
8 Infinite Graphs

The study of infinite graphs is an attractive, but often neglected, part of
graph theory. This chapter aims to give an introduction that starts gent-
ly, but then moves on in several directions to display both the breadth
and some of the depth that this field has to o↵er. Our overall theme will
be to highlight the typical kinds of phenomena that will always appear
when graphs are infinite, and to show how they can lead to deep and
fascinating problems.

Perhaps the most typical such phenomena occur already when the
graphs are ‘only just’ infinite, when they have only countably many
vertices and perhaps only finitely many edges at each vertex. This is not
surprising: after all, some of the most basic structural features of graphs,
such as paths, are intrinsically countable. Problems that become really
interesting only for uncountable graphs tend to be interesting for reasons
that have more to do with sets than with graphs, and are studied in com-
binatorial set theory. This, too, is a fascinating field, but not our topic
in this chapter. The problems we shall consider will all be interesting
for countable graphs, and set-theoretic problems will not arise.

The terminology we need is exactly the same as for finite graphs,
except when we wish to describe an aspect of infinite graphs that has no
finite counterpart. One important such aspect is the eventual behaviour
of the infinite paths in a graph, which is captured by the notion of ends.
The ends of a graph can be thought of as additional limit points at in-
finity to which its infinite paths converge. This convergence is described
formally in terms of a natural topology placed on the graph together
with its ends. In Section 5 we shall therefore assume familiarity with the
basic concepts of point-set topology; reminders of the relevant definitions
will be included as they arise.
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8.1 Basic notions, facts and techniques

This section gives a gentle introduction to the aspects of infinity most
commonly encountered in graph theory.1

After just a couple of definitions, we begin by looking at a few
obvious properties of infinite sets, and how they can be employed in
the context of graphs. We then illustrate how to use the three most
basic common tools in infinite graph theory: Zorn’s lemma, transfinite
induction, and something called ‘compactness’. We complete the section
with the combinatorial definition of an end; topological aspects will be
treated in Section 8.5.

A graph is locally finite if all its vertices have finite degrees. An in-locally
finite

finite graph (V,E) of the form

V = {x0, x1, x2, . . .} E = {x0x1, x1x2, x2x3, . . .}

is called a ray , and a double ray is an infinite graph (V,E) of the formrays

V = {. . . , x�1, x0, x1, . . .} E = {. . . , x�1x0, x0x1, x1x2, . . .} ;

in both cases the xn are assumed to be distinct. Thus, up to isomor-
phism, there is only one ray and one double ray, the latter being the
unique infinite 2-regular connected graph. In the context of infinite
graphs, finite paths, rays and double rays are all called paths.path

The subrays of a ray or double ray are its tails. Formally, everytail

ray has infinitely many tails, but any two of them di↵er only by a finite
initial segment. The union of a ray R with infinitely many disjoint finite
paths having precisely their first vertex on R is a comb; the last verticescomb

of those paths are the teeth of this comb, and R is its spine. (If such ateeth, spine

path is trivial, which we allow, then its unique vertex lies on R and also
counts as a tooth; see Figure 8.1.1.)

x0 x1 x2 R

. . .

Fig. 8.1.1. A comb with white teeth and spine R = x0x1 . . .

1 This introductory section is deliberately kept informal, with the emphasis on
ideas rather than definitions that do not belong in a graph theory book. A more
formal reminder of those basic definitions about infinite sets and numbers that we
shall need is given in an appendix at the end of the book.
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Let us now look at a few very basic properties of infinite sets, and
see how they appear in some typical arguments about graphs.

An infinite set minus a finite subset is still infinite. (1)

This trivial property is eminently useful when the infinite set in
question plays the role of ‘supplies’ that keep an iterated process going.
For example, let us show that if a graph G is infinitely connected (that
is, if G is k-connected for every k 2 N), then G contains a subdivision
of K@0 , the complete graph of order |N|. We embed K@0 in G (as a K@0

topological minor) in one infinite sequence2 of steps, as follows. We
begin by enumerating its vertices. Then at each step we embed the next
vertex in G, connecting it to the images of its earlier neighbours by paths
in G that avoid any other vertices used so far. The point here is that
each new path has to avoid only finitely many previously used vertices,
which is not a problem since deleting any finite set of vertices keeps G
infinitely connected.

