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Abstract

The notion of forcing pairs is located in the study of quasi-random graphs. Roughly
speaking, a pair of graphs (F, F ′) is called forcing if the following holds: Suppose for
a sequence of graphs (Gn) there is a p > 0 such that the number of copies of F and
the number of copies of F ′ in every graph Gn of the sequence (Gn) is approximately
the same as the expected value in the random graph G(n, p), then the sequence
of graphs (Gn) is quasi-random in the sense of Chung, Graham and Wilson. We
describe a construction which, given any graph F with at least one edge, yields a
graph F ′ such that (F, F ′) forms a forcing pair.
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1 Introduction

We study forcing pairs, a notion closely related to quasi-random graphs. The
systematic study of quasi-random graphs was initiated by Thomason [8,9]
and its main goal is to provide “deterministic” properties which capture the
characteristics of random graphs. One such property is given by the notion of
uniform edge distribution which we also refer to as low discrepancy. We say a
given sequence of graphs (Gn) with |V (G)| = n has low discrepancy (denoted
by DISCp), if

e(U) = p
(|U |

2

)
+ o(n2) for all U ⊂ V (G). (1)

In [1] Chung, Graham and Wilson (building on the work of others) gave a list
of so-called quasi-random properties which are equivalent to DISCp, meaning
every sequence (Gn) that satisfies any of these properties must satisfy all of
them. In particular, it is shown that the following property MINp is equivalent
to DISCp. Let (Gn) be a sequence of graphs and letNF (Gn) denote the number
of labeled copies of F in Gn, we say (Gn) satisfies MINp if

NK2(Gn) ≥ pn2 − o(n2) and NC4(Gn) ≤ p4n4 + o(n4). (2)

For constant p > 0 the property MINp is almost surely satisfied by the
random graph G(n, p) and the equivalence between property (1) and (2) par-
ticularly implies that a lower bound on K2 (i.e., on the edge density of every
graph Gn of the sequence) and a corresponding upper bound on the number
of C4 force (Gn) to have uniform edge distribution.

This motivates the question which other pairs of graphs (replacing (K2, C4))
have this property and gives rise to the notion of forcing pairs.

Definition 1.1 A pair of graphs (F, F ′) is called forcing if every sequence
of graphs (Gn) with |V (Gn)| = n which satisfies

NF (Gn) ≥ pe(F )nv(F )− o(nv(F )) and NF ′(Gn) ≤ pe(F
′)nv(F ′) + o(nv(F ′)) (3)

also satisfies DISCp.

It is known that a graph sequence, which satisfies DISCp also satisfies
the condition (3) of Definition 1.1. Hence, generalizing the case (K2, C4),
any forcing pair (F, F ′) gives rise to a quasi-random property in the sense of
Chung, Graham, and Wilson due to (3) of Definition 1.1.

In fact, it is well known that every sequence (Gn) which satisfies DISCp,

also satisfies N∗F (Gn) = (1 ± o(1))pe(F )(1 − p)(
v(F )
2 )−e(F )nv(F ) for every fixed



graph F , where N∗F (Gn) denotes the number of labeled, induced copies of F
in Gn. Due to this the notion of forcing pairs (or families of graphs) varies
in the literature. For example, in the original work of Chung, Graham, and
Wilson in [1] the condition in (3) is replaced by appropriate bounds on N∗F and
N∗F ′ and in [2,5] matching upper and lower bounds on NF (Gn) are required.

Forcing pairs other than (K2, C4) were discovered in [1,2,3,4,7]. In par-
ticular, in [3] the forcing pairs involving non-bipartite graphs were found. In
this note we prove that for every graph F with at least one edge there is a
graph F ′ such that (F, F ′) forms a forcing pair. The proof is constructive and
indeed, for a given graph F the graph F ′ is given by the following construction
from [3].

For a k-partite graph A with vertex classes X1, . . . , Xk and i ∈ [k] we define
the doubling dbi(A) of A around vertex class Xi to be the graph obtained
from A by taking two disjoint copies of A and identifying the vertices of Xi.
More formally, dbi(A) is the k-partite graph with vertex classes Y1, . . . , Yk,
where Yi = Xi and for j 6= i we have Yj = Xj∪̇X̃j with X̃j = {x̃ |x ∈ Xj}.
Thus x̃ denotes the copy of the vertex x. Moreover, the edge set of dbi(A) is
given by

E(dbi(A)) = E(A)∪̇{x̃jx̃j′ : xjxj′ ∈ E(A)}∪̇{xix̃j : xixj ∈ E(A)}.

We start with the graph F and consider it as a v(F )-partite graph with
every vertex lying in its own partition class. Then a graph F ′ which makes
(F, F ′) a forcing pair is obtained by successively doubling the v(F )-partite
graph F around the classes i = 1, 2, . . . , k, i.e.

M(F ) = dbk(dbk−1(. . . db1(F ) . . .)).

It can be shown that the order of the doubling operations has no effect on
M(F ), i.e., M(F ) is independent from the initial labeling of the vertices of F .

Theorem 1.2 For every graph F with e(F ) ≥ 1 is (F,M(F )) a forcing pair.

2 Auxiliary results and proof of the main theorem

We introduce and sketch a proof of the main auxiliary lemma (Lemma 2.1). In
Section 2.2 we deduce Theorem 1.2 from Lemma 2.1 and a result of Simonovits
and Sós from [6].



2.1 Main auxiliary lemma

Instead of dealing with labeled copies (i.e., injective homomorphisms) of a
graph A in G we will consider all graph homomorphism (Hom(A,G)) from A
into G. Let A be a k-partite graph with the partition classes X1,. . . , Xk and G
be a k-partite graph with the partition classes V1,. . . , Vk. For subsets Ui ⊆ Vi,
i ∈ [k], we denote by Hom(A,G,U1, . . . , Uk) those homomorphisms of A into
G that map vertices from Xi to Ui. The main auxiliary result is given by the
following.

