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ABSTRACT. Rodl and Rucinski [Threshold functions for Ramsey properties, J. Amer.
Math. Soc. 8 (1995)] established Ramsey’s theorem for random graphs. In particular, for
fixed integers r, ¢ > 2 they proved that pg,..(n) = n”~ 7 is a threshold for the Ramsey
property that every r-colouring of the edges of the binomial random graph G(n,p) yields a
monochromatic copy of Ky. We investigate how this result extends to arbitrary colourings
of G(n,p) with an unbounded number of colours. In this context, Erdés and Rado [A
combinatorial theorem, J. London Math. Soc. 25 (1950)] proved that any edge-colouring
of a sufficiently large complete graph contains one of four canonical colourings of K, — a
monochromatic, or rainbow, or min or max colouring; a min-colouring of K, is a colouring
in which two edges have the same colour if and only if they have the same minimal vertex.
We transfer the Erdés—Rado theorem to the random graph G(n,p) and show that both
thresholds coincide when £ > 4. As a consequence, the proof yields K, 1-free graphs G
for which every edge colouring contains a canonically coloured K.

The 0-statement of the threshold is a direct consequence of the corresponding statement
of the Rédl-Rucinski theorem and the main contribution is the 1-statement. The proof of
the 1-statement employs the transference principle of Conlon and Gowers [Combinatorial
theorems in sparse random sets, Ann. of Math. (2) 184 (2016)].

§1 INTRODUCTION

In the last three decades, extremal and Ramsey-type properties of random graphs were
considered, which led to several general approaches to these questions (see, e.g. [2,4,13,
16,25-27] and references therein). We consider Ramsey-type questions for the binomial

random graph G(n,p). For graphs G and H and an integer r > 2, we write
G— (H),

to signify the statement that every r-colouring of the edges of G yields a monochromatic

copy of H. Ramsey’s theorem [21] asserts that for fixed H and r the family of graphs G
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satisfying G — (H), is non-empty. Obviously, this family is monotone*. Hence, by a well-
known result of Bollobds and Thomason [3], there is a threshold function pg,: IN — [0, 1]
such that
0, ifp <y,
Jim P(Glnp) — () =4 P (1)
1, ifp>» pu,.
As usual we shall refer to any such function as the threshold of that property, even though
it is not unique.
R6dl and Rucinski [24,25] determined the threshold pg, for every graph H and every
fixed number of colours . We restrict our attention to the situation when H is a clique K,
and state their result for that case only.

2

Theorem 1.1 (Rédl & Rucinski). For every r = 2 and ¢ > 3, the equality pk,,(n) = n~ &1
holds. O

In fact, Rodl and Rucinski established a semi-sharp threshold, i.e., the O-statement
in (1.1) holds as long as p(n) < cwn_@%1 for some sufficiently small constant ¢g, > 0 and,
similarly, the 1-statement becomes true already if p(n) > C’g,rnfﬁ%l for some Cy,. This
was sharpened recently in [10], where the gap between ¢, and C, was closed. Perhaps
surprisingly, the asymptotic growth of the threshold function pg, ,(n) in Theorem 1.1 is
independent of the number of colours r.

We are interested in edge colourings of G(n, p) which are not restricted to a fixed number
of colours. However, if the number of colours is unrestricted, then this allows injective edge
colourings and, consequently, monochromatic K,-copies might be prevented. Nevertheless,
Erdés and Rado [7], showed that certain canonical patterns’ are unavoidable in edge
colourings of sufficiently large cliques. Obviously, the monochromatic and the injective
pattern (in which each edge receives a different colour) must be canonical. Two additional
canonical patterns arise by ordering the vertices of K, and colouring every edge uv by
min{u, v} or colouring every edge by its maximal vertex. More generally, for finite graphs

