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ABSTRACT
Property testers are efficient, randomized algorithms which
recognize if an input graph (or other combinatorial struc-
ture) satisfies a given property or if it is “far” from exhibit-
ing it. Generalizing several earlier results, Alon and Shapira
showed that hereditary graph properties are testable (with
one-sided error). In this paper we prove the analogous result
for hypergraphs. This result is an immediate consequence of
a (hyper)graph theoretic statement, which is an extension
of the so-called removal lemma. The proof of this general-
ization relies on the regularity method for hypergraphs.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probabilistic algo-
rithms; G.2.2 [Discrete Mathematics]: Graph Theory—
Graph algorithms, Hypergraphs

General Terms
Algorithms, Theory

Keywords
property testing, hypergraphs, removal lemma, regularity
lemma, hereditary properties

1. INTRODUCTION AND RESULTS

1.1 Property testing
The general notion of property testing was introduced by

Rubinfeld and Sudan [31]. Roughly speaking, the typical
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question in property testing concerns the existence of effi-
cient algorithms, which distinguish between objects G hav-
ing a given property P and those being “far away” (in an
appropriate metric) from P. Problems of that type ap-
peared already earlier in the literature (see, e.g., [9]). How-
ever, the systematic study of property testing for discrete
structures, such as graphs, digraphs, hypergraphs, discrete
functions and sets of integers, was initiated in the seminal
work of Golderich, Goldwasser, and Ron [19].

In this paper we exclusively focus on properties of graphs
and k-uniform hypergraphs (k-graphs). A k-uniform hyper-

graph H(k) on the vertex set V is some family of k-element
subsets of V , i.e., H(k) ⊆

`
V
k

´
. Note that we identify hy-

pergraphs with their edge set and we write V (H(k)) for the
vertex set. We only consider uniform hypergraphs, where
the uniformity is some fixed number independent of the size
of the hypergraph. We usually indicate the uniformity by
a superscript and call a k-uniform hypergraph simply a hy-
pergraph, when the uniformity is clear from the context.

A property P of hypergraphs is a family of hypergraphs,
which is closed under isomorphisms. We only consider de-
cidable properties. These are those properties P for which
the membership problem is solvable, i.e., there exists an
algorithm which for every hypergraph G(k) decides whether
G(k) ∈ P in finite time. We say a k-uniform hypergraph G(k)

is η-far from P if every hypergraph H(k) on the same ver-
tex set V with |G(k)4H(k)| ≤ η

`
V
k

´
does not satisfy P. In

other words, we have to change G(k) on at least an η-fraction
of all possible edges in order to obtain a hypergraph H(k),
which satisfies P.

Roughly speaking, a property P is testable, if for every
η > 0 there exists a constant time, randomized algorithm
which distinguishes for an input hypergraph H(k) between
the cases H(k) ∈ P and H(k) is η-far from P. More pre-
cisely, we say a property P of k-uniform hypergraphs is
testable with one-sided error if for every η > 0 there
exist a constant q = q(P, η) and a randomized algorithm A
which does the following:

For a given hypergraph H(k) the algorithm A can query
some oracle whether a k-tuple K of V (H(k)) spans and edge

in H(k) or not. After at most q queries the algorithm out-
puts:

• H(k) ∈ P with probability 1 if H(k) ∈ P and

• H(k) 6∈ P with probability at least 2/3 if H(k) is η-far
from P.



If H(k) 6∈ P and H(k) is not η-far from P, then there are
no guarantees for the output of A .

In [19] it was proved that many “natural (hyper)graph
properties” such as having chromatic number smaller than `
(which essentially appeared already in [13]), having a large
clique or having a large cut are testable and the question
of characterizing testable graph properties in general was
raised.

In a series of papers Alon (jointly with several collabora-
tors) studied that question. In [2] Alon et al. found a logical
characterization for a general family of testable graph prop-
erties. According to this characterization every first order
graph property of type “∀∃” is testable with one-sided er-
ror, while there are first order graph properties of type “∃∀”
that are not testable even with two-sided error. For the
proof of the positive result the authors developed a power-
ful strengthening of Szemerédi’s regularity lemma [34]. Alon
and Shapira continued that line of research and showed in [4]
that in fact every decidable, hereditary property of graphs
is testable with one-sided error. A property of k-uniform
hypergraphs P is hereditary if it is closed under induced
sub-hypergraphs, i.e., H(k) ∈ P implies that also all in-
duced sub-hypergraphs H(k)[U ] = H(k) ∩

`
U
k

´
are in P for

every U ⊆ V (H(k)). An alternative proof is due to Lovász
and Szegedy [24] (see also [11]). For more results concern-
ing testable and non-testable combinatorial properties see,
e.g., [6, 16, 18, 30] and the references therein. In this paper
we consider testable properties of k-uniform hypergraphs.
Our main result is a generalization of the recent work of
Alon and Shapira.

Theorem 1 (Main result). Every decidable, heredi-
tary k-uniform hypergraph property is testable with one-sided
error.

The proof of Theorem 1 is a direct consequence of Theorem 6
below. This is a result from extremal (hyper)graph theory,
which is a common generalization of an analogous result of
Alon and Shapira obtained for graphs [4] and the removal
lemma for hypergraphs.

1.2 Removal lemma and its generalizations
Answering a question of Brown, T. Sós, and Erdős [12, 33],

Ruzsa and Szemerédi [32] established the triangle removal
lemma for graphs. They proved that every graph which does
not contain many triangles “can be easily made” triangle
free.

