a connection between the triangle removal lemma
(Theorem 3.1 for F “ K3) and Roth’s theorem [34,35] on arithmetic progressions of length
three.

In 1936 Erdős and Turán considered the function

rkpnq “ maxt|A| : A Ď rns and A contains no arithmetic progression of length ku

and conjectured r3pnq “ opnq, i.e., limnÑ8
r3pnq
n
“ 0. This conjecture turned out to be

difficult, which was indicated by lower bound constructions of Salem and Spencer [39]
giving r3pnq ě n1´op1q and Behrend [5], who showed

r3pnq ě
n

exppc
?

log nq
for some constant c ą 0. This lower bound is up to the constant c the best known lower
bound for r3pnq and we refer to [10, 25, 31] for more details and recent results in that
direction. Roth verified the conjecture of Erdős and Turán and proved in [35] the following
upper bound.

Theorem 4.1 (Roth’s theorem). There is some c ą 0 such that r3pnq ď c n
log logpnq . �

There is a great interest to further close the gap between the lower and the upper bound
on r3pnq and several improvements on the upper bound were obtained by Heath-Brown [26],
Szemerédi [45], Bourgain [8, 9], and Sanders [37, 38]. The best current upper bound is due
to Bloom [6] and gives

r3pnq ď c
nplog logpnqq4

logpnq .

For longer arithmetic progressions (k ą 3) the conjecture rkpnq “ opnq is also attributed
to Erdős and Turán. In that direction Szemerédi [41] first addressed the case k “ 4 before
resolving it for every k in [43].

Theorem 4.2 (Szemerédi’s theorem). For every k ě 3 we have rkpnq “ opnq. �

In his proof Szemerédi introduced an early version of the regularity lemma, which
was also used in the original approach to the triangle removal lemma of Ruzsa and
Szemerédi [36]. Since then several different proofs of Szemerédi’s theorem were found and
inspired further research in different branches of mathematics like ergodic theory (pioneered
by Furstenberg [20]), harmonic analysis (due to Gowers [22, 23]), and extremal hypergraph
theory (developed by Rödl and his collaborators [18, 30, 33] and Gowers [24]) and we refer
to Tao [46] for a more detailed discussion of these developments.
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Below we derive a qualitative version of Roth’s theorem as a corollary of the triangle
removal lemma. This reduction is due to Ruzsa and Szemerédi [36]. First we deduce the
following simple consequence of the removal lemma.

Corollary 4.3. For every δ ą 0 there exists an n0 such that the following holds. If a
graph G “ pV,Eq with |V | “ n ě n0 has the property that every edge belongs to exactly one
triangle, then |E| ď δn2.

Proof. Let δ ą 0 be given. For the definition of n0 we apply the triangle removal lemma
(Theorem 3.1 for F “ K3) with % “ δ{3, which yields some η ą 0 and some integer n1. We
then set

n0 “ max
!

n1,
1
η

)

.

Let G “ pV,Eq with |V | “ n ě n0 be given and suppose every edge belongs to precisely
one triangle. In particular, the number of labeled triangles in G satisfies

hompK3, Gq “ 6 ¨ |E|3 “ 2 ¨ |E| (4.1)

and, hence, G contains at most n2 ď ηn3 labeled triangles. The triangle removal lemma
asserts that there is a set E˚ Ď E of size at most %n2 such that G1 “ pV,E r E˚q is
triangle-free. Since every edge from E˚ can destroy at most 6 labeled triangles in G, we
also have

hompK3, Gq ď 6 ¨ |E˚|

and, in view of (4.1) this yields the desired estimate

|E| “
1
2 ¨ | hompK3, Gq| ď 3 ¨ |E˚| ď 3%n2

“ δn2 .

�

Corollary 4.4 (Qualitative version of Roth’s theorem). We have r3pnq “ opnq.