G and H with ordered vertex sets, we write
G — (H)
if for every edge colouring ¢: F(G) — NN there exists an order-preserving graph embed-

ding ¢: H — G such that one of the following holds:
(a) the copy ¢(H) of H is monochromatic under ¢,
(b) or ¢ restricted to E(s(H)) is injective,
(c¢) or for all edges e, ¢’ € E(s(H)) we have p(e) = p(¢/) <= min(e) = min(e’),

*that is, closed with respect to adding edges
A pattern refers to a colouring of the ‘target graph’ K.
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(d) or for all edges e, ¢’ € E(¢(H)) we have p(e) = ¢(€/) <= max(e) = max(¢).
We call an ordered copy of H in G canonical (with respect to ¢) if it displays one of the
four patterns described in (a)—(d).

Note that for the patterns described in (a) and (b) the orderings of the vertex sets have
no bearing. We shall refer to copies exhibiting an injective colouring as rainbow copies of
H (even if |E(H)| # 7). Moreover, we refer to the patterns appearing in (¢) and (d) as
min-coloured and maz-coloured, respectively. In case only the backward implications in (¢)
or (d) are enforced, then we refer to those colourings as non-strict, e.g., if min(e) = min(e’)
yields p(e) = ¢(€’) for all edges e, ¢’ € E(c(H)), then ¢(H) is a non-strictly min-coloured
copy of H. Obviously, monochromatic copies are also non-strictly min- and max-coloured.

Hereafter, the vertex sets of all graphs considered are ordered. In particular, for cliques

and random graphs we assume
V(Kn) =[n] and  V(G(n,p)) = [n].

With this notation at hand, the aforementioned canonical Ramsey theorem of Erdds and

Rado [7] restricted to the graph case asserts that canonical copies are unavoidable.
Theorem 1.2 (Erdds & Rado). For every ¢ = 3, there exists n such that K, = (K,;). O

We are interested in a common generalisation of Theorems 1.1 and 1.2. Namely, owing
to Theorem 1.2, for any ordered graph H and sufficiently large n, the fact that K, = (H)
raises the problem of estimating the threshold pgy: IN — [0, 1] such that

0, if p <« py,
lim P (G(n,p) — (H)) = b b (1.2)
e 1, ifp>» pu.
Unless the vertices of a graph H can be covered by only two edges, the only canonical

colourings of H using at most two colours are monochromatic. Consequently,

PH = PHp
for every such graph H; indeed, a two-colouring of G(n, p) establishing a lower bound on
Dm 2 automatically yields a lower bound on py. In particular, for cliques on at least four
vertices, this may suggest that the asymptotics of pg, o and pg, coincide, and our main

result verifies this.

2

Theorem 1.3. For every ¢ = 4, there exists C' > 0 such that for p = p(n) = Cn™ 71 we
have
lim P(G(n,p) = (K¢)) = 1.

n

Combining Theorem 1.3 with the corresponding lower bound on pg, 2 shows that the

threshold for the canonical Ramsey property is semi-sharp for ¢ > 4. For ¢ = 3, we recall
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that the canonical Ramsey threshold is indeed smaller than the Ramsey threshold n='/2. In
fact, one can check that every edge colouring of K, yields a canonical copy of the triangle
and, hence, pg, < n~?3. We are unaware of the corresponding lower bound on pg.,.
Moreover, we note that for p = O(n_é%) the random graph G(n, p) is likely to contain
only o(pn?) cliques Kyy1. In the proof of Theorem 1.3 we can delete an edge from each
such clique. Consequently, we obtain the following statement in structural Ramsey theory,

which can be viewed as a Folkman-type extension of the Erdés—Rado theorem for graphs.

Corollary 1.4. For every { = 4 there exists a Kyy1-free graph G such that G = (K,).

Moreover, G contains no two distinct copies of K, that share at least three vertices.