Theorem 2 (Ruzsa & Szemerédi [32]). For all η >
0 there exists c > 0 and n0 so that every graph G on n ≥ n0

vertices, which contains at most cn3 triangles can be made
triangle free by removing at most η

`
n
2

´
edges.

A possible generalization of Theorem 2 to hypergraphs
was suggested in [15, Problem 6.1]. The first result in this di-
rection was obtained by Frankl and Rödl [17] who extended
Theorem 2 to 3-uniform hypergraphs with the triangle re-
placed by the complete 3-uniform hypergraph on 4 vertices.
The general result, which settles the conjecture from [15] was
recently obtained independently by Gowers [20] and Nagle,
Skokan and the authors [25, 28, 29] and subsequently by Tao
in [35].

Theorem 3 (Gowers [20], Rödl et al. [25, 28]). For

all k-uniform hypergraphs F (k) on ` vertices and and ev-
ery η > 0 there exist c > 0 and n0 so that the following

holds. Suppose H(k) is a k-uniform hypergraph on n ≥ n0

vertices. If H(k) contains at most cn` copies of F (k), then
one can delete η

`
n
k

´
edges from H(k) so that the resulting

sub-hypergraph contains no copy of F (k).

One possible generalization of Theorem 3 is to replace
the single hypergraph F (k) by a possibly infinite family F
of k-uniform hypergraphs. Such a result was first proved
for graphs by Alon and Shapira [5] in the context of prop-
erty testing. For a family of graphs F consider the class
Forb(F ) of all graphs H containing no member of F as a
(not necessarily induced) subgraph.

Theorem 4 (Alon & Shapira [5]). For every (possi-
bly infinite) family of graphs F and every η > 0 there exist
constants c > 0, C > 0, and n0 such that the following
holds. Suppose H is a graph on n ≥ n0 vertices. If for every
` = 1, . . . , C and every F ∈ F on ` vertices, H contains
at most at most cn` copies of F , then one can delete η

`
n
2

´
edges from H such that the resulting subgraph H ′ contains
no copy of any member of F , i.e., H ′ ∈ Forb(F ).

Theorem 3 for graphs is equivalent to the special case of
Theorem 4 when F consists of only one graph. While for
finite families F Theorem 4 can be proved along the lines
of the proof of Theorem 3 (or be deduced with |F | appli-
cations of Theorem 3), for infinite families F the proof of
Theorem 4 is more sophisticated. Perhaps one of the earliest
results of this nature was obtained by Bollobás et al. [10],
who essentially proved Theorem 4 for the special family F
of blow-up’s of odd cycles. In [13] answering a question of
Erdős (see, e.g., [14]) Duke and Rödl generalized the result
from [10] and proved Theorem 4 for the special case of fam-
ilies F consisting of all (r + 1)-chromatic graphs r ≥ 2.

The proof of Theorem 4 for arbitrary families F relies
on a strengthened version of Szemerédi’s regularity lemma,
which was obtained by Alon et al. [2] by iterating the regu-
larity lemma for graphs. Recently, Theorem 4 was extended
by Avart and the authors in [8] from graphs to hypergraphs.
The proof in [8] follows the approach of Alon and Shapira
and is based on two successive applications of the hyper-
graph regularity lemma from [27].

Another natural variant of Theorem 3 is an induced ver-
sion. For graphs this was first considered by Alon et al. [2].
Note that in this case in order to obtain an induced F -free
graph, we may need not only to remove, but also to add
edges.

Theorem 5 (Alon et al. [2]). For all graphs F on `
vertices and every η > 0 there exist c > 0 and n0 so that the
following holds. Suppose H is a graph on n ≥ n0 vertices.
If H contains at most cn` induced copies of F , then one
can change η

`
n
2

´
pairs from V (H) (deleting or adding the

edge) so that the resulting graph H ′ contains no induced copy
of F .

An extension of Theorem 5 to 3-uniform hypergraphs was
obtained by Kohayakawa et al. in [22]. In [4] Alon and
Shapira proved a common generalization of Theorem 4 and
Theorem 5, extending Theorem 5 from one forbidden in-
duced graph F to a forbidden family of induced graphs F .
In this paper we generalize their result to k-uniform hyper-
graphs.



1.3 New generalization of the removal lemma
For a family of k-uniform hypergraphs F , we denote by

Forbind(F ) the family of all hypergraphsH(k) which contain
no induced copy of any member of F . Clearly, Forbind(F ) is
a hereditary family (or hereditary property) of hypergraphs.

Theorem 6. For every (possibly infinite) family F of k-
uniform hypergraphs and every η > 0 there exist constants
c > 0, C > 0, and n0 such that the following holds. Sup-
pose H(k) is a k-uniform hypergraph on n ≥ n0 vertices. If
for every ` = 1, . . . , C and every F (k) ∈ F on ` vertices,
H(k) contains at most cn` induced copies of F (k), then H(k)

is not η-far from Forbind(F ).

For graphs Theorem 6 was obtained by Alon and Shapira [4].
The proof in [4] is again based on the strong version of
Szemerédi’s regularity lemma from [2]. Another proof for
graphs was found by Lovász and Szegedy [24] (see also [11]).
Below we discuss the relation of Theorem 6 and Theorem 1.

Recall that for every hereditary property P of k-uniform
hypergraphs, there exists a family of k-uniform hypergraphs
F such that P = Forbind(F ). Consequently, Theorem 6

states that if H(k) is η-far from some hereditary property

P = Forbind(F ), then it contains many (cn|V (F(k))|) in-

duced copies of some “forbidden” hypergraph F (k) ∈ F
of size at most C, which “proves” that H(k) is not in P.
In other words, if H(k) is η-far from some given hereditary
property P, then it is “easy” to detect that H(k) 6∈ P. This
implies Theorem 1.

