Department of Mathematics Prof. Mathias Schacht Silvia Messuti UNIVERSITY HAMBURG SS 2014 JUNE 09, 2014

Ramsey Theory

Exercise Sheet 4

due date: June 16th, 2014 - 12:01pm http://bit.ly/1xzkxvX

Exercise 1

- (i) Let R = R(n, n) be the two-colour Ramsey number for K_n and let $H \subsetneq K_R$. Show that there exists a two-colouring of the edge set of H with no monochromatic K_n .
- (*ii*) For a graph F and an integer r we denote by $\widehat{R}(F;r)$ the smallest integer m such that there exists a graph H with m edges such that every r-colouring of the edge set of H yields a monochromatic copy of F. Show that $\widehat{R}(K_n;r) = \binom{R(n;r)}{2}$.

Exercise 2

Show that the density version of Hilbert's cube lemma is asymptotically optimal in the sense that there are subsets of [n] of density $\alpha > 0$, with the largest cube of dimension $O(\log \log n)$.

Exercise 3

A well-known result of Ajtai and Szemerédi asserts that for every $\delta > 0$ there exists n_0 such that every subset $A \subseteq [n]^2$ with $n \ge n_0$ and $|A| \ge \delta n^2$ contains a *corner*, i.e., three points of the form (x, y), (x + d, y) and (x, y + d) for some $d \ne 0$. Deduce $r_3(n) = o(n)$ from the Ajtai-Szemerédi theorem.

Exercise 4

Show that every red-blue-colouring of the edge set of K_n yields a red cycles and a blue cycle, which share at most one vertex and cover all vertices. Here are K_1 and K_2 considered to be cycles.

Hint: Consider first Hamiltonian cycles consisting of two monochromatic paths.