In the context of Ramsey’s theorem, the existence of such a graph G was asked for by
Erd6s and Hajnal [6]; for two colours this was established by Folkman [8], and for any
fixed number of colours by Nesettil and Rodl [19]. The graph G in Corollary 1.4 will
be obtained by modifying the random graph and, hence, the proof is non-constructive.
Reiher and Rodl [22] pointed out that the first part of Corollary 1.4 can also be proved
in a constructive manner by means of the partite construction method of Nesettil and
Rodl [20]. While this approach falls short to exclude K,’s intersecting in triangles, it has
the advantage that it readily extends to k-uniform hypergraphs for every k > 3.

We conclude this introduction with a short overview of the main ideas of the proof of
Theorem 1.3. Roughly speaking, the proof is inspired by the proof of the canonical graph
Ramsey theorem laid out by Lefmann and Rodl [14] and Alon et al. [1]. This approach
pivots on a case distinction of the edge colouring of the underlying graph K,. The first
case, when many different colours appear everywhere, which is captured by assuming that
every vertex is incident to only o(n) edges of the same colour, leads to rainbow copies of K.
In the other case, there is a vertex with a monochromatic neighbourhood of size Q(n),
which by iterated applications, as in the standard proof of Ramsey’s theorem, leads to a
non-strictly min- or max-coloured K(y_s)242. Such a non-strictly min/max-coloured clique
contains a canonical K, by a straightforward application of Dirichlet’s box principle.

Transferring such an approach from K, to G(n,p) for p = O(n_f%l) faces several
challenges. Firstly, we shall not use a K;_g)242 in the coloured host graph, as such large
cliques are extremely unlikely to appear in G(n,p) for that edge probability. Moreover,
in the more challenging second case, when the colouring is unbounded, it is certainly not
sufficient to consider one vertex with a large monochromatic neighbourhood (of size Q(pn)),
as again, this neighbourhood is too sparse to contain any useful structure in G(n, p). Thus
we resort to a robust version of the above-mentioned argument, building a large non-strictly
min- or max-coloured subgraph which contains Q(n?p) edges.

The bounded case, with at most A\ edges of every colour incident to any given vertex

of G(n,p), is a problem of independent interest. For example, A = 1 corresponds to
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studying proper edge colourings of G(n,p) and anti-Ramsey properties (see, e.g. [11,12,17]
and the references therein). In fact, for £ > 5, there are proper colourings of G(n,p)
with p = en” 71 which do not contain a rainbow copy of K, (see [12]), which is an
alternative argument for pg, > ¢n~ 77 and another obstruction for Theorem 1.3. For the
proof of Theorem 1.3 presented here, we will need to guarantee rainbow copies of K, under
the weaker assumption that A = o(pn). This can be viewed as a partial extension of the
work of Kohayakawa, Kostadinidis, and Mota [11]. In both cases (bounded and unbounded
colourings) the transference principle for random discrete structures developed by Conlon

and Gowers [4] is an integral part of the proof.

Organisation. In the next section, we present the two main lemmata rendering the case
distinction sketched above, and deduce Theorem 1.3. The proofs of these lemmata are
deferred to Sections 3 and 4, along with the corresponding preliminaries. We conclude with
a discussion of possible generalisations of this work from cliques K, to general graphs H

and of related open problems in Section 5.

§2 PROOF OF THE MAIN RESULT

2.1. Proof of the canonical Ramsey theorem for graphs. The proof of Theorem 1.3
adopts some ideas of the canonical Ramsey theorem for graphs from the work of Lefmann
and Rédl [14] and Alon et al. [1] and below we recall their argument. For ¢ > 3 we fix

1
"B

and first we consider bounded colourings ¢: F(K,) — IN. More precisely, we say such a

) and n > 200 (os2(O)+1) (2.1)

colouring is §-bounded if for every colour ¢ € N and every vertex v € V(K,,) we have
de(v) = [N:(v)| = {w € V(K,): p(vw) = c}| < én. (2.2)

Roughly speaking, bounded colourings have the property that many different colours are
“present everywhere” and this yields rainbow copies of K,. In fact, a simple counting
argument shows that for §-bounded colourings, at most dn?/2 triples contain two edges
of the same colour and at most dn'/8 quadruples contain two disjoint edges of the same
colour. Consequently, selecting every vertex of K,, independently with probability 2¢/n
and removing a vertex from every such triple and every such quadruple, establishes the
existence of ¢ vertices inducing a rainbow K.