Proof of Theorem 1. Let a decidable and hereditary
property P = Forbind(F ) of k-uniform hypergraphs and
a constant η > 0 be given. By Theorem 6, there is some
c > 0 and there are integers C and n0 ∈ N such that any k-
uniform hypergraph on n ≥ n0 vertices, which is η-far from
exhibiting P contains at least cn` induced copies of some

F (k)
0 ∈ F with ` = |V (F (k)

0 )| ≤ C.

Let s ∈ N be such that (1 − c)s/C < 1/3 and set m0 =
max{s, n0}. We claim that there exists a one-sided tester

with query complexity q =
`
m0
k

´
for P. For that let H(k)

be a k-uniform hypergraph on n vertices. First observe that
we may assume that n > m0. Indeed if n ≤ m0, then
the tester simply queries all edges of H(k) and since P is
decidable, there is an exact algorithm with running time
only depending on the fixed m0, which determines correctly
if H(k) ∈ P or not.

Consequently, let n > m0. Then we choose uniformly at
random a set S of s vertices from H(k). We consider the
hypergraph H(k)[S] = H(k) ∩

`
S
k

´
induced on S, i.e., the

algorithm queries all
`
s
k

´
k-tuples. If H(k)[S] has P, then

the tester outputs “H(k) ∈ P” and otherwise “H(k) 6∈ P.”
Since P is decidable and s is fixed the algorithm decides
whether or not H[S] is in P in constant time (constant
only depending on s and P). Note that such an algorithm
exists, since s is a constant depending only on A and η and
since A is decidable.

Clearly, if H(k) ∈ P = Forbind(F ) or n ≤ m0, then this
tester outputs correctly and hence it is one-sided. On the
other hand, if H(k) is η-far from P and n > m0, then due

to Theorem 6 the random set S spans a copy of F (k)
0 for

some F (k)
0 ∈ F on ` ≤ C vertices, with probability at least

cn`/
`
n
`

´
≥ c. Hence the probability that S does not span

any copy of F (k)
0 is at most (1 − c)s/` ≤ (1 − c)s/C < 1/3.

In other words, S spans a copy of F (k)
0 with probability at

least 2/3, which shows that the tester works as specified.

1.4 Related results
We conclude this introduction with a few remarks on re-

cent results related to Theorem 1.
In [4] Alon and Shapira used the the graph version of

Theorem 1 to give a full charecterization of graph proper-
ties which admit an oblivious, one-sided tester. Such a tester
has no access to the size of the input hypergraph and it only
queries an induced sub-hypergraph of order q = q(P, η) uni-
formly at random from all labeled, induced sub-hypergraphs
of size q. The main result in [4] states that a graph prop-
erty admits an oblivious, one-sided tester if and only if it
is semi-hereditary. Here a property Q is semi-hereditary
if it is contained in an hereditary property P and every
hypergraph H(k) η-far from Q contains an induced sub-
hypergraph of order at most M(η), which is not in P.
The proof of this charecterization works verbatim for hy-
pergraphs and we omit the details here.

In [3] Alon et al. gave a charecterization of graph proper-
ties testable with two-sided error, where two-sided means
the tester is not required to recognize that H(k) ∈ P with
probability 1, but only with probability stricly bigger than
1/2. Roughly speaking, the main result in [3] states that
a graph property P is testable with two-sided error if and
only if testing P can be reduced to testing the property
of satisfying one of finitely many “regular partitions” com-
ing from Szemerédi’s regularity lemma. In other words, a
property P is testable if and only if distinguishing between
graphs having the property P and being η-far is equiva-
lent to admitting one of finitely many “cluster graphs” (see
Section 2.3) after an application of Szemerédi’s regularity
lemma. We believe the methods developed in this paper,
can be used to generalize this charecterization from graphs
to hypergraphs and intend to come back to this in the near
future.

The last remark concerns a result from [7]. Based on
techniques developed in [5] it was shown there, that for ev-
ery monotone graph property P and ε > 0 there exists a
deterministic algorithm, which in polynomial time approxi-
mates up to εn2 the distance from an input n-vertex graph
G to P. Here the distance is the minimum number of edges
must be deleted from G to make it satisfy P. We believe it
would be interesting to derive an analogous result for hyper-
graphs. However, in the design of the above graph algorithm
the algorithmic version of Szemerédi regularity lemma [1]
played crucial rôle. For hypergraphs an algorithmic regular-
ity lemma for 3-uniform hypergraphs was recently developed
by Haxell et al. in [21].

Organization. In the rest of the paper we outline the
proof of Theorem 6. For that we introduce the necessary def-
initions of the regularity method for hypergraphs in Section 2.
In Section 3 we introduce the main lemma, Lemma 15, and
deduce Theorem 6 from it. For the proof of Lemma 15 we
refer to the full version of this paper [26].

