Ramsey Theory

Exercise Sheet 4
due date: June 16th, 2014-12:01pm
http://bit.ly/1xzkxvX

Exercise 1

(i) Let $R=R(n, n)$ be the two-colour Ramsey number for K_{n} and let $H \subsetneq K_{R}$. Show that there exists a two-colouring of the edge set of H with no monochromatic K_{n}.
(ii) For a graph F and an integer r we denote by $\widehat{R}(F ; r)$ the smallest integer m such that there exists a graph H with m edges such that every r-colouring of the edge set of H yields a monochromatic copy of F. Show that $\widehat{R}\left(K_{n} ; r\right)=\binom{R(n ; r)}{2}$.

Exercise 2

Show that the density version of Hilbert's cube lemma is asymptotically optimal in the sense that there are subsets of $[n]$ of density $\alpha>0$, with the largest cube of dimension $O(\log \log n)$.

Exercise 3

A well-known result of Ajtai and Szemerédi asserts that for every $\delta>0$ there exists n_{0} such that every subset $A \subseteq[n]^{2}$ with $n \geq n_{0}$ and $|A| \geq \delta n^{2}$ contains a corner, i.e., three points of the form $(x, y),(x+d, y)$ and $(x, y+d)$ for some $d \neq 0$. Deduce $r_{3}(n)=o(n)$ from the Ajtai-Szemerédi theorem.

Exercise 4

Show that every red-blue-colouring of the edge set of K_{n} yields a red cycles and a blue cycle, which share at most one vertex and cover all vertices. Here are K_{1} and K_{2} considered to be cycles.

Hint: Consider first Hamiltonian cycles consisting of two monochromatic paths.