The second part of the proof resembles the standard proof of Ramsey’s theorem for
graphs and iterates along large monochromatic neighbourhoods. Given the observation
above for bounded colourings, we may assume that the edge colouring ¢ is unbounded in a
hereditary way (meaning that no induced subgraph of order 2(n) satisfies (2.2)) and this

requires the exponential lower bound (2.1) on n.
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More precisely, assuming that ¢ fails to induce a rainbow copy of K, gives rise to a

vertex v € V(K,), a colour ¢, and a comparability sign ¢ € {<,>} such that

J
do(v) = |NS(v)| = [{w e V(K,): p(vw) = ¢ and v o w}| > ?n
Restricting our attention to the colouring ¢ on the vertices contained in N (v) and iterating
this argument L = 2(¢ — 2)? 4 2 times leads to a sequence (v;, ¢;,%;)seqz] such that for

every i € [L] we have

@Ngy(vj) > <g>n (2.3)

In fact, owing to the choices in (2.1) we can iterate this step L times.

Furthermore, we may assume that there are indices 1 < ig < -+ < d_g32 < L such
that o;, is < for all j. Consequently, the correspondingly indexed vertices vy, . . . »Vigy_ 2
together with vy induce a non-strictly min-coloured clique on (¢ — 2)? + 2 vertices. Finally,

if one of the colours appears £ — 1 times among ¢;,, .. ., ¢; 27 then this yields a monochro-

(6—2

matic K, among v;, . .. and vy. Otherwise, at least ¢ — 1 distinct colours appear

Y UZ'([_Q)Q )
and we are guaranteed to find a min-coloured K, instead.

2.2. Bounded and unbounded colourings in random graphs. For the proof of
Theorem 1.3 we derive appropriate random versions of the facts above that analyse
bounded and unbounded colourings of G(n,p) (see Lemmata 2.1 and 2.2 below). We begin
by defining a notion of boundedness central to our proof. Roughly speaking, an edge
colouring of G(n, p) is bounded if at most o(pn) edges of the same colour are incident to
any given vertex. Similar to the proof in the deterministic setting, it will be useful to
define this property for large subsets of vertices, which is made precise as follows.

Given a graph G = (V| E) with an edge colouring ¢: E — NN, a subset U < V, and
reals 0 > 0, p € (0, 1] we say ¢ is (9, p)-bounded on U if for every colour ¢ € N and every

vertex v € U we have
de(u, U) = |No(u, U)| = {w e U: p(uw) = c}| < dp|U|.

Lemma 2.1 (stated below) asserts that bounded edge colourings of G(n,p) for p » no T
yield rainbow copies of K, asymptotically almost surely, i.e., with probability tending to 1
as n — 0.

In view of Corollary 1.4, we define the ¢-clean subgraph G of a given graph G on [n] as
follows: Consider all edges of GG in lexicographic order and remove an edge e in the current
subgraph of G, if the edge e is contained in the intersection of two distinct K,-copies sharing
at least three vertices. Actually, the precise ordering is not relevant for our argument, but
the uniqueness of the ¢-clean subgraph G, < G defined above will be convenient. Note that

G contains no copy of Ky, 1, since this would yield two K,’s intersecting in ¢ — 1 vertices.
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Lemma 2.1. For all integers ¢ = 4 and every v > 0 there is some constant C > 0 such that
forp=p(n)= Cn~ w1 asymptotically almost surely the following holds for G € G(n,p).
If o: E(G) — N is ((7°/4,p)-bounded on some U = V(G) with |[U| = vn, then U
induces a rainbow copy of Ky in G.
Moreover, if in addition we have p(n) < n_ﬁ%/w(n) for some arbitrary function w
tending to infinity as n — o0, then the {-clean subgraph G, < G also contains a rainbow

copy of K,.