2. REGULARITY METHOD

2.1 Basic definitions
In this paper `-partite, j-uniform hypergraphs play a spe-

cial rôle, where j ≤ `. Given vertex sets V1, . . . , V`, we de-



note by K
(j)
` (V1, . . . , V`) the complete `-partite, j-uniform

hypergraph (i.e., the family of all j-element subsets J ⊆S
i∈[`] Vi satisfying |Vi ∩J | ≤ 1 for every i ∈ [`]). If |Vi| = m

for every i ∈ [`], then an (m, `, j)-hypergraph H(j) on V1∪
· · · ∪ V` is any subset of K

(j)
` (V1, . . . , V`). The vertex parti-

tion V1∪· · ·∪V` is an (m, `, 1)-hypergraph H(1). For j ≤ i ≤
` and set Λi ∈ [`]i, we denote by H(j)[Λi] = H(j)

ˆS
λ∈Λi

Vλ
˜

the sub-hypergraph of the (m, `, j)-hypergraph H(j) induced

on
S
λ∈Λi

Vλ. For an (m, `, j)-hypergraph H(j) and an in-

teger 2 ≤ j ≤ i ≤ `, we denote by Ki(H(j)) the family of

all i-element subsets of V (H(j)) which span complete sub-

hypergraphs in H(j) of order i. For 1 ≤ i ≤ `, we denote
by Ki(H(1)) the family of all i-element subsets of V (H(1))

which ‘cross’ the partition V1 ∪ · · · ∪ V`, i.e., I ∈ Ki(H(1))
if, and only if, |I ∩ Vs| ≤ 1 for all 1 ≤ s ≤ `. For 2 ≤
j ≤ i ≤ `, |Ki(H(j))| is the number of all copies of K

(j)
i

in H(j). Given an (m, `, j − 1)-hypergraph H(j−1) and an

(m, `, j)-hypergraph H(j), we say H(j−1) underlies H(j) if

H(j) ⊆ Kj(H(j−1)). This brings us to one of the main con-
cepts of this paper, the notion of a complex.

Definition 7. Let m ≥ 1 and ` ≥ h ≥ 1 be integers. An
(m, `, h)-complex H is a collection of (m, `, j)-hypergraphs

{H(j)}hj=1 such that

(a) H(1) is an (m, `, 1)-hypergraph, i.e., H(1) = V1∪· · ·∪V`
with |Vi| = m for i ∈ [`], and

(b) H(j−1) underlies H(j) for 2 ≤ j ≤ h.

We sometimes shorten the notation and write (`, h)-complex
and (`, h)-hypergraph for (m, `, h)-complex and (m, `, h)-
hypergraph, when the cardinality m = |V1| = · · · = |Vs|
isn’t of primary concern.

We define the relative density of a j-uniform hyper-
graph H(j) w.r.t. (j − 1)-uniform hypergraph H(j−1)

on the same vertex set by

d
`
H(j)

˛̨
H(j−1)´ =

8<:
|H(j)∩Kj(H(j−1))|
|Kj(H(j−1))| if

˛̨
Kj(H(j−1))

˛̨
> 0 ,

0 otherwise .

We also define a notion of regularity for (m, j, j)-hypergraphs
w.r.t. some underlying (m, j, j − 1)-hypergraphs.

Definition 8. Let constants δ > 0 and d ≥ 0 and a posi-
tive integer r be given along with an (m, j, j)-hypergraph H(j)

and an (m, j, j − 1)-hypergraph H(j−1) on the same vertex

set. We say H(j) is (δ, d, r)-regular w.r.t. H(j−1) if for ev-

ery collection X = {X (j−1)
1 , . . . ,X (j−1)

r } of not necessarily

disjoint sub-hypergraphs of H(j−1) satisfying˛̨̨̨ [
i∈[r]

Kj(X (j−1)
i )

˛̨̨̨
> δ

˛̨̨
Kj(H(j−1))

˛̨̨
,

we have

d
`
H(j)

˛̨
X
´

=

˛̨
H(j) ∩

S
i∈[r]Kj(X

(j−1)
i )

˛̨˛̨ S
i∈[r]Kj(X

(j−1)
i )

˛̨ = d± δ .

We write (δ, ∗, r)-regular to mean
`
δ, d
`
H(k)

˛̨
H(k−1)

´
, r
´
-

regular. Moreover, we say H(j) is (δ,≥d, r)-regular with

respect to H(j−1) if d
`
H(k)

˛̨
H(k−1)

´
≥ d and H(j) is (δ, ∗, r)-

regular w.r.t. H(j−1).

Next we extend the notion of regular (m, j, j)-hypergraph
to (m, `, j)-hypergraphs and to complexes.

Definition 9. For positive integers m, ` ≥ j we say an
(m, `, j)-hypergraph H(j) is (δ, d, r)-regular (resp. (δ,≥d, r)-
regular) w.r.t. an (m, `, j − 1)-hypergraph H(j−1) if for ev-

ery Λj ∈ [`]j, the restriction H(j)[Λj ] = H(j)
ˆS

λ∈Λj
Vλ
˜

is

(δ, d, r)-regular (resp. (δ,≥d, r)-regular) w.r.t. the restriction

H(j−1)[Λj ] = H(j−1)
ˆS

λ∈Λj
Vλ
˜
.

Definition 10. For h ≥ 2 let δ = (δ2, . . . , δh) be a vector
of positive reals and let d = (d2, . . . , dh) be a vector of non-

negative reals. We say an (m, `, h)-complex H = {H(j)}hj=1

is (δ,d, r)-regular (resp. (δ,≥d, r)-regular) if

(i) H(2) is (δ2, d2, 1)-regular (resp. (δ2,≥ d2, 1)-regular)

w.r.t. H(1) and

(ii) H(j) is (δj , dj , r)-regular (resp. (δj ,≥ dj , 1)-regular)

w.r.t. H(j−1) for every j = 3, . . . , h.

