Prof. Mathias Schacht, Fabian Hundertmark

Übungen zur Grapentheorie 2 - Blatt 2

Besprechung am 3. November 2011

Die Adjazenzmatrix A_G eines Graphen G ist eine symmetrische reelle Matrix und hat daher nur reelle Eigenwerte; diese bezeichnen wir auch als die Eigenwerte von G. Das Spektrum eines Graphen G ist die absteigende Folge $\lambda_1,\ldots,\lambda_{|G|}$ seiner Eigenwerte, wobei jeder Eigenwert entsprechend seiner Multiplizität gezählt wird.

- 1. Es sei T der Baum mit 4 Blättern und 2 inneren Ecken von Grad 3. Zeige, dass jeder 3-reguläre Graph, der sich durch ein System eckendisjunkter Kopien von T überdecken lässt, den Eigenwert 0 besitzt. (Natürlich kann G auch weitere Eigenwerte besitzen.)
- 2. Bestimme das Spektrum
 - a) des vollständigen Graphen K_n ,
 - c) des Sterns S_n mit n-1 Blättern,
 - b) des vollständig bipartiten Graphen $K_{m,n}$,
 - d) des Kreises C_n der Länge n.
- 3. Zeige, dass ein Graph mit zwei kantendisjunkten Spannbäumen einen aufspannenden zusammenhängenden Teilgraphen enthält, dessen Eckengrade alle gerade sind.
- 4. Zeige, dass jeder ebene Graph die Vereinigung dreier Wälder ist.

Hinweise

- 1. Betrachte einen Vektor $x\in\mathbb{R}^{|G|}$ als eine Funktion, die jeder Ecke v des Graphen einen Wert x_v zuweist. Was macht $A_G\cdot x$?
- 2. Man kann ohne die Berechnung einer einzigen Determinante auskommen!
- 3. Beginne die Konstruktion mit einem der beiden Spannbäume und erweitere sie mit Hilfe des anderen.