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Abstract

A graph G is called quasirandom if it possesses typical properties of the correspond-
ing random graph G(n, p) with the same edge density as G. A well-known theorem
of Chung, Graham and Wilson states that, in fact, many such ‘typical’ proper-
ties are asymptotically equivalent and, thus, a graph G possessing one property
immediately satisfies the others.



In recent years, more quasirandom graph properties have been found and exten-
sions to hypergraphs have been explored. For the latter, however, there exist several
distinct notions of quasirandomness. A complete description of these notions has
been provided recently by Towsner, who proved several central equivalences using an
analytic framework. The purpose of this paper is to give short purely combinatorial
proofs of most of Towsner’s results.
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1 Introduction

Quasirandomness studies typical properties that a random structure satisfies
with high probability. It has found numerous applications in combinatorics
and theoretical computer science. We refer the reader to the excellent sur-
vey [4]. A prime example, which has received particular attention, is the
notion of quasirandom graphs. Let (Gn)n∈N be a sequence of graphs, where
Gn is a graph on n vertices. For a fixed p ∈ [0, 1], we say that (Gn) is p-
quasirandom if Gn has uniform edge distribution:

e(Gn[S]) = p

(
|S|
2

)
+ o(n2) for every S ⊆ V (Gn), (1)

where e(Gn[S]) denotes the number of edges in the induced subgraph Gn[S].
The property above is often referred to as discrepancy. The seminal result of
Chung, Graham and Wilson [1] states that (1) is a quasirandom property in
the sense that satisfying property (1) is asymptotically equivalent to several
other properties typically satisfied by the random graph G(n, p). In particular,
having uniform edge distribution is asymptotically equivalent to the property:
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e(Gn) = p

(
n

2

)
+ o(n2) and NGn(C4) = p4n4 + o(n4), (2)

where NGn(C4) denotes the number of labeled copies of C4, the cycle of length
4, in Gn. This is somewhat surprising, as (2) seems at first glance to be a much
weaker condition. It is not difficult to show that any graph Gn on n vertices
of edge density p contains at least p4n4 + o(n4) labeled copies of C4. Thus,
a graph sequence (Gn) is quasirandom if it is a minimiser for the number of
copies of C4. Another quasirandom property for graphs is that of knowing all
densities of graphs on ` ≥ 4 vertices, for a fixed `:

NGn(F ) = pe(F )nv(F ) + o(nv(F )) for all graphs F on ` ≥ 4 vertices, (3)

where again NGn(F ) denotes the number of labeled copies of F and v(F ) and
e(F ) are the number of vertices and edges in F , respectively.

Generalising the above results to hypergraphs is somewhat delicate. For
example, Rödl [8] observed that straightforward generalisations of (1) and (3)
are not equivalent, while a generalisation of (2) is anything but clear.

Let (Hn)n∈N be a sequence of k-uniform hypergraphs, i.e. pairs (Vn, En)
with En ⊆

(
Vn

k

)
. The straightforward generalisation of (3), namely:

NGn(F ) = pe(F )nv(F ) + o(nv(F )) for all graphs F on ` ≥ 2k vertices, (4)

was shown to require a stronger notion of discrepancy for (Hn) than merely:

e(Hn[S]) = p

(
|S|
k

)
+ o(nk) for every S ⊆ V (Hn). (5)

Instead, one needs to count edges with respect to all ‘(k − 1)-uniform hyper-
graphs’ G:

e(Hn[S]) = p|Kk(G)|+ o(nk) for every (k − 1)-uniform G on V (Hn), (6)

where Kk(G) is the number of cliques on k vertices that are present in G. A
significant body of work regarding the relationship between (4), (5), and (6)
exists, though we omit references due to space limitations.

We pick up the trail of results here with [2], where the equivalence of (5)
and (4) is established if the requirement of the latter is weakened to linear hy-
pergraphs F . Several additional quasirandom properties equivalent to (5) were
established in [2]. In particular, an analogue of (2) is found. Furthermore,
in [2], some guesses are made regarding other possible notions of hypergraph



discrepancy of intermediate strength and their corresponding minimising hy-
pergraphs. Subsequently, Lenz and Mubayi [5,6,7] extended these results by
adding an unexpected spectral property and providing additional equivalences
for notions of hypergraph quasirandomness of intermediate strength.