Lemma 2.1 strengthens a result of Kohayakawa, Kostadinidis, and Mota [11], where
a more restrictive boundedness assumption is required. The proof of Lemma 2.1 makes
use of the transference principle of Conlon and Gowers [4], which allows us to transfer
the bounded case in the deterministic setting to the random environment. We defer the
proof of Lemma 2.1 to Section 3. The second lemma yields canonical copies in unbounded

colourings.

Lemma 2.2. For all integers £ = 3 and every 0 > 0 there is some constant C' > 0 such that
forp=p(n) = Cn 7 asymptotically almost surely the following holds for G € G(n,p).
If ¢: E(G) — N has the property that every U < V(G) with size |U| = 6 n satisfies
Ul

{ueU: d.(u,U) = 85p|U| for some colour c}| = o (2.4)

then G contains a canonical copy of K,.
20—5
Moreover, if in addition we have p(n) < n 24 /w(n) for some arbitrary function w
tending to infinity as n —> oo, then the (-clean subgraph Gy, < G also contains a rainbow

copy of K,.

As in the unbounded case in the deterministic setting, the proof of Lemma 2.2 yields
either a monochromatic, or a min-coloured, or a max-coloured copy of K,. The proof of
Lemma 2.2 is more involved and we give a detailed outline in Section 4.1. We conclude
this section with the short proof of Theorem 1.3 and Corollary 1.4 based on Lemmata 2.1
and 2.2.

Proof of Theorem 1.3 and Corollary 1.4. Given £ > 4 we set § = £°/64 and v = §° /2
and let C' be sufficiently large so that we can appeal to Lemma 2.1 with ¢ and v and to
Lemma 2.2 with ¢ and §. Owing to the monotonicity of the canonical Ramsey property,
for the proof of Theorem 1.3 we may assume p = p(n) = Cn~71. Since £ = 4 this implies
p(n) < n_ﬁ%/w(n) for some function w tending to infinity with n.

Let G € G(n, p) satisfy the conclusion of both lemmata and consider an arbitrary edge
colouring ¢: E(G) — N of G.

For every U < V(G) we consider its subset of unbounded vertices in U

B(U) ={weU: d.(w,U) = 8p|U| for some colour c} .
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Owing to Lemma 2.2 we may assume that there is a set U < V(G) satisfying |U| = Cn

and |B(U)| < |U|/2. Removing the unbounded vertices from U we arrive at a set

U =U~\B(U) with |U|> |(2]| >vn.

For every vertex u € U’ and every colour ¢ we have
de(u,U") < d.(u,U) < 8p|U| < 165p|U’| .

In other words, ¢ is (164, p)-bounded on U" and Lemma 2.1 yields asymptotically almost
surely a rainbow copy of Ky in the (-clean subgraph G, < G. O

§3 RAINBOW CLIQUES IN BOUNDED COLOURINGS OF RANDOM GRAPHS

We shall use the following notation. For a graph G = (V, E), a vertex v, and aset U € V
we write dg(v, U) for the size of the neighbourhood of v in U. For subsets X, Y <V we
denote by eq(X,Y’) the number of edges with one vertex in X and one vertex in Y, where
edges in X N'Y are counted twice, i.e.,

eq(X,Y) = |{(z,y) e X xY:aye E}| = Z dg(z,Y).
veX
In particular, eq(X) = eq(X, X). Moreover, for some integer ¢ > 2 we denote by r¢(G)
the number of (labeled) copies of K, in G. For a family U = (Uy,...,U;) of mutually
disjoint vertex subsets of V' we write G|U] for the ¢-partite subgraph induced by the sets
Uy, ..., U,.
The proof of Lemma 2.1 is based on the transference principle of Conlon and Gowers [4],

which we use in the following form [5, Theorem 3.2].