2.2 Partitions
The regularity lemma for k-uniform hypergraphs provides

a structured family of partitions P = {P(1), . . . ,P(k−1)}
of vertices, pairs, . . . , and (k − 1)-tuples of the vertex set.
We now discuss the structure of these partitions recursively.
Here the partition classes of P(j) will be (j, j)-hypergraphs,
i.e., j-uniform, j-partite hypergraphs.

Let k be a fixed integer and V be a set of vertices. Let
P(1) = {V1, . . . , V|P(1)|} be a partition of V . For every

1 ≤ j ≤ |P(1)|, let Crossj(P
(1)) be the family of all crossing

j-tuples J , i.e., the set of j-tuples which satisfy |J ∩ Vi| ≤ 1

for every Vi ∈ P(1).
Suppose for 1 ≤ i ≤ j− 1 partitions P(i) of Crossi(P

(1))
into (i, i)-hypergraphs are given. Then for every (j − 1)-

tuple I in Crossj−1(P
(1)), there exists a unique (j − 1, j −

1)-hypergraph P(j−1) = P(j−1)(I) ∈ P(j−1) so that I ∈
P(j−1). For every j-tuple J in Crossj(P

(1)), we define the
polyad of J

P̂(j−1)(J) =
[n

P(j−1)(I) : I ∈ [J ]j−1
o
.

In other words, P̂(j−1)(J) is the unique set of j partition

classes (or (j − 1, j − 1)-hypergraphs) of P(j−1) each con-

taining a (j−1)-subset of J . Observe that P̂(j−1)(J) we view
as a (j, j− 1)-hypergraph. More generally, for 1 ≤ i < j, we
set

P̂(i)(J) =
[n

P(i)(I) : I ∈ [J ]i
o

and P(J) =
˘
P̂(i)(J)

¯j−1

i=1
.

(1)

Next, we define P̂(j−1), the family of all polyads

P̂(j−1) =
˘
P̂(j−1)(J) : J ∈ Crossj(P

(1))
¯
.

Note that P̂(j−1)(J) and P̂(j−1)(J ′) are not necessarily dis-
tinct for different j-tuples J and J ′.

The requirement on the partition P(j) of Crossj(P
(1)) is

P(j) ≺ {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} . (2)

In other words, we require that the set of cliques spanned
by a polyad in P̂(j−1) is sub-partitioned in P(j) and ev-
ery partition class in P(j) belongs to precisely one polyad



in P̂(j−1). Note that (2) implies (inductively) that P(J)
defined in (1) is a (j, j − 1)-complex.

Throughout this paper, we want to have an upper bound
on the number of partition classes in P(j), and more specif-
ically, over the number of classes contained in Kj(P̂(j−1))

for a fixed polyad P̂(j−1) ∈ P̂(j−1). We make this precise
in the following definition.

Definition 11. Suppose V is a set of vertices, k ≥ 2
is an integer and a = (a1, . . . , ak−1) is a vector of positive

integers. We say P = P(k−1,a) = {P(1), . . . ,P(k−1)} is
a family of partitions on V , if it satisfies the following:

(i) P(1) is a partition of V into a1 classes,

(ii) P(j) is a partition of Crossj(P
(1)) satisfying:

P(j) ≺ {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)}

and for every P̂(j−1) ∈ P̂(j−1) we have˛̨˘
P(j) ∈ P(j) : P(j) ⊆ Kj(P̂(j−1))

¯˛̨
= aj .

Moreover, we say P = P(k − 1,a) is T -bounded, if

max{a1, . . . , ak−1} ≤ T .

2.3 Similarity of hypergraphs
An important part of the argument in the proof of Theo-

rem 6 will be to compare hypergraphs of very different sizes
to find two of “similar structure.” For that we will use the
hypergraph regularity lemma. This lemma provides “regu-
lar” families of partitions. Similarly as in the graph case, if
the hypergraph regularity lemma is applied to different hy-
pergraphs with the same input parameters, then the sizes of
the families of partitions corresponding to each of the “reg-
ularized” hypergraphs are bounded by the same T0. Let us
assume for now that all the partitions have the same size
or more precisely have the same vector a. Then we would
like to say that two hypergraphs have the same structure, if
there densities are similar on “every pair of corresponding
polyads,” for an appropriate bijection between the polyads
of two partitions. The similar idea of comparing “cluster
graphs” corresponding to graphs of various sizes was used
by Lovász and Szegedy [24].

Let P(k − 1,a) be a family of partitions on V (see Def-
inition 11). Consider an arbitrary numbering of the ver-

tex classes of P(1), i.e., P(1) = {Vi : i ∈ [a1]}. For j =

2, . . . , k − 1 let ϕ(j) : P(j) → [aj ] be a labeling such that

for every polyad P̂(j−1) ∈ P̂(j−1) the members of {P(j) ∈
P(j) : P(j) ⊆ Kj(P̂(j−1))} are numbered from 1 to aj in
an arbitrary way. This way, we obtain for every k-tuple
K = {v1, . . . , vk} ∈ Crossk(P

(1)) an integer vector x̂K =

(x
(1)
K , . . . ,x

(k−1)
K ), where

x
(1)
K = (α1 < · · · < αk) so that w.l.o.g. K ∩ Vαi = {vi} (3)

and for j = 2, . . . , k − 1 we set

x
(j)
K =

“
ϕ(j)(P(j)) : {vλ : λ ∈ Λ} ∈ P(j)

”
Λ∈([k]

j )
(4)

