Ramsey Theory

Exercise Sheet 3

due date: May 19th, 2014-12:01pm
http://ow.ly/wJPdV

Exercise 1

Deduce from Schur's theorem, that Fermat's last theorem fails in modular arithmetic, i.e., that for every $m \in \mathbb{N}$ there exists p_{0} such that for every prime $p>p_{0}$ there exist integers x, y, and z satisfying

$$
x^{m}+y^{m} \equiv z^{m} \quad \bmod p
$$

and p does not divide x, y, and z.

Exercise 2

Prove the following common generalization of Schur's theorem and van der Waerden's theorem: For all integers $k, r \geq 2$ there exists n_{0} such that for every $n \geq n_{0}$ and every partition $E_{1} \cup \ldots \cup E_{r}=[n]$ there exists a $j \in[r]$ such that E_{j} contains an arithmetic progression of length k with common difference $d>0$ and $d \in E_{j}$.

Hint: First consider the case $r=2$.

Exercise 3

Prove a lower bound for the van der Waerden number $W(k ; r)$, i.e., for the $n_{0}=n_{0}(k, r)$ in Theorem 3.1.

Exercise 4

Obtain an upper bound on $W(k ; 2)$ from the combinatorial proof of van der Waerden's theorem.

