DEPARTMENT OF MATHEMATICS PROF. MATHIAS SCHACHT SILVIA MESSUTI

Ramsey Theory

Exercise Sheet 4

due date: July 7th, 2014 - 12:01pm http://ow.ly/ywkJp

Exercise 1

Formulate an extension of the Hales-Jewett theorem in the same spirit as Szemerédi's theorem generalizes van der Waerden's theorem and prove it for an alphabet of size two.

Exercise 2

For a finite set X and a family $\mathcal{F} \subset 2^X$ of subsets of X we say that \mathcal{F} contains a Boolean cube of dimension $d \in \mathbb{N}$, if there are mutually disjoint subsets $A, B_1, \ldots, B_d \subseteq X$ such that $A \cup \bigcup_{i \in I} B_i \in \mathcal{F}$ for every $I \subseteq [d]$.

Prove that for any $d \in \mathbb{N}$ and any finite partition of 2^X for sufficiently large X there exists one partition class containing the d-dimensional Boolean cube. Can it be ensured that such a the d-dimensional cube is always contained in the largest partition class?

Exercise 3

- (i) Prove the following quantitative version of Ramsey's theorem: For every $\ell > k \ge 2$ and $r \ge 2$ there exist $\alpha > 0$ and n_0 such that for every $n \ge n_0$ every r-colouring of the hyperedges of the complete k-uniform hypergraph on n vertices yields at least $\alpha \binom{n}{\ell}$ monochromatic copies of $K_{\ell}^{(k)}$. What can you say about the optimal value of α as a function of ℓ , k, and r.
- (ii) In view of (i), formulate an appropriate strengthening of van der Waerden's theorem. Does it hold?

Exercise 4

Find a colouring of the Hales-Jewett cube, which shows that a quantitative extension of the Hales-Jewett theorem (in the sense of Exercise 3) fails to be true.