Theorem 3.1 (Conlon & Gowers). For all integers ¢ > 3 and every ¢ > 0 there is
some constant C' > 0 such that for p = p(n) with Cn w1 < p < 1/C and every ¢ > 0
asymptotically almost surely the following holds for G € G(n,p).
For every family U = (Uy, ..., U;) of mutually disjoint vertex subsets of V(G) and every
C-partite subgraph S of G|U], there exists an (-partite subgraph D of K, U] such that
(7) for all subsets X, Y < V(G) we have |es(X,Y) —p-ep(X,Y)| < epn?
(i) and |r,(S) —p(g) k(D) < ep(g)nf.
Moreover, we have
(iii) for every X < V(G) all but at most en vertices v € V(G) satisfy
|ds(v, X) —p-dp(v, X)| < epn
(i) and if G' is obtained from G by removing at most (pn? edges, then

4
2

k(@' U]) — pO|TL| - U] < (e + OplInt. O
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We say the graph D provided by Theorem 3.1 is a dense model for the subgraph S of
the sparse random graph. We remark that in [5], (i) is stated for disjoint subsets X and Y,
but the bound for all pairs of subsets follows easily from the inclusion-exclusion principle.
Furthermore, the moreover-part is not stated in [5, Theorem 3.2]. However, it easily follows
from (7) and (ii) applied with an appropriately chosen ¢’ « . In fact, part (iii) follows
from (7) applied to X and Yt being the set of vertices having too high degree in D, and a
second application to X and a similarly defined set Y~ (see, e.g., proof of Lemma 4.4 in
Section 4.2). Part (7v) can be deduced by applying (¢) and (i) for S" = G'[U]. In fact,
for this choice, part (i), combined with Chernoff’s inequality and the union bound over
the choices for U, implies that all (5) bipartite subgraphs D'[U;, U;] have density close
to 1. More precisely, in this case D'[U] and K,[U] differ by at most (2&" + ¢)n? edges.
ke(D') — [Uh] -+ |Ug|| < (2¢' + ¢)n’, which can be transferred to 5" = G'[U]

by (ii). The two conclusions of the following lemma further strengthen the upper bound of

Consequently,

part (7v) and can be viewed as a customised version of part (i) for our proof of Lemma 2.1.

Lemma 3.2. For all integers { = 4 and every € > 0 there is some constant C' > 0 such
that for p = p(n) with Cn=Y/m2(K) < p < 1/C asymptotically almost surely the following
holds for G € G(n,p).

For every familyU = (Uy, ..., Us) of mutually disjoint vertez subsets of V(G) and every
C-partite subgraph S of G|U] the following holds:

_ es(Uy,Us) _ es(Us,Uy)
(a) For dyp = STl and dsy = Sl We have

KZ(S) < dyodsy 'p(§)|U1| e |UZ| + 5p(§)n€_

ZuEUl ds(u,U2)dg(u,Us)
p2|U1[|U2]|Us|

(b) For cia3 = we have

ke(S) < c1a3 -p(§>|U1| - |U| + sp(é)né.
Proof. We only prove part (b), since the proof of (a) is very similar. Let G € G(n,p).
Given ¢ and ¢ € (0,279), let C be sufficiently large, so that Theorem 3.1 applies for £ and
e/16.
For the given /-partite subgraph S on partition classes Uy,...,U,; we may assume,
without loss of generality, that |U;| = en/2, since otherwise the bound easily follows
from k¢(S) < ke(G) and part (iv) of Theorem 3.1. Moreover, a standard argument using

Chernoft’s inequality and the union bound implies that
ds(v) < dg(v) < 2pn (3.1)

for every vertex v € V(QG).
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Let D be the dense model of S provided by Theorem 3.1. In view of part (i) of
Theorem 3.1, it suffices to show that

9
Kg(D) < C1o3 - |U1| tot |Ug| + inf . (32)

Let Y* be the set of vertices u € Uy for which p - dp(u,Us) > dgs(u,Us) + epn/16
or p-dp(u,Us) > ds(u,Us) + epn/16. Part (iii) tells us |Y*| < en/8 and combined
with (3.1) it follows