Proof. Let ε ą 0 be arbitrary and for n0 given by Corollary 4.3 applied with δ “ ε{12 we
shall show that r3pnq ď εn for every n ě n0. For that we consider an arbitrary set A Ď rns
without arithmetic progression of length three. In order to apply Corollary 4.3 we define
an auxiliary graph GA “ pX Ÿ Y Ÿ Z,Eq. The graph GA is tripartite with vertex classes
X “ rns, Y “ r2ns, and Z “ r3ns (considered as disjoint sets). The edge set of GA is
the union of defining triangles, where for every x P X and a P A we include the defining
triangle Kpx, aq with vertices

x P X , x` a P Y , and 2x` a P Z .
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Clearly, |V pGAq| “ 6n and every edge of GA is in at least one triangle. Moreover, since
any two vertices of a defining triangle uniquely determine the third vertex, the defining
triangles are mutually edge disjoint and we have

ˇ

ˇEpGAq
ˇ

ˇ “ 3n|A| . (4.2)

Next we show that every edge of GA belongs to at most one triangle and we suppose for a
contradiction that some edge belongs to two triangles. Owing to the disjointness of the
defining triangles this means that second triangle is created by three defining triangles
Kpx, aq, Kpx, bq, and Kpx1, cq, i.e., the vertices

x P X , x` b “ x1 ` c P Y , and 2x` a “ 2x1 ` c P Z

span a triangle. Consequently,

b “ c` px1 ´ xq and a “ c` 2px1 ´ xq ,

which would mean that c, b, and a form an arithmetic progression of length three with
difference |x1 ´ x|. Since a, b, c P A, this contradicts the assumption that A does not
contain any three term progression. Therefore, every edge of GA belongs to precisely one
triangle and Corollary 4.3 yields

|EpGAq| ď δ ¨ |V pGAq|
2
“ δ ¨ p6nq2

and with (4.2) we arrive at

|A| “
|EpGAq|

3n ď δ ¨ 12n “ εn ,

which concludes the proof of Corollary 4.4. �

§5. Ramsey-Turán type problems

In this section we discuss another application of the regularity method. Erdős and
Sós [13] started the investigation of the following function, which can be viewed as a
common generalisation of the problems addressed by Ramsey’s theorem [32] and by Turán’s
theorem [47]

RTpn; k, `q “ maxtepGq : |V pGq| “ n , ωpGq ă k , and αpGq ă `u ,

with the convention that RTpn; k, `q “ 0, if no graph G with ωpGq ă k and αpGq ă `

on n vertices exists. For example, if n is at least the Ramsey number rpk, `q, then no
such graphs exists, while RTpn; k, `q equals the Turán number expn,Kkq for ` ą n. The
connection to Ramsey’s theorem indicates that determining RTpn; k, `q for all values is at
least as hard as determining all Ramsey numbers rpk, `q, which appears to be hopeless.
Erdős and Sós set out to investigate the asymptotic behaviour of RTpn; k, opnqq.
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Since neighbourhoods of triangle-free graphs induce independent sets, it easy to see that
RTpn; 3, opnqq “ opn2q. In [13] Erdős and Sós proved for every k ě 2

RTpn; 2k ´ 1, opnqq “
´k ´ 2
k ´ 1 ` op1q

¯

ˆ

n

2

˙

.

This resolves the problem for odd cliques K2k´1 and only the problem for even cliques
remained open. The first open case was addressed by Szemerédi [42], who proved the
following upper bound.

Theorem 5.1. For every η ą 0 there exist α ą 0 and n0 such that

RTpn; 4, αnq ď
´1

8 ` η
¯

n2

for every n ě n0.

At the time it was not clear whether the obtained upper bound is sharp. This changed
when Bollobás and Erdős [7] came up with a beautiful construction of n-vertex, K4-free
graphs with independence number opnq and p1{8´op1qqn2 edges, which provides a matching
lower bound for Theorem 5.1. The general case for even cliques was subsequently addressed
by Erdős, Hajnal, Sós, and Szemerédi [12] (see the survey [40] for a more detailed discussion
on Ramsey-Turán type problems).

Below we use Theorem 1.1 to derive Theorem 5.1, which again gives tower-type depen-
dency between η and α. The original proof of Szemerédi is based on a simple lemma, which
might be viewed as a very early version of a regularity for graphs (see Proposition A.2),
which predates the lemma appearing in [43]. We include Szemerédi’s original argument in
Appendix A. This proof gives a double-exponential dependency between η and α. This
was further improved by Fox, Loh, and Zhao [16] to a polynomial dependency and the
optimal relation was recently obtained by Lüders and Reiher [27].

Proof of Theorem 5.1. Let η ą 0 be given. We fix an auxiliary constant

% “
η

4
and for the intended application of the regularity lemma we fix

ε “
%3

4 ă
η

8 and t0 “
Q4
η

U

(5.1)

and Theorem 1.1 yields a constant T0. Finally, we set

α “
ε

3T0
ă

η

2T0
and n0 “ T0 (5.2)

and let n ě n0.
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We consider a K4-free graph G “ pV,Eq with |V | “ n vertices and αpGq ď αn. Let
V0 Ÿ V1 Ÿ . . . Ÿ Vt “ V with t0 ď t ď T0 be the vertex partition provided by the regularity
lemma and consider the reduced graph R “ prts, ERq defined by

ij P ER ðñ pVi, Vjq is pε, dijq-regular for some dij ě %.