Finally, Towsner [9] proved a general theorem which provides, for any
reasonable notion of hypergraph quasirandomness, generalisations of (1), (2)
and (3) that are all equivalent. This he accomplishes using the language of
non-standard analysis and hypergraph limits. By generalising constructions
of Lenz and Mubayi [7], he also showed that these quasirandomness notions
are all distinct, again using analytic language. Towsner remarks that finitizing
his arguments appears rather difficult. The purpose of this paper is to do just
that and to provide short combinatorial proofs for most of Towsner’s results.

2 Definitions and the main result

For a finite set X, we write
−→
X to denote the set of all orderings of the members

of X. For an integer k ≥ 1 and a set V , the set of all k-element subsets of V

is denoted by
(
V
k

)
and we write

(
V
k

)
<

to denote
−→(
V
k

)
. Given a set (of indices)

Q ⊆ [k] we write V Q to denote V |Q| and refer to its members as Q-tuples.
Unlike the members of

(
V
k

)
<

, Q-tuples may contain non-distinct entries. By a

Q-directed hypergraph, we mean a pair (V,E) where E ⊆ V Q.

Let Q ⊆ 2[k] be a set system. For a collection (with elements possibly
repeated) G = (GQ)Q∈Q of Q-directed hypergraphs GQ, let Kk(G) ⊆

(
V
k

)
<

consist of all ordered k-tuples v = (v1, . . . , vk) satisfying vQ := (vi : i ∈ Q) ∈
E(GQ) for all Q ∈ Q. Such tuples are said to be supported by G and Kk(G) is
thus referred to as the support of G.

Below we define the properties that will be of interest to us. We begin
with a generalized notion of discrepancy.

Definition 2.1 [DISCQ,d] For an integer k ≥ 2, a set system Q ⊆ 2[k], and
reals ε > 0, d ∈ [0, 1], we say a k-uniform hypergraph H = (V,E) with |V | = n
satisfies DISCQ,d(ε) if, for every sequence G = (GQ)Q∈Q,∣∣∣∣|−→E ∩ Kk(G)| − d|Kk(G)|

∣∣∣∣ ≤ εnk,

where GQ is a Q-directed hypergraph (for every Q ∈ Q).

We also consider the following weighted version of DISCQ,d, where the
sequence of directed hypergraphs G is replaced by an ensemble of functions



W =
(
wQ : V Q → [−1, 1]

)
Q∈Q and the set of supported tuples Kk(G) is re-

placed with the function W : V k → [−1, 1] given by W(v) =
∏

Q∈QwQ(vQ),
where we set wQ(vQ) to be zero whenever vQ is not a proper set, i.e., whenever
it has any non-distinct entries.

Definition 2.2 [WDISCQ,d] For an integer k ≥ 2, a set system Q ⊆ 2[k],
and reals ε > 0, d ∈ [0, 1], we say a k-uniform hypergraph H = (V,E) with
|V | = n satisfies WDISCQ,d(ε) if, for every ensemble of (weight) functions
W = (wQ)Q∈Q with wQ : V Q → [−1, 1] for every Q ∈ Q,∣∣∣∣∣ ∑

v∈V k

(
1−→
E

(v)− d
)
W(v)

∣∣∣∣∣ ≤ εnk ,

where 1−→
E

: V k → {0, 1} denotes the indicator function of
−→
E .

When wQ = 1GQ
for every Q ∈ Q, the difference between

∑
v∈V k

(
1−→
E

(v)−
d
)
W(v) and |

−→
E∩Kk(G)|−d|Kk(G)| is exactly the number of v which have some

non-distinct entries, yet are supported by G (times d). However, this difference
has order of magnitude Ok(nk−1), so hypergraphs H satisfying WDISCQ,d(ε)
must also satisfy DISCQ,d(2ε). The opposite implication follows by an aver-
aging argument similar to one of Gowers [3, Section 3].

To state the analogues of (2) and (3) corresponding to DISCQ,d, we require
some further notation. Given Q ⊆ 2[k], we say a k-uniform hypergraph F =
(VF , EF ) is Q-simple if there exists an ordering of its edges EF = {e1, . . . , em}
such that for every i = 1, . . . ,m there exists an ordering of ei = {vi1 , . . . , vik}
such that for every h < i there exists a set Q ∈ Q such that {r : vir ∈ eh∩ei} ⊆
Q. Note that the orderings of the vertices for every edge of F can be chosen
independently and may be incompatible with each other. The analogue of (3)
is now as follows.