If G, too, is countable, can we then also find a TK@0 as a spanning
subgraph of G? Although embedding K@0 in G topologically as above
takes infinitely many steps, it is by no means guaranteed that the TK@0

constructed uses all the vertices of G. However, it is not di�cult to
ensure this: since we are free to choose the image of each new vertex
of K@0 , we can choose this as the next unused vertex from some fixed
enumeration of V (G). In this way, every vertex of G gets chosen eventu-
ally, unless it becomes part of the TK@0 before its time, as a subdividing
vertex on one of the paths.

Unions of countably many countable sets are countable. (2)

This fact can be applied in two ways: to show that sets that come
to us as countable unions are ‘small’, but also to rewrite a countable set
deliberately as a disjoint union of infinitely many infinite subsets. For an
example of the latter type of application, let us show that an infinitely
edge-connected countable graph has infinitely many edge-disjoint span-
ning trees. (Note that the converse implication is trivial.) The trick is
to construct the trees simultaneously, in one infinite sequence of steps.
We first use (2) to partition N into infinitely many infinite subsets Ni

(i 2 N). Then at step n we look which Ni contains n, and add a further
vertex v to the ith tree Ti. As before, we choose v minimal in some fixed
enumeration of V (G) among the vertices not yet in Ti, and join v to Ti

by a path avoiding the finitely many edges used so far.
Clearly, a countable set cannot have uncountably many disjoint sub-

sets. However,

2 We reserve the term ‘infinite sequence’ for sequences indexed by the set of
natural numbers. (In the language of well-orderings: for sequences of order type !.)
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A countable set can have uncountably many subsets whose
pairwise intersections are all finite.

(3)

This is a remarkable property of countable sets, and a good source of
counterexamples to rash conjectures. Can you prove it without looking
at Figure 8.1.4?

Another common pitfall in dealing with infinite sets is to assume
that the intersection of an infinite nested sequence A0 ◆ A1 ◆ . . . of
uncountable sets must still be uncountable. It need not be; in fact it
may be empty. (Example?)

Before we move on to our discussion of common infinite proof tech-
niques, let us look at one more type of construction. One often wants
to construct a graph G with a property that is in some sense local, a
property that has more to do with the finite subgraphs of G than with
G itself. Rather than formalize what exactly this should mean, let us
consider an example: given two large integers k and g, let us construct
a graph G that is k-connected and has girth at least g.3

We start with a cycle of length g; call it G0. This graph has the
right girth, but it is not k-connected. To cure this defect for the vertices
of G0, join every pair of them by k new independent paths, keeping all
these paths internally disjoint. If we choose the paths long enough, the
resulting graph G1 will again have girth g, and no two vertices of G0

can be separated in it by fewer than k other vertices. Of course, G1 is
not k-connected either. But we can repeat the construction step for
the pairs of vertices of G1, extending G1 to G2, and so on. The limit
graph G =

S
n2N Gn will again have girth g, since any short cycle would

have appeared in some Gn on the way. And, unlike all the Gn, it will be
k-connected: since every two vertices are contained in some common Gn,
they cannot be separated by fewer than k other vertices in Gn+1, let alone
in G.

There are a few basic proof techniques that are frequently found in
infinite combinatorics. The two most common of these are the use of
Zorn’s lemma and transfinite induction. Rather than describing these
formally,4 we illustrate their use by a simple example.

Proposition 8.1.1. Every connected graph contains a spanning tree.

First proof (by Zorn’s lemma).
Given a connected graph G, consider the set of all trees T ✓ G, ordered
by the subgraph relation. Since G is connected, any maximal such tree
contains every vertex of G, i.e. is a spanning tree of G.

3 There are finite such graphs, but they are much harder to construct; we shall
prove their existence by random methods in Chapter 11.2.