Below we verify the following two claims.

Claim 5.2. The graph R is K3-free.

Claim 5.3. For every 1 ď i ă j ď t we have dpVi, Vjq ď 1
2 ` 2η.

Before we verify Claims 5.2 and 5.3 we conclude the proof of Theorem 5.1 based on
these claims. In order to establish an appropriate upper bound on |E| we note that every
edge xy of G satisfies at least one of the following statements

(a ) x or y is in V0, or
(b ) xy P EGpViq for some i P rts, or
(c ) xy P EGpVi, Vjq for 1 ď i ă j ď t such that pVi, Vjq is not ε-regular, or
(d ) xy P EGpVi, Vjq for 1 ď i ă j ď t such that dpVi, Vjq ă %, or
(e ) xy P EGpVi, Vjq and ij P ER.

Similarly as in the proof of Theorem 3.1 (see derivation of (3.5)) we observe that our choice
of %, ε, t0 implies that there are at most

εn2
`
n2

2t0
` εn2

`
%n2

2 ď
η

2n
2 .

edges satisfying statements (a )–(d ). Let E 1 be the set of those edges, i.e., every edge
in E r E 1 satisfies statement (e ). Claim 5.3 tells us

ˇ

ˇE r E 1
ˇ

ˇ ď
1` 4η

2 ¨

´n

t

¯2
¨ |ER| .

Mantel’s theorem [28] (Turán’s theorem for K3) combined with Claim 5.2 implies
ˇ

ˇER
ˇ

ˇ ď
t2

4
and, therefore, we arrive at

|E| “
ˇ

ˇE r E 1
ˇ

ˇ` |E 1| ď
1` 4η

2 ¨

´n

t

¯2
¨
t2

4 `
η

2n
2
“ ηn2

as desired and it is left to verify both claims. �

Proof of Claim 5.2. Suppose for a contradiction that i, j, k P rts span a triangle in R.
In particular, pVi, Vjq, pVi, Vkq, and pVj, Vkq are ε-regular with density at least % and
Proposition 2.2 for F “ K3 yields at least

p%3
´ 3εq|Vi||Vj||Vk|

(5.1)
“ ε|Vi||Vj||Vk|
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triangles in GrVi ŸVj ŸVks. This means that there is some edge xy P EpVi, Vjq that belongs
to ε|Vk| triangles, i.e.,

|Npxq XNpyq X Vk| ě ε |Vk| ě ε ¨ p1´ εqn
t
ě

ε

2T0
n

(5.2)
ą αn .

Since αpGq ď αn, there exists some edge zz1 contained in Npxq X Npyq X Vk and the
vertices x, y, z, and z1 span a K4 in G, which is a contradiction. �

Proof of Claim 5.3. Suppose for a contradiction that dpVi, Vjq ą 1{2` 2η for some distinct
indices i, j P rts. Let Ui be the vertices in Vi with at least p1{2` ηq|Vj| neighbours in Vj.
Since
´1

2 ` 2η
¯

|Vi||Vj| ă epVi, Vjq ă |VirUi| ¨
´1

2 ` η
¯

|Vj| ` |Ui||Vj| ď
´1

2 ` η
¯

|Vi||Vj| ` |Ui||Vj|

we have
|Ui| ě η|Vi| ą

η

2T0
n

(5.2)
ą αn .

It follows from αpGq ď αn that there is some edge uu1 P EpUiq and the definition of Ui
implies

|Npuq XNpu1q X Vj| ě 2η|Vj| ą αn .

This yields an edge in |Npuq XNpu1q X Vj|, which together with u and u1 spans a K4 in G,
contradicting that G is K4-free. �

Appendix A. Szemerédi’s proof of Theorem 5.1

In this appendix we reproduce Szemerédi’s proof of the following quantitative form of
Theorem 5.1 from [42].

Theorem A.1. For sufficiently small η ą 0 Theorem 5.1 holds for α “ 2´2C logp1{ηq{η2
for

some C ą 8 and sufficiently large n0.

