Prof. Mathias Schacht, Fabian Hundertmark

Übungen zur Grapentheorie 2 - Blatt 3

Besprechung am 10. November 2011

- 1. Leite die Kantenversion von Korollar 2.4.2 aus seiner Eckenversion her. (Tipp: Betrachte die H-Wege in dem Graphen, der aus der disjunkten Vereinigung von H und L(G) durch Einfügen aller Kanten he entsteht, für die h eine Ecke von H und e eine in G mit h inzidente Kante aus $E(G) \smallsetminus E(H)$ ist.)
- 2. Finde einen bipartiten Graphen G mit Partitionsmengen A und B, der für H:=G[A] nur $\frac{1}{2}\lambda_G(H)$ kantendisjunkte H-Wege enthält.
- 3. Zeige, dass k-verbundene Graphen (2k-1)- zusammenhängend sind. Sind sie sogar 2k-zusammenhängend?
- 4. Finde zu jedem $k \in \mathbb{N}$ ein möglichst großes $\ell = \ell(k)$, so dass nicht jeder ℓ -zusammenhängende Graph k-verbunden ist.
- 5. Zeige mit Satz 2.5.3, dass die Funktion h aus Lemma 2.5.1 als $h(r)=cr^2$ gewählt werden kann, wobei $c\in\mathbb{N}$ eine geeignete Konstante ist.

Hinweise

- 1. Betrachte den Graphen aus dem Tipp. Zeige, dass es zu einer Menge von Ecken dieses Graphen, die alle H-Wege trifft (aber H nicht), eine entsprechende Teilmenge von $E(G) \smallsetminus E(H)$ in G gibt. Zeige dann, dass man aus zwei kreuzungsfreien H-Wegen im neuen Graphen zwei kantendisjunkte H-Wege in G gewinnen kann.
- 2. Es reicht, die Grade der Ecken aus B gekonnt zu wählen.
- 3. Wie ist höherer Zusammenhang definiert?
- 4. Um einen möglichst stark zusammenhängenden aber nicht k-verbundenen Graphen zu konstruieren, beginne mit den Ecken $s_1, \ldots, s_k, t_1, \ldots, t_k$. Stelle durch Verbieten geeigneter Kanten sicher, dass jede Verbindung zwischen den s_i und den entsprechenden t_i zusätzliche Ecken braucht. Mache den Graphen so klein, dass er für all diese Verbindungen nicht genügend weitere Ecken enthält, aber dabei so groß wie möglich, damit er hoch zusammenhängend wird.
- 5. Um den TK^r zu konstruieren, wähle zunächst die Verzweigungsecken und ihre Nachbarn aus.