4 The appendix o↵ers brief introductions to both, enough to enable the reader to
use these tools with confidence in practice.
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Lemma 8.1.2. (König’s Infinity Lemma)
Let V0, V1, . . . be an infinite sequence of disjoint non-empty finite sets,

[8.2.1]
[8.2.6]
[8.5.1]
[8.5.8]
[9.1.3]

and let G be a graph on their union. Assume that every vertex v in a
set Vn with n > 1 has a neighbour f(v) in Vn�1. Then G contains a ray
v0v1 . . . with vn 2 Vn for all n.

V0

V1 V2 V3

f(v)

f(f( v))

v

Fig. 8.1.2. König’s infinity lemma

Proof. Let P be the set of all finite paths of the form v f(v) f(f(v)) . . .
ending in V0. Since V0 is finite but P is infinite, infinitely many of the
paths in P end at the same vertex v0 2 V0. Of these paths, infinitely
many also agree on their penultimate vertex v1 2 V1, because V1 is finite.
Of those paths, infinitely many agree even on their vertex v2 in V2—and
so on. Although the set of paths considered decreases from step to step,
it is still infinite after any finite number of steps, so vn gets defined for
every n 2 N. By definition, each vertex vn is adjacent to vn�1 on one of
those paths, so v0v1 . . . is indeed a ray. ⇤

The following ‘compactness theorem’, the first of its kind in graph
theory, answers our question about colourings:

Theorem 8.1.3. (de Bruijn & Erdős, 1951)
Let G = (V,E) be a graph and k 2 N. If every finite subgraph of G has
chromatic number at most k, then so does G.

First proof (for G countable, by the infinity lemma).
Let v0, v1, . . . be an enumeration of V and put Gn := G[v0, . . . , vn]. Write
Vn for the set of all k-colourings of Gn with colours in {1, . . . , k}. Define
a graph on

S
n2N Vn by inserting all edges cc0 such that c 2 Vn and

c0 2 Vn�1 is the restriction of c to {v0, . . . , vn�1}. Let c0c1 . . . be a ray
in this graph with cn 2 Vn for all n. Then c :=

S
n2N cn is a colouring

of G with colours in {1, . . . , k}. ⇤

The particular intuitive appeal of the infinity lemma is made possi-
ble by the fact that a countable graph can be exhausted by a single nested
sequence of finite subgraphs. For graphs of arbitrary cardinality this is
not possible, but there are other standard ways in which compactness
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Fig. 8.1.4. The binary tree T2 has continuum many ends, one
for every infinite 0–1 sequence

8.2 Paths, trees, and ends
There are two fundamentally di↵erent aspects to the infinity of an infinite
connected graph: one of ‘length’, expressed in the presence of rays, and
one of ‘width’, expressed locally by infinite degrees. The infinity lemma
tells us that at least one of these must occur:

Proposition 8.2.1. Every infinite connected graph has a vertex of in-
finite degree or contains a ray.

Proof. Let G be an infinite connected graph with all degrees finite. Let (8.1.2)

v0 be a vertex, and for every n 2 N let Vn be the set of vertices at
distance n from v0. Induction on n shows that the sets Vn are finite, and
hence that Vn+1 6= ; (because G is infinite and connected). Furthermore,
the neighbour of a vertex v 2 Vn+1 on any shortest v–v0 path lies in Vn.
By Lemma 8.1.2, G contains a ray. ⇤

Often it is useful to have more detailed information on how this ray
or vertex of infinite degree lies in G. The following lemma enables us to
find it ‘close to’ any given infinite set of vertices.

Lemma 8.2.2. (Star-Comb Lemma) [8.5.3]

Let U be an infinite set of vertices in a connected graph G. Then G
contains either a comb with all teeth in U or a subdivision of an infinite
star with all leaves in U .

Proof. As G is connected, it contains a path between two vertices in U .
This path is a tree T ✓ G every edge of which lies on a path in T between
two vertices in U . By Zorn’s lemma there is a maximal such tree T ⇤.
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8.3 Homogeneous and universal graphs

Unlike finite graphs, infinite graphs o↵er the possibility to represent
an entire graph property P by just one specimen, a single graph that
contains all the graphs in P up to some fixed cardinality. Such graphs
are called ‘universal’ for this property.

