FACHBEREICH MATHEMATIK

DOZENT: PROF. MATHIAS SCHACHT

ÜBUNG: JAKOB SCHNITZER

Graphentheorie

3. Serie

Besprechung am 25. April 2016

http://bit.ly/1WtA25G

Aufgabe 1

Was kann man über die Struktur von $M_1 \triangle M_2$ für zwei Paarungen M_1 , M_2 eines Graphen sagen.

Aufgabe 2 (Nr. 21 in §1)

Finde einen kubischen Graphen ohne 1-Faktor.

Aufgabe 3 (Nr. 31 in §1)

Zeige, dass jeder Graph G = (V, E) eine Menge eckendisjunkter Wege \mathcal{P} und eine stabile Menge $I \subseteq V$ enthält, so dass alle Ecken von G durch die Wege von \mathcal{P} überdeckt werden und jeder Weg genau eine Ecke aus I enthält.

Aufgabe 4 [1 Punkt]

Für einen Graphen G = (V, E) sei $\nu(G)$ die Mächtigkeit einer größten Paarung in G und $M \subseteq E$ sei eine maximale Paarung in G. Finde eine geeignete obere Schranke von $\nu(G)$ als Funktion von |M|. Ist die gefundene Formel bestmöglich?

Aufgabe 5 (Nr. 8 in §1)

[1 Punkt]

Zeige, dass zwei Partitionen \mathcal{P} und \mathcal{Q} einer endlichen Menge $X \neq \emptyset$ in Teilmengen mit Mächtigkeit $k \geqslant 1$ stets ein gemeinsames Repräsentantensystem haben, d.h. es gibt eine Teilmenge $Y \subseteq X$ so dass jedes $P \in \mathcal{P}$ und jedes $Q \in \mathcal{Q}$ genau ein Element aus Y enthält.

Aufgabe 6 (Nr. 10 in §1)

[1 Punkt]

Beweise den folgenden Satz von Sperner mithilfe des Satzes von Hall: in einer n-elementigen Menge X gibt es höchstens $\binom{n}{\lfloor n/2 \rfloor}$ einander paarweise nicht enthaltende Teilmengen.

Aufgabe 7 (Nr. 26 in §1)

[2 Punkte]

Für einen Graphen G bezeichne $\alpha(G)$ die größte Mächtigkeit einer stabilen Eckenmenge in G. Zeige, dass die Ecken von G durch höchstens $\alpha(G)$ disjunkte Teilgraphen überdeckbar sind, die jeweils isomorph sind zu einem Kreis, einem K_2 , oder einem K_1 .

Aufgabe 8 (für die schriftliche Abgabe, Nr. 11 in §1)

Es sei $G = (A \cup B, E)$ ein bipartiter Graph mit $\delta(G) \ge 1$ and $d(a) \ge d(b)$ für jede Kante $ab \in E$ (mit $a \in A$ und $b \in B$). Zeige, dass G eine Paarung enthält, die ganz A überdeckt.

SoSE 2016

18. April 2016