Definition 2.3 [CLQ,d] For an integer k ≥ 2, a subset Q ⊆ 2[k], reals ε > 0,
d ∈ [0, 1], and a Q-simple k-uniform hypergraph F = (VF , EF ), we say a
k-uniform hypergraph H = (V,E) with |V | = n satisfies CLQ,d(F, ε) if the
number NH(F ) of labeled copies of F in H satisfies∣∣∣NH(F )− d|EF |n|VF |

∣∣∣ ≤ εn|VF | .

For a k-partite k-uniform hypergraph F with vertex partition V (F ) =
X1∪̇ . . . ∪̇Xk and a set Q ⊆ [k], the Q-doubling of F is the hypergraph dbQ(F )



obtained by taking two copies of F and identifying the vertex classes indexed
by elements in Q, i.e., the vertex set of the Q-doubling is

V (dbQ(F )) = Y1∪̇ . . . ∪̇Yk where Yq =

{
Xq if q ∈ Q ,

Xq × {0, 1} if q 6∈ Q ,

and the edges of the Q-doubling are given by the set {xq : q ∈ Q}∪̇{(xr, a) : r ∈
[k] \Q, a ∈ {0, 1}} where {x1, . . . , xk} ∈ E(F ).

It is easy to check that for two sets Q, R ⊆ [k] and a k-partite, k-uniform
hypergraph F the ordering of the doubling operations does not matter, i.e.,
dbQ(dbR(F )) = dbR(dbQ(F )). Hence, for Q ⊆ 2[k] \ {[k]} (the operation db[k]

leaves the hypergraph unchanged), we may define the k-partite k-uniform

hypergraph MQ recursively by setting M∅ = K
(k)
k , the k-uniform hypergraph

consisting of one edge (viewed as k-partite), and, for any Q ∈ Q, define MQ =
dbQ(MQ\{Q}). It follows from these definitions that MQ has 2|Q| hyperedges

and
∑k

i=1 2|Q|−degQ(i) vertices, where degQ(i) denotes the number of sets of Q
containing the element i. In analogy with the C4-case for graphs, we may
apply the Cauchy–Schwarz inequality for every Q ∈ Q to show that every
k-uniform hypergraph H on n vertices with density d > 0 contains at least
(d|E(MQ)| − o(1))n|V (MQ)| labeled copies of MQ. The analogue of (2) is now as
follows.

Definition 2.4 [MINQ,d] For an integer k ≥ 2, a subset Q ⊆ 2[k], and reals
ε > 0, d ∈ [0, 1], we say a k-uniform hypergraph H = (V,E) with |V | = n
satisfies MINQ,d(ε) if

(i) the density d(H) = |E|/
(
n
k

)
satisfies d(H) ≥ d− ε and

(ii) the number NH(MQ) of labeled copies of MQ in H satisfies

NH(MQ) ≤ (d|E(MQ)| + ε)n|V (MQ)| .

It is sometimes more convenient to work with the following weighted ver-
sion of MINQ,d.

Definition 2.5 [DEVQ,d] For an integer k ≥ 2, a subset Q ⊆ 2[k], and reals
ε > 0, d ∈ [0, 1], we say a k-uniform hypergraph H = (V,E) with |V | = n
satisfies DEVQ,d(ε) if∑

M

∏
e∈E(M)

(1E(e)− d) ≤ εn|V (MQ)| ,



where the sum ranges over all labeled copies of MQ in the complete k-uniform

hypergraph K
(k)
V on the vertex set V .

Our main result, relating all of the notions described above, is as follows.

Theorem 2.6 (Main result) For every k ≥ 2, every set system Q ⊆ 2[k] \
{[k]}, and d ∈ [0, 1], the properties DISCQ,d, WDISCQ,d, CLQ,d, and DEVQ,d
are all equivalent.

As mentioned above, Towsner [9, Section 9] also provides constructions
distinguishing the notions of quasirandomness provided by distinct choices of
Q from one another. We again address this issue in a purely combinatorial
manner.
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