Let
`
[a1]
k

´
<

= {(α1, . . . , αk) : 1 ≤ α1 < · · · < αk ≤ a1} be

the set of all “naturally” ordered k-element subsets of [a1]

and set

Â(k − 1,a) =

 
[a1]

k

!
<

×
k−1Y
j=2

[aj ]× · · · × [aj ]| {z }
(k

j)-times

(5)

for the address space of all k-tuples K ∈ Crossk(P
(1)). The

definitions above yield x̂K ∈ Â(k − 1,a) for every K ∈
Crossk(P

(1)). Moreover, for every P̂(k−1) ∈ P̂(k−1) we
have

x̂K = x̂K′ for all K,K′ ∈ Kk(P̂(k−1)) (6)

hence, for every P̂(k−1) ∈ P̂(k−1) with Kk(P̂(k−1)) 6= ∅ we
may set

x̂(P̂(k−1)) = x̂K for some K ∈ Kk(P̂(k−1)) . (7)

Let

P̂(k−1)

6=∅ =
˘
P̂(k−1) ∈ P̂(k−1) : Kk(P̂(k−1)) 6= ∅

¯
and

Â6=∅ =
˘
x̂ ∈ Â(k − 1,a) :

∃ P̂(k−1) ∈ P̂(k−1)

6=∅ s.t. x̂(P̂(k−1)) = x̂
¯
.

It is easy to see that the definition in (7) establishes a bijec-

tion between P̂(k−1)

6=∅ and Â6=∅.

Moreover, since |P̂(k−1)| = |Â(k−1,a)| this bijection can

be extended to a bijection between P̂(k−1) and Â(k− 1,a).

The inverse bijection maps x̂ 7→ P̂(k−1)(x̂) and in the case

Kk(P̂(k−1)(x̂)) 6= ∅, i.e., x̂ ∈ Â6=∅ then

P(x̂) = P(K) for some K ∈ P̂(k−1)(x̂) ,

is well defined due to (6). Note that P(x̂) = {P(j)}k−1
j=1 is

a (k, k − 1)-complex with P(k−1) = P̂(k−1)(x̂). For later
reference we summarize the above.

Definition 12. Suppose k ≥ 2 is an integer and a =
(a1, . . . , ak−1) is a vector of positive integers. We say

Â(k − 1,a) =

 
[a1]

k

!
<

×
k−1Y
j=2

[aj ]× · · · × [aj ]| {z }
(k

j)-times

,

is the address space.
For a family of partitions P(k − 1,a) on V = V1 ∪ · · · ∪

Va1 we say a set of mappings ϕ = {ϕ(2), . . . , ϕ(k−1)} with

ϕ(j) : P(j) → [aj ] for every j = 2, . . . , k−1 is an a-labeling

if for every P̂(j−1) ∈ P̂(j−1) we have

ϕ(j)`˘P(j) ∈ P(j) : P(j) ⊆ Kj(P̂(j−1))
¯´

= [aj ] .

Then x̂K = (x
(1)
K , . . . ,x

(k−1)
K ) ∈ Â(k − 1,a) defined in (3)

and (4) defines an equivalence relation on Crossk(P
(1)).

Consequently, such a labeling ϕ defines a bijection between

Â6=∅ and P̂(k−1)

6=∅ (see (7) and below) which can be extended

to a bijection between Â(k − 1,a) and P̂(k−1) such that

(a) x̂ ∈ Â(k − 1,a) 7→ P̂(k−1)(x̂) ∈ P̂(k−1) and

(b) if Kk(P̂(k−1)(x̂)) 6= ∅, then P(x̂) = P(K) for some

K ∈ P̂(k−1)(x̂) is well defined,



(c) K ∈ Kk(P̂(k−1)(x̂K)) for every K ∈ Crossk(P
(1)),

and

(d) P(x̂)={P(j)}k−1
j=1 is a (k, k−1)-complex with P(k−1) =

P̂(k−1)(x̂).

The following definition will enable us to compare hyper-
graphs of different sizes. Roughly speaking, we will think of
two hypergraphs of being “similar” if there exists an integer
vector a so that for each of them there exists an a-labeled
family of partitions on there respective vertex sets such that
for every x̂ ∈ Â(k − 1,a) the hypergraphs have the similar
density on the respective polyad with address x̂.

Definition 13. Suppose ε > 0, a = (a1, . . . , ak−1) is a

vector of positive integers, Â(k − 1,a) is an address space,

da,k : Â(k−1,a) → [0, 1] is a density function, and H(k) is
a k-uniform hypergraph. We say an a-labeled family of par-
titions P = P(k−1,a) on V (H(k)) is a (da,k, ε)-partition

of H(k) if d
`
H(k)

˛̨
P̂(k−1)(x̂)

´
= da,k(x̂) ± ε for every x̂ ∈

Â(k − 1,a).

The concepts above allow to define an object similar to the
cluster graph in the context of Szemerédi’s regularity lemma.
For a given δ > 0 Szemerédi’s regularity lemma provides a
partition of the vertex set V = V1 ∪ · · · ∪Vt of a given graph
G, so that all but δt2 pairs (Vi, Vj) are (δ, ∗, 1)-regular. For
many applications of that lemma it suffices to “reduce” the
whole graph to a weighted graph on [t], where the weight
of the edge ij corresponds to the density of the bipartite
subgraph of G induced on (Vi, Vj) (usually it will also be
useful to mark those edges which correspond to irregular
pairs). With that notion of cluster graph, one may say that
two graphs G1 and G2 have the same structure if they admit
a regular partition in the same number of parts so that the
weights (densities) of the cluster graphs are essentially equal
or deviate by at most ε.

