FACHBEREICH MATHEMATIK

DOZENT: PROF. MATHIAS SCHACHT

ÜBUNG: JUN.-PROF. CHRISTIAN REIHER

SS 2013

30. Mai 2013

Graphentheorie

7. Serie

Besprechung am 6. Juni 2013

Aufgabe 1 (D-De, §4, Nr. 17)

[2 Punkte]

Zeige die Gleichwertigkeit der folgenden Aussagen über Graphen G:

- (i) $\chi(G) \leq k$;
- (ii) G hat eine Orientierung (der Kanten), in der kein gerichteter Weg die Länge k hat;
- (iii) G hat eine Orientierung wie in (ii), in der es auch keine gerichteten Kreise gibt.

Aufgabe 2 (D-De, §4, Nr. 18)

[1 Punkt]

Für einen Graphen G = (V, E) und $k \in \mathbb{N}$ bezeichne $P_G(k)$ die Anzahl der möglichen Eckenfärbungen $V \to \{1, \ldots, k\}$ von G. Zeige, dass P_G ein Polynom in k vom Grad n := |V| ist, bei dem k^n den Koeffizienten 1 hat und k^{n-1} den Koeffizienten -|E(G)|. (Man nennt P_G das chromatische Polynom von G).

Aufgabe 3 (D-De, §4, Nr. 19)

[2 Punkte]

Bestimme die Klasse aller Graphen G = (V, E) mit $P_G(k) = k (k-1)^{|V|-1}$, wobei P_G das chromatische Polynom von G bezeichnet.

Aufgabe 4 (D-De, §4, Nr. 19)

Eine $n \times n$ -Matrix mit Einträgen aus $\{1, \ldots, n\}$ heißt *Lateinisches Quadrat*, wenn jedes $i \in \{1, \ldots, n\}$ in jeder Spalte und jeder Zeile genau einmal auftritt. Führe die Konstruktion Lateinischer Quadrate auf ein Färbungsproblem zurück.

Aufgabe 5 (D-De, §4, Nr. 22)

Zeige ohne Proposition 4.3.1, dass $\chi'(G) = k$ gilt für jeden k-regulären bipartiten Graphen G.

Aufgabe 6 (D-De, §4, Nr. 23)

[1 Punkt]

Beweise Proposition 4.3.1 mit der Aussage der vorigen Übungsaufgabe.