A.1. A weak predecessor of the regularity lemma. The main tool in the proof of
Theorem A.1 is the following lemma, Proposition A.2, which might be viewed as a weak
predecessor regularity lemma for graphs. For a graph G “ pV,Eq, a vertex v P V and a
set U Ď V , we denote by Npv, Uq and degpv, Uq the neighbourhood and the degree of v
within the set U , i.e.,

NGpv, Uq “ tu P U : uv P Eu and degGpv, Uq “ |NGpv, Uq|

and when the graph G is clear from the context, then we simply write Npvq and degpvq
and drop the subscript.

Proposition A.2. For all positive reals γ, ε, and δ and every n-vertex graph G “ pV,Eq
the following holds. For every set U Ď V there exist subsets U˚ Ď U and V ˚ Ď V such that
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(i ) |U˚| ě γ1{ε|U |,
(ii ) degpu, V ˚q ě degpuq ´ δn for every u P U˚, and
(iii ) for every subset W Ď V ˚ with |W | ě εn we have

ˇ

ˇtu P U˚ : degpu,W q ă δ|W |u
ˇ

ˇ ă γU˚ .

Proof. Given γ, ε, δ, G, and U . We define iteratively the following finite sequences of sets
pUiq, pViq, and pWiq, where U0 “ U , V0 “ V , and W0 “ ∅. If U˚ “ Ui and V ˚ “ Vi satisfy
property (iii ) of Proposition A.2, then we stop and it will become clear from the proof,
that in this case U˚ and V ˚ also satisfy properties (i ) and (ii ).

On the other hand, if Ui and Vi do not satisfy property (iii ), then there is a subset
Wi`1 Ď Vi with

|Wi`1| ě εn (A.1)

such that at least γ|Ui| vertices from Ui have degree at most δ|Wi`1| into Wi`1. Let Ui`1

be the set of those vertices, i.e.,

Ui`1 “ tu P Ui : degpu,Wi`1q ă δ|Wi`1|u .

Consequently,

|Ui`1| ě γ|Ui| ě γi`1
|U |

and if we show that this procedure stops after at most t1{εu steps, then (i ) follows.
Moreover, we set

Vi`1 “ Vi rWi`1 .

Since Ui`1 Ď Ui Ď ¨ ¨ ¨ Ď U0 “ U and since the sets Wj are mutually disjoint, it follows
from the definition of Uj that for every u P Ui`1

degpu, Vi`1q “ degpu, Viq ´ degpu,Wi`1q

ą degpu, Viq ´ δ|Wi`1|

ě degpuq ´ δ|W1 ŸW2 Ÿ . . . ŸWi`1| .

This way we also ensure property (ii ) after the final iteration.
Finally, since property (iii ) of the lemma holds trivially as soon as Vj “ ∅, it follows

from (A.1) and

|Vi`1| “ |Vi| ´ |Wi`1| ď |Vi| ´ εn ď |V0| ´ pi` 1qεn “ n´ pi` 1qεn

that the procedure stops after at most t1{εu iterations. �
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A.2. Proof of Theorem A.1. Szemerédi’s proof of Theorem A.1 relies on two applications
of Proposition A.2. First we apply it to the given graph G “ pV,Eq with U “ V and
obtain subsets U˚1 and V ˚1 . In the second application we set U “ V ˚1 and obtain sets U˚2
and V ˚2 . Choosing δ for both applications to be sufficiently smaller than η, property (ii )
of Proposition A.2 combined this with K4-freeness yields that V ˚1 and V ˚2 contain more
than half of all vertices. In fact, the intersection of both sets contains linearly many
vertices. Moreover, since U˚2 and V ˚1 X V ˚2 are subsets of V ˚1 a careful choice of ε for the
first application of Proposition A.2 allows us to apply property (iii ) with W being these
two sets. As a result we obtain a vertex u1 P U

˚
1 which has a ‘large’ neighbourhood in U˚2

and in V ˚1 X V ˚2 . However, owing to the second application of Proposition A.2, where we
appeal to property (iii ) with W “ Npu˚1 , V

˚
1 X V

˚
2 q, we then find a vertex u2 P Npu1, U

˚
2 q

with a ‘large’ neighbourhood in Npu1, V
˚

1 X V
˚

2 q. Therefore, the K4-freeness of G implies
that this large neighbourhood in Npu1, V

˚
1 X V

˚
2 q is an independent set, which contradicts

the assumption on the independence number of G. Below we give the details of this outline.