The notion of address space extends the concept of the
vertex labeling of the cluster graph in the context of the hy-
pergraph regularity lemma. This way the function da,k plays
the rôle of the edge weights of the cluster graph. As we con-
sidered two graphs to be similar if they admit a regular par-
tition with essentially the same cluster graph, we will view

hypergraphs H(k)
1 and H(k)

2 to be ε-similar if there exists an

integer vector a (and hence an address space Â(k−1,a)) and
a density function function da,k such that there is a “regu-

lar” (da,k, ε)-partition P1(k− 1,a) of H(k)
1 and a “regular”

(da,k, ε)-partition P2(k − 1,a) of H(k)
2 .

3. PROOF OF MAIN RESULT
In our argument we will assume that Theorem 6 fails. This

means that there exists a family of k-uniform hypergraphs F
and a constant η > 0 such that for every c, C, and n0 there
exists a hypergraph H(k) on n ≥ n0 vertices which is η-
far from Forbind(F ) and which for every ` ≤ C contains

at most cn` induced copies of F (k) for every F (k) ∈ F on `
vertices. Applying this assumption successively with c = 1/i
and C = i for i ∈ N yields the following fact.

Fact 14. If Theorem 6 fails for a family of k-uniform
hypergraphs F and η > 0, then there exists a sequence of

hypergraphs (H(k)
i )∞i=1 with ni = |V (H(k)

i )| → ∞ such that
for every i ∈ N

(i) H(k)
i is η-far from Forbind(F ) and

(ii) H(k)
i contains less than n`i/i induced copies of every

F (k) ∈ F with |V (F (k))| = ` ≤ i.

The same assumption (for graphs) was considered by Lovász
and Szegedy [24]. While they derived a contradiction based
on the properties of a “limit object” of a sub-sequence of

(H(k)
i )∞i=1 the existence of which was established in [23], here

we will only consider hypergraphs of the sequence (H(k)
i )∞i=1.

More precisely, the following, main lemma in the proof of

Theorem 6, will locate two special hypergraphs I(k) = H(k)
i

and J (k) = H(k)
j in the sequence from which we derive a

contradiction.

Lemma 15. Suppose Theorem 6 fails for a family F and
η > 0. Then there exist

(i) a k-uniform hypergraphs I = I(k) on ` vertices and

J = J (k) on n ≥ ` vertices,

(ii) integer vectors a = (a1, . . . , ak−1) ∈ Nk−1 and b =
(b1, . . . , bk−1) ∈ Nk−1,

(iii) family of partitions QI = QI(k − 1,a) on V (I(k))
and QJ = QJ (k − 1,a) and PJ = PJ (k − 1, b) on

V (J (k)),

(iv) and a density function da,k : Â(k − 1,a) → [0, 1]

such that

(I1) QI is a (da,k, η/24)-partition of I(k),

(I2) |Crossk(Q
(1)
I )| ≥ (1− η

24
)
`
`
k

´
, and

(I3) I(k) is η-far from Forbind(F ).

and

(J1) QJ is a (da,k, η/24)-partition of J (k) and

(J2) PJ ≺ QJ , i.e., P(j)
J refines Q(j)

J for every j =
1, . . . , k − 1.

Moreover, there exists an `-set L ∈ Cross`(P
(1)
J ) such that

(L1) |L∩Vi| = |Ui| where Q(1)
I = {Ui : i ∈ [a1]} and Q(1)

J =
{Vi : i ∈ [a1]},

(L2) ˛̨̨˘
K ∈

`L
k

´
∩ Crossk(Q

(1)
J ) :

|d(J (k)|P̂(k−1)
J (K))−d(J (k)|Q̂(k−1)

J (K))|> η
12

¯˛̨̨
≤ 4η

9

``
k

´
(L3) any k-uniform hypergraph G(k) with vertex set L and

with the property

K ∈ G(k) ⇒ d(J (k)|P̂(k−1)
J (K)) ≥ η

12

and K 6∈ G(k) ⇒ d(J (k)|P̂(k−1)
J (K)) ≤ 1− η

12
,

belongs to Forbind(F ).



The proof of Lemma 15 relies on the hypergraph regular-
ity lemma from [28] and the corresponding counting lemma
from [25]. We give the proof of Lemma 15 in [26] and below
we derive the main result of this paper from Lemma 15.

Proof of Theorem 6. The proof is by contradiction.
Suppose there exists a family of k-uniform hypergraphs F
and some η > 0 so that Theorem 6 fails. We apply Lemma 15
which yields hypergraphs I(k) (on ` vertices) and J (k) (on n

vertices) and an `-set L ⊆ V (J (k)). In view of property (L3)

we will define a hypergraph G(k) on the vertex set L. In order
to obtain the desired contradiction we will “compare” the
`-vertex hypergraph G(k) with the `-vertex hypergraph I(k).
For that we need some bijection ψ from L to V (I(k)). We
choose some bijection ψ which “agrees” with the labellings
of QJ and QI , i.e., we require that for any k-tuple K ∈
Crossk(Q

(1)
J ) the address x̂K (see Definition 12) of K w.r.t.

the a-labeled partition QJ coincides with the address x̂ψ(K)

of ψ(K) w.r.t. the a-labeled partition QI . More precisely,

fix a bijection ψ : L→ V (I(k)) such that for every K ∈
`
L
k

´
the following holds: if K ∈ Crossk(Q

(1)
J ) then

ψ(K) ∈ Crossk(Q
(1)
I ) and x̂K = x̂ψ(K) . (8)

For a subset of E ⊆
`
L
k

´
we set ψ(E) = {ψ(K) : K ∈ E}.

