Department of Mathematics Prof. Mathias Schacht Silvia Messuti

Ramsey Theory

Exercise Sheet 3

due date: May 19th, 2014 - 12:01pm http://ow.ly/wJPdV

Exercise 1

Deduce from Schur's theorem, that Fermat's last theorem fails in modular arithmetic, i.e., that for every $m \in \mathbb{N}$ there exists p_0 such that for every prime $p > p_0$ there exist integers x, y, and z satisfying

$$x^m + y^m \equiv z^m \mod p$$

and p does not divide x, y, and z.

Exercise 2

Prove the following common generalization of Schur's theorem and van der Waerden's theorem: For all integers $k, r \ge 2$ there exists n_0 such that for every $n \ge n_0$ and every partition $E_1 \cup \ldots \cup E_r = [n]$ there exists a $j \in [r]$ such that E_j contains an arithmetic progression of length k with common difference d > 0 and $d \in E_j$.

Hint: First consider the case r = 2.

Exercise 3

Prove a lower bound for the van der Waerden number W(k;r), i.e., for the $n_0 = n_0(k,r)$ in Theorem 3.1.

Exercise 4

Obtain an upper bound on W(k; 2) from the combinatorial proof of van der Waerden's theorem.