2

2 € €\ 23 1,22
P S dp(u, Un)dp(u,Us) < S ds(u, Us)ds(u, U3)+< 4 16)]9 w4 Y+ p?n

u€U1 u€U1 4

& .
< C123 ‘P2’U1HU2HU3’ + 5292”3-

Consequently, the number of K 5 in D with center vertex in U; and leaves in Uy and Us is

bounded from above by

9
C123 * |U1||U2||U3| + 5713

and (3.2) is obtained by bounding the extension of each of these K 5 trivially by |Uy| - - - |Uy|.
U

We conclude this section with the proof of Lemma 2.1, which yields rainbow cliques in

bounded colourings of the random graph.

Proof of Lemma 2.1. Given £ > 4 and v > 0 we define the auxiliary constant § = £=4/2
and let C' be sufficiently large so that the Theorem 3.1 and Lemma 3.2 apply for

.= (2”6)[. (3.3)

Suppose G € G(n, p) satisfies the conclusions of Theorem 3.1 and Lemma 3.2. We may also
assume that for every subset X < V(G) of size at least | X| > %7 we have dg (v, X) < 1.1p|X|
for all but at most n/log(n) vertices v.

Below we only prove the moreover-part of the lemma for the ¢-clean subgraph G, < G,
since the proof for G without the upper bound on p is identical. Hence, we assume
p=pn) < N E /w(n) for some function w tending to infinity. From this upper bound
on p it follows by Markov’s inequality that, asymptotically almost surely, the number of
distinct pairs of K, sharing more than two vertices is at most o(pn?) and, therefore, we

may assume
|E(G) \ E(Gy)| < epn®. (3.4)

Let ¢: E(G) — NN be an edge colouring, which is (¢7°/4,p)-bounded on U < V(G) of

size at least vn.
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Let U] w...wU; = U be a balanced partition of U. After removing a few vertices of too

high degree, i.e., vertices u € U] for which dg(u,U}) > 1.1 p|Uj]| for some j # i, we arrive

at a collection U = (Uy,...,U,) of mutually disjoint sets of size m such that
ul _ v
Ul=-=U|l=m>2— > —
191 Ud=m =77 > 5n

and for every every vertex w; € U; and j € [¢] we have
de(ui, Uj) < 2p|Uj| = 2pm . (3.5)
In addition, the boundedness of ¢ and the choice of § ensures for every colour c € N
4o, U)) < e, U) < plU] < 5aplU] = . (3.6)
In view of (3.4), part (iv) of Theorem 3.1 yields
ke(GelU]) = (1 — 25)p(§)me

and below we shall bound the number of non-rainbow copies of K, in G[U] = G,[U].

For that it will be useful to classify the non-rainbow copies according to where the
repeated colour occurs. We consider two cases depending on whether the two edges of
the same colour share a vertex or form a matching. Hence, we consider the number
k3 (G[U], ) of copies of K, in G[U] containing edges e € Eq(Uy,Us) and €’ € Eg(Uy, Us)
such that ¢(e) = p(¢'). Similarly, we define x§}(G[U], ¢) to be those copies with the two
edges of the same colour being from FEg(Uy,Us) and Eq(Us,Uy). We will exploit the

boundedness of ¢ to deduce the following claim from Lemma 3.2.
Claim 3.3. We have &}(G[U], ) < 55p(§)m£ and k3 (G[U], ) < 56p(§>m€.

Applying the claim to cover all ((g)) possibilities where the two identically coloured

edges may appear within the pairs of classes of U yields at least

04 1
(1-— 25)p<§)mé . 55p<§>m£ > §p(§>m€
rainbow copies of K, in Go[U]. Hence, for the proof of Lemma 2.1 it only remains to verify
Claim 3.3. 0

Proof of Claim 3.3. We first bound k%(G[U], ¢). Note that if each colour occupies dpm?
edges of G[Uy, Us], then the claimed upper bound follows easily from Lemma 3.2 (a). We
shall reduce the problem to this case.