More precisely, if 6 is a graph relation (such as the minor, topolo-
gical minor, subgraph, or induced subgraph relation up to isomorphism),
we call a countable graph G⇤ universal in P (for 6) if G⇤ 2 P and G 6 G⇤universal

for every countable graph G 2 P.
Is there a graph that is universal in the class of all countable graphs?

Suppose a graph R has the following property:

Whenever U and W are disjoint finite sets of vertices in R,
there exists a vertex v 2 R�U �W that is adjacent in R
to all the vertices in U but to none in W .

(⇤)

Then R is universal even for the strongest of all graph relations, the
induced subgraph relation. Indeed, in order to embed a given countable
graph G in R we just map its vertices v1, v2, . . . to R inductively, making
sure that vn gets mapped to a vertex v 2 R adjacent to the images of
all the neighbours of vn in G[v1, . . . , vn] but not adjacent to the image
of any non-neighbour of vn in G[v1, . . . , vn]. Clearly, this map is an
isomorphism between G and the subgraph of R induced by its image.

Theorem 8.3.1. (Erdős and Rényi 1963)[11.3.5]

There exists a unique countable graph R with property (⇤).R

Proof. To prove existence, we construct a graph R with property (⇤)
inductively. Let R0 := K1. For all n 2 N, let Rn+1 be obtained from
Rn by adding for every set U ✓ V (Rn) a new vertex v joined to all the
vertices in U but to none outside U . (In particular, the new vertices form
an independent set in Rn+1.) Clearly R :=

S
n2N Rn has property (⇤).

To prove uniqueness, let R = (V,E) and R0 = (V 0, E0) be two graphs
with property (⇤), each given with a fixed vertex enumeration. We con-
struct a bijection ':V !V 0 in an infinite sequence of steps, defining '(v)
for one new vertex v 2 V at each step.

At every odd step we look at the first vertex v in the enumeration
of V for which '(v) has not yet been defined. Let U be the set of those
of its neighbours u in R for which '(u) has already been defined. This
is a finite set. Using (⇤) for R0, find a vertex v0 2 V 0 outside the image
of ' (which is a finite set), so that v0 is adjacent in R0 to all the vertices
in '(U) but to no other vertex in the image of '. Put '(v) := v0.

At even steps in the definition process we do the same thing with
the roles of R and R0 interchanged: we look at the first vertex v0 in
the enumeration of V 0 that does not yet lie in the image of ', and set



8.3 Homogeneous and universal graphs 227

'(v) = v0 for a new vertex v that matches the adjacencies and non-
adjacencies of v0 among the vertices for which ' (resp. '�1) has already
been defined.

By our minimum choices of v and v0, the bijection gets defined on
all of V and all of V 0, and it is clearly an isomorphism. ⇤

The graph R in Theorem 8.3.1 is usually called the Rado graph, Rado graph

named after Richard Rado who gave one of its earliest explicit definitions.
The method of constructing a bijection in alternating steps, as in the
uniqueness part of the proof, is known as the back-and-forth technique.

The Rado graph R is unique in another rather fascinating respect.
We shall hear more about this in Chapter 11.3, but in a nutshell it
is the following. If we generate a countably infinite random graph by
admitting its pairs of vertices as edges independently with some fixed
positive probability p 2 (0, 1), then with probability 1 the resulting graph
has property (⇤), and is hence isomorphic to R ! In the context of infinite
graphs, the Rado graph is therefore also called the (countably infinite)

‘the’
random

graphrandom graph.
As one would expect of a random graph, the Rado graph shows

a high degree of uniformity. One aspect of this is its resilience against
small changes: the deletion of finitely many vertices or edges, and similar
local changes, leave it ‘unchanged’ and result in just another copy of R
(Exercise 41).

The following rather extreme aspect of uniformity, however, is still
surprising: no matter how we partition the vertex set of R into two
parts, at least one of the parts will induce another isomorphic copy of R.
Trivial examples aside, the Rado graph is the only countable graph with
this property, and hence unique in yet another respect:

Proposition 8.3.2. The Rado graph is the only countable graph G
other than K@0 and K@0 such that, no matter how V (G) is partitioned
into two parts, one of the parts induces an isomorphic copy of G.