Proof of Theorem A.1. Given η ą 0 we set

α “
?
η

ˆ

1
2

˙p4{ηq1`8{η2

and n0 “ r4{ηs .

Without loss of generality we may assume that η is sufficiently small such that

α ď min
"

η3.5

32 ,
?
η
´η

4

¯1`8{η2*

. (A.2)

Suppose G “ pV,Eq is a graph with |V | “ n ě n0, independence number αpGq ă αn and

|E| ą p1{8` ηqn2 . (A.3)

We will show that G must contain a clique on four vertices.
First we move away from the average degree condition given in (A.3) to a minimum

degree condition1. This idea is often used in extremal graph theory and it is easy to check
that from (A.3) and from the assumption on n0 it follows that there exists an induced
subgraph G1 “ pV 1, E 1q in G with

|V 1| “ m ě
?
ηn and δpG1q ě p1{4` η{2qm,

where we denote by δpG1q the minimum degree in G1. For the rest of the proof we only
focus on G1.

As discussed in the outline we apply Proposition A.2 twice. However, in the first
application we have to ‘foresee’ the second application, which we do by the following careful

1Actually here we slightly deviate from the original argument in [42].
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choice of ε. We set
γ1 “

1
2 , ε1 “

´η

4

¯1`8{η2

and δ1 “
η

4
and apply Proposition A.2 to G1 with U “ V 1. Proposition A.2 yields subsets U˚1 and
V ˚1 Ď V 1 satisfying properties (i )-(iii ). Before we move to the second application of
Proposition A.2 we note that we can assume that

|V ˚1 | ě

ˆ

1
2 `

η

4

˙

m. (A.4)

In fact, owing to
|U˚1 | ě γ

1{ε1
1 m ě p1{2qp4{ηq1`8{η2?

ηn “ αn

it follows from αpGq ă αn, that there exists an edge uv contained in U˚1 . Moreover, due to
property (ii ) of Proposition A.2 the choice of δ1 guarantees that

dpu, V ˚1 q ě δpG1q ´ δ1m ě p1{4` η{4qm,

and the same lower bound holds for the vertex v. Hence, if (A.4) would fail, then

|Npu, V ˚1 q XNpv, V
˚

1 q| ě
η

4m ě
η3{2

4 n
(A.2)
ě αn

yields an edge in the joint neighbourhood of u and v, which results in a copy of K4 in G.
For the second application of Proposition A.2 we set

γ2 “
η

4 , ε2 “
η2

8 and δ2 “
η

4 .

We apply the lemma to G1 with U “ V ˚1 and obtain sets U˚2 Ď V ˚1 and V ˚2 Ď V 1. It is easy
to check that

|U˚2 | ě γ
1{ε2
2 |V ˚1 | ě ε1m ě ε1

?
ηn

(A.2)
ě αn

and the same argument as for establishing (A.4) yields |V ˚2 | ě p1{2` η{4qm. Consequently,

|V ˚1 X V
˚

2 | ě
η

2m. (A.5)

In particular, U˚2 and V ˚1 X V ˚2 are both subsets of V ˚1 satisfying

|U˚2 | ě ε1m and |V ˚1 X V
˚

2 | ě ε1m.

Therefore, we can appeal to property (iii ) from the first application of Proposition A.2
for W “ U˚2 and W “ V ˚1 X V ˚2 . Since γ1 “ 1{2 this gives rise to a vertex u1 P U

˚
1 such

that
dpu1, U

˚
2 q ě δ1|U

˚
2 | “

η

4 |U
˚
2 | “ γ2|U

˚
2 |

and
dpu1, V

˚
1 X V

˚
2 q ě δ1|V

˚
1 X V

˚
2 |

(A.5)
ě δ1

η

2m “
η2

8 m “ ε2m.
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Consequently, we can appeal to property (iii ) from the second application of Proposi-
tion A.2 for W “ Npu1, V

˚
1 X V

˚
2 q, which then yields a vertex u2 P Npu1, U

˚
2 q with

dpu2, Npu1, V
˚

1 X V
˚

2 qq ě δ2|Npu1, V
˚

1 X V
˚

2 q| ě δ2ε2m ě δ2ε2
?
ηn

(A.2)
ě αn .

Hence, the assumption on αpGq yields an edge in the joint neighbourhood of u1 and u2,
which gives rise to a copy of K4. �

Acknowledgement. I thank Tibor Szabó for providing a copy of [42] and helping with
the translation.
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