Lemma 2.1 For every graph F with k = v(F ), every p > 0, and every ε > 0
there exist a δ > 0 and n0 such that for every k-partite graph G = (V,E) with
vertex classes V1,. . . , Vk, each of size n ≥ n0, which satisfies

|Hom(F,G, V1, V2, . . . , Vk)| ≥ pe(F )nk − δnk

and

|Hom(M(F ), G, V1, V2, . . . , Vk)| ≤ p2
k·e(F )nk2k−1

+ δnk2k−1

,

we have that for all families of subsets Ui ⊆ Vi with i ∈ [k]

|Hom(M(F ), G, U1, . . . , Uk)| = p2
k·e(F )

k∏
i=1

|Ui|2
k−1 ± εnk2k−1

.

Proof of Lemma 2.1 (Sketch). In a first step we show that

|Hom(M(F ), G, V1, . . . , Vk−1, Uk)| ≤ p2
ke(F )n(k−1)2k−1 |Uk|2

k−1

+ δ′nk2k−1

(4)

for some δ′ → 0 as δ → 0.

Let Mi = dbi(dbi−1(. . . (db1(F )) . . . )) and let G be a k-partite graph as
stated in the lemma. Owing to the lower bound on |Hom(F,G, V1, . . . , Vk)|, it
follows from the Cauchy-Schwarz inequality that |Hom(Mk−1, G, V1, . . . , Vk)|
is at least what we would expect if the edges were chosen independently with
probability p. Here, we crucially use the fact that Mk−1 arises from doubling
operations.

Subsequently, we apply the following well-known fact. If a1, . . . , aN satisfy

N∑
i=1

ai ≥ (1− o(1))aN and
N∑
i=1

a2i ≤ (1 + o(1))a2N,



then almost all ai are roughly a. Let Xk be the k-th vertex partition class
of Mk−1 and let N be the number of |Xk|-tuples in Vk. For i = 1, . . . , N we
define ai to be the number of homomorphisms ϕ ∈ Hom(Mk−1, G, V1, . . . , Vk)
which maps Xk to the i-th |Xk|-tuple in Vk. Hence,

∑N
i=1 ai corresponds to

|Hom(Mk−1, G, V1, . . . , Vk)| which is bounded from below due to the assump-
tion on G. Moreover, the upper bound on |Hom(M(F ), G, V1, . . . , Vk)| given
by the assumption on G translates to a corresponding bound on

∑N
i=1 a

2
i .

Hence, we obtain that almost all ai is roughly the average a, which is what we
would expect if the edges were chosen independently randomly with probabil-
ity p. In particular, almost all |Xk|-tuples from Vk and consequently almost
all |Xk|-tuples from Uk satisfy this property from which (4) can be derived
using the fact that M(F ) = Mk arises by doubling of Mk−1 around the vertex
class Xk.

Next we repeat the same reasoning above iteratively to obtain similar upper
bounds for

|Hom(M(F ), G, V1, . . . , Vi−1, Ui, . . . , Uk)| for i = k − 1, k − 2, . . . , 1.

For i = 1 this then yields the conclusion of Lemma 2.1. To this end note that
we need an appropriate lower bound for |Hom(F,G, V1, . . . , Vi, Ui+1, . . . , Uk)|,
which is not provided as a direct assumption of the lemma. However, this can
be obtained by a similar argument as above, using the fact that the graph
M(F ) is independent of the ordering of the v(F ) vertex classes. We omit the
details here. 2

2.2 Proof of the Theorem 1.2

Theorem 1.2 will follow from Lemma 2.1 and the following result of Simonovits
and Sós [6].

Theorem 2.2 For every p > 0, every graph F with e(F ) ≥ 1, and every
ε > 0 there exist δ > 0 and n0 such that the following is true. If G = (V,E)
is a graph with |V | = n ≥ n0 vertices such that NF (U) = pe(F )|U |v(F ) ± δnv(F )

for every subset U ⊆ V then e(U) = p
(|U |

2

)
± εn2 for every subset U ⊆ V . 2

Proof of Theorem 1.2. Note that it is sufficient to prove the following. For
a given ε > 0 there exists a δ > 0 such that any n-vertex graph G on n
vertices satisfying (3) with the error term o(nv(F )) replaced by δnv(F ), it is
true that G satisfies e(U) = p

(|U |
2

)
± εn2 for all U ⊂ V (which is DISCp with

the error term o(n2) replaced by δn2). Further, note that we can safely replace
NF (G) and NM(F )(G) by |Hom(F,G)| and |Hom(M(F ), G)|, as the number



of non-injective homomorphisms is of smaller order and hence negligible for
sufficiently large n.

For a given graph G, we define the k-partite graph G(k) by taking k copies
of V (G) and connecting vertices between different copies if they form an edge
in the original graph G. Formally, let V (G(k)) = [k]×V (G) and {(i, v), (j, u)}
is an edge in G(k) whenever {u, v} ∈ E(G) and i 6= j.

We apply Lemma 2.1 to the graph G(k) and the pair (F,M(F )) with suf-
ficiently small error term. From the conclusion of the Lemma 2.1 we obtain
that G satisfies the presumption of Theorem 2.2. This holds since every ho-
momorphism from Hom(M(F ), G[U ]) corresponds to a homomorphism from
Hom(M(F ), G(k), ({1} × U, . . . , {k} × U)). Applying Theorem 2.2 we obtain
e(U) = p

(|U |
2

)
± εn2 for all U ⊂ V and Theorem 1.2 follows. 2
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