Proof. We first show that the Rado graph R has the partition property.
Let {V1, V2} be a partition of V (R). If (⇤) fails in both R[V1] and R[V2],
say for sets U1,W1 and U2,W2, respectively, then (⇤) fails for U = U1[U2

and W = W1 [W2 in R, a contradiction.
To show uniqueness, let G = (V,E) be a countable graph with the

partition property. Let V1 be its set of isolated vertices, and V2 the rest.
If V1 6= ; then G 6' G[V2], since G has isolated vertices but G[V2] does
not. Hence G = G[V1] ' K@0 . Similarly, if G has a vertex adjacent to
all other vertices, then G = K@0 .

Assume now that G has no isolated vertex and no vertex joined
to all other vertices. If G is not the Rado graph then there are sets
U,W for which (⇤) fails in G; choose these with |U [ W | minimum.
Assume first that U 6= ;, and pick u 2 U . Let V1 consist of u and all
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vertices outside U [W that are not adjacent to u, and let V2 contain
the remaining vertices. As u is isolated in G[V1], we have G 6' G[V1]
and hence G ' G[V2]. By the minimality of |U [W |, there is a vertex
v 2 G[V2]�U �W that is adjacent to every vertex in U r {u} and to
none in W . But v is also adjacent to u, because it lies in V2. So U , W
and v satisfy (⇤) for G, contrary to assumption.

Finally, assume that U = ;. Then W 6= ;. Pick w 2 W , and consider
the partition {V1, V2} of V where V1 consists of w and all its neighbours
outside W . As before, G 6' G[V1] and hence G ' G[V2]. Therefore U
and W r{w} satisfy (⇤) in G[V2], with v 2 V2 rW say, and then U,W, v
satisfy (⇤) in G. ⇤

Another indication of the high degree of uniformity in the structure
of the Rado graph is its large automorphism group. For example, R is
easily seen to be vertex-transitive: given any two vertices x and y, there
is an automorphism of R mapping x to y.

In fact, much more is true: using the back-and-forth technique, one
can easily show that the Rado graph is homogeneous: every isomorphismhomoge-

neous
between two finite induced subgraphs can be extended to an automor-
phism of the entire graph (Exercise 42).

Which other countable graphs are homogeneous? The complete
graph K@0 and its complement are again obvious examples. Moreover,
for every integer r > 3 there is a homogeneous Kr-free graph Rr, con-
structed as follows. Let Rr

0 := K1, and let Rr
n+1 be obtained from Rr

n by
joining, for every subgraph H 6' Kr�1 of Rr

n, a new vertex vH to every
vertex in H. Then let Rr :=

S
n2N Rr

n. Clearly, as the new verticesRr

vH of Rr
n+1 are independent, there is no Kr in Rr

n+1 if there was none
in Rr

n, so Rr 6◆ Kr by induction on n. Just like the Rado graph, Rr is
clearly universal among the Kr-free countable graphs, and it is clearly
homogeneous.

By the following deep theorem of Lachlan and Woodrow, the count-
able homogeneous graphs we have seen so far are essentially all:

Theorem 8.3.3. (Lachlan & Woodrow 1980)
Every countably infinite homogeneous graph is one of the following:

• a disjoint union of complete graphs of the same order, or the
complement of such a graph;

• the graph Rr or its complement, for some r > 3;
• the Rado graph R.

To conclude this section, let us return to our original problem: for
which graph properties is there a graph that is universal with this prop-
erty? Most investigations into this problem have addressed it from a
more general model-theoretic point of view, and have therefore been
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based on the strongest of all graph relations, the induced subgraph re-
lation. Unfortunately, most of these results are negative; see the notes.

From a graph-theoretic point of view, it seems more promising to
look instead for universal graphs for the weaker subgraph relation, or
even the topological minor or minor relation. For example, while there
is no universal planar graph for subgraphs or induced subgraphs, there
is one for minors:

Theorem 8.3.4. (Diestel & Kühn 1999)
There exists a universal planar graph for the minor relation.

So far, this theorem is the only one of its kind. But it should be
possible to find more. For instance: for which graphs X is there a minor-
universal graph in the class Forb4(X) = {G | X 64 G }?