We then define the hypergraph G(k) on L by

K∈G(k)⇔

(
either d(J (k)|P̂(k−1)

J (K))≥ η
12

and ψ(K)∈I(k)

or d(J (k)|P̂(k−1)
J (K))>1− η

12
.

(9)
for every K ∈

`
L
k

´
. Consequently, by (L3) of Lemma 15

G(k) ∈ Forbind(F ) . It is left to show˛̨
I(k)4ψ(G(k))

˛̨
≤ η

`
`
k

´
, (10)

which then contradicts (I3) of Lemma 15, i.e., (10) con-

tradicts that I(k) is η-far from Forbind(F ). We cover the

symmetric difference I(k)4ψ(G(k)) by four sets D1, . . . , D4

defined by

D1 =

 
V (I(k))

k

!
\ Crossk(Q

(1)
I ) ,

D2 = ψ
`
{K ∈

`
L
k

´
∩ Crossk(Q

(1)
J ) :˛̨

d(J (k)|P̂(k−1)
J (K))−d(J (k)|Q̂(k−1)

J (K))
˛̨
> η

12

¯´
,

D3 = I(k) ∩
[˘

Kk(Q̂(k−1)
I ) : d(I(k)|Q̂(k−1)

I ) < η
4

¯
,

D4 =

 
L

k

!
\
“
I(k) ∩

[˘
Kk(Q̂(k−1)

I ) :

d(I(k)|Q̂(k−1)
I ) > 1− η

4

¯”
.

We first show that indeed I(k)4ψ(G(k)) ⊆ D1 ∪ · · · ∪ D4.

For that first consider some K′ ∈ I(k) \ ψ(G(k)) and set

K = ψ−1(K′). By the definition of G(k) in (9) we have

d(J (k)|P̂(k−1)
J (K)) < η

12
. Then it is easy to show that if

K′ 6∈ D1 ∪D2 then K′ ∈ D3. Indeed, we have:

K′ ∈ I(k) \
`
ψ(G(k)) ∪D1 ∪D2

´
(9)⇒ d(J (k)|P̂(k−1)

J (K)) <
η

12
K′ 6∈D1∪D2⇒ d(J (k)|Q̂(k−1)

J (K)) <
η

6
. (11)

Due to (J1) and (I1) of Lemma 15, both QJ and QI are

(da,k, η/24)-partitions with the same Â(k − 1,a) and the

same density function da,k : Â(k − 1,a) → [0, 1].

Hence, on the one hand, we infer d(J (k)|Q̂(k−1)
J (K)) =

da,k(x̂K)±η/24 and, on the other hand, due to (8) and K =

ψ−1(K′), we have d(I(k)|Q̂(k−1)
I (K′)) = da,k(x̂K) ± η/24.

Thus, |d(J (k)|Q̂(k−1)
J (K))−d(I(k)|Q̂(k−1)

I (K′))| ≤ η/12 and
the right-hand side of (11) implies

K′ ∈ I(k) \
`
ψ(G(k)) ∪D1 ∪D2

´
(11)⇒ d(J (k)|Q̂(k−1)

J (K)) <
η

6
(J1)&(I1)⇒ d(I(k)|Q̂(k−1)

I (K′)) <
η

4

⇒ K′ ∈ D3 .

Similarly, for K′ ∈ ψ(G(k))\I(k) and K = ψ−1(K′) we infer
by similar arguments as above:

K′ ∈ ψ(G(k)) \
`
I(k) ∪D1 ∪D2

´
(9)⇒ d(J (k)|P̂(k−1)

J (K)) > 1− η

12
K′ 6∈D1∪D2⇒ d(J (k)|Q̂(k−1)

J (K)) > 1− η

6
(J1)&(I1)⇒ d(I(k)|Q̂(k−1)

I (K′)) > 1− η

4

⇒ K′ ∈ D4 .

Consequently, I(k)4ψ(G(k)) ⊆ D1 ∪ · · · ∪ D4. Moreover,
from (I2) of Lemma 15 we infer

|D1| =
˛̨̨̨ 
V (I(k))

k

!
\ Crossk(Q

(1)
I )

˛̨̨̨
≤ η

 
`

k

!
/24

and (L2) implies |D2| ≤ 4η
`
`
k

´
/9. Finally, the definitions of

D3 and D4 yield |D3| ≤ η
`
`
k

´
/4 and |D3| ≤ η

`
`
k

´
/4. Sum-

marizing the above, we obtain˛̨
I(k)4ψ(G(k))

˛̨
≤ |D1|+ |D2|+ |D3|+ |D4|

≤
“ η

24
+

4η

9
+
η

4
+
η

4

” `
k

!
< η

 
`

k

!
.

Thus we proved (10), which by definition of G(k) and (L3)
contradicts (I3) of Lemma 15.
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[27] V. Rödl and M. Schacht. Regular partitions of
hypergraph. Combin. Probab. Comput. to appear.
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[29] V. Rödl and J. Skokan. Applications of the regularity
lemma for uniform hypergraphs. Random Structures
Algorithms, 28(2):180–194, 2006.

[30] D. Ron. Property testing. In Handbook of randomized
computing, Vol. I, II, volume 9 of Comb. Optim.,
pages 597–649. Kluwer Acad. Publ., Dordrecht, 2001.

[31] R. Rubinfeld and M. Sudan. Robust characterizations
of polynomials with applications to program testing.
SIAM J. Comput., 25(2):252–271, 1996.

[32] I. Z. Ruzsa and E. Szemerédi. Triple systems with no
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