8.4 Connectivity and matching

In this section we look at infinite versions of Menger’s theorem and of the
matching theorems from Chapter 2. This area of infinite graph theory is
one of its best developed fields, with several deep results. One of these,
however, stands out among the rest: a version of Menger’s theorem that
had been conjectured by Erdős and was proved only recently by Aharoni
and Berger. The techniques developed for its proof inspired, over the
years, much of the theory in this area.

We shall prove this theorem for countable graphs, which will take
up most of this section. Although the countable case is much easier,
the techniques it requires already give a good impression of the general
proof. We then wind up with an overview of infinite matching theorems
and a conjecture conceived in the same spirit.

Recall that Menger’s theorem, in its simplest form, says that if A
and B are sets of vertices in a finite graph G, not necessarily disjoint,
and if k = k(G,A,B) is the minimum number of vertices separating A
from B in G, then G contains k disjoint A–B paths. (Clearly, it cannot
contain more.) The same holds, and is easily deduced from the finite
case, when G is infinite but k is still finite:

Proposition 8.4.1. Let G be any graph, k 2 N, and let A,B be two
sets of vertices in G that can be separated by k but no fewer than k
vertices. Then G contains k disjoint A–B paths.

Proof. By assumption, every set of disjoint A–B paths has cardinality at (3.3.1)

most k. Choose one, P say, of maximum cardinality. Suppose |P| < k.
Then no set X consisting of one vertex from each path in P separates A
from B. For each X, let PX be an A–B path avoiding X. Let H be the
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union of
S
P with all these paths PX . This is a finite graph in which no

set of |P| vertices separates A from B. So H ✓ G contains more than
|P| paths from A to B by Menger’s theorem (3.3.1), which contradicts
the choice of P. ⇤

When k is infinite, however, the result suddenly becomes trivial.
Indeed, let P be any maximal set of disjoint A–B paths in G. Then the
union of all these paths separates A from B, so P must be infinite. But
then the cardinality of this union is no bigger than |P|. Thus, P contains
|P| =

��SP
�� > k disjoint A–B paths, as desired.

Of course, this is no more than a trick played on us by infinite car-
dinal arithmetic: although, numerically, the A–B separator consisting of
all the inner vertices of paths in P is no bigger than |P|, it uses far more
vertices to separate A from B than should be necessary. Or put another
way: when our path systems and separators are infinite, their cardinal-
ities alone are no longer a su�ciently fine tool to distinguish carefully
chosen ‘small’ separators from unnecessarily large and wasteful ones.

To overcome this problem, Erdős suggested an alternative form of
Menger’s theorem, which for finite graphs is clearly equivalent to the
standard version. Recall that an A–B separator X is said to lie on a set P
of disjoint A–B paths if X consists of a choice of exactly one vertex from
each path in P. The following so-called Erdős-Menger conjecture, now

Erdős-
Menger
conjecture a theorem, influenced much of the development of infinite connectivity

and matching theory:

Theorem 8.4.2. (Aharoni & Berger 2009)
Let G be any graph, and let A,B ✓ V (G). Then G contains a set P of
disjoint A–B paths and an A–B separator on P.

The next few pages give a proof of Theorem 8.4.2 for countable G.

Of the three proofs we gave for the finite case of Menger’s theorem,
only the last has any chance of being adaptable to the infinite case:
the others were by induction on |P| or on |G|+ kGk, and both these
parameters may now be infinite. The third proof, however, looks more
promising: recall that, by Lemmas 3.3.2 and 3.3.3, it provided us with
a tool to either find a separator on a given system of A–B paths, or to
construct another system of A–B paths that covers more vertices in A
and in B.

Lemmas 3.3.2 and 3.3.3 (whose proofs work for infinite graphs too)
will indeed form a cornerstone of our proof for Theorem 8.4.2. However,
it will not do just to apply these lemmas infinitely often. Indeed, al-
though any finite number of applications of Lemma 3.3.2 leaves us with
another system of disjoint A–B paths, an infinite number of iterations
may leave nothing at all: each edge may be toggled on and o↵ infinitely
often by successive alternating paths, so that no ‘limit system’ of A–B