Fix a partition C; v ... w C,. = N of the set of colours such that

r < 5 and o™ (C,) N Ec(Uy, Uy)| < 26pm?® for every o € [r].
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Note that due to (3.5) and (3.6) such a partition of the colours can be found greedily, by
adding colours to a class C, as long as the bound on the number of edges in the preimage
holds.

For p € [r] let S, be the subgraph obtained from G[U] by restricting the edges
from G[Uy,Us] and G[Us,Uy] to o= 1(C,) n Eq(Uy,Us) and ¢ 1(C,) n Eq(Us,Uy), i.e.,
to those edges having a colour from C,. Note that every copy counted by «§(G[U], ¢) is
contained in some S,.

Applying Lemma 3.2 (a), we obtain
ke(S,) < 25pm? - |Es, (Us, Uy)| - p&)2m!~* 4 epe)n?,

and summing over all p € [r] and recalling (3.5) yields the desired bound
(3.3)
ky (G[U], p) < 45p<§)mé + 5p(§)ne < 55p(§)me.
For the bound on x}(G[U], »), we will again partition the colours, to reduce it to 2/
applications of Lemma 3.2 (b). However, every vertex in U; will define its own partition.
For every vertex u € U; we fix a partition C}' v ... w C = IN such that for every g € [r,]

we have

2 do(u, Uy) < 20pm?.

ceCy
Again it follows from (3.5) and (3.6) that such a partition exists for some r, < 2/J. For
simplicity we allow empty partition classes and, hence, we may assume that r, = r = |2/J|
for every vertex u € Uj.
For p € [r] this time we let S, be the subgraph obtained from G[U/] by restricting the
edges in G[Uy, Us] and G[Uy, Us] incident to a vertex u € Uy to those, which received a
colour from C, i.e.,

Es, (U1, U,) = U {uw € E(G): ve U, and p(uv) € Cy}

uely
and ESQ(Ul, Us) is defined in an analogous way. This definition guarantees that every K,
in G[U] containing a monochromatic K 5 with center in U; and leaves in Uy and Us is
contained in S, for some p € [r].
In view of Lemma 3.2 (b), we have

Re(Sp) < Y 20pm - Y dolu, Uy) - pl&)2m!=3 4 ep(e)nf

uel ceCy
= |Es, (Uy, Us)| - 25p(2) "1t 4 ep(a)pt

In view of (3.5), summing over all g € [r] yields the desired bound

3.3
k(G ) < 40pEmt + ep@nt ) 5apllimt
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which concludes the proof of Claim 3.3 and, hence, Lemma 2.1 is established. U

Remark 3.4. Theorem 3.1 from [5] is more general and applies not only to cliques Ky,
V(i) 2

but to all strictly balanced graphs H for p > Cn™ E@I-1 ie., for graphs H satisfying

[EU)| ~1 _ |E(H)| -1
V(H) =2 [V(H)] -2

for all proper subgraphs H' < H on at least three vertices. Starting with this general
version of Theorem 3.1, the arguments from this section can be carried out verbatim for
such graphs H. This yields a version of Lemma 2.1 guaranteeing rainbow copies of strictly
balanced graphs H for (4, p)-bounded edge colourings of G(n,p) for p > Cnf% as
long as ¢ is sufficiently small and C' is sufficiently large depending on H.

§4 CANONICAL CLIQUES IN UNBOUNDED COLOURINGS OF RANDOM GRAPHS

This section contains the proof of Lemma 2.2 along with the required prerequisites. We

begin with an overview of the proof.

4.1. Outline of the proof. Again, the main tool in the proof of Lemma 2.2 is the trans-
ference principle developed by Conlon and Gowers. This result asserts that asymptotically
almost surely every subgraph F' of G(n,p) has a dense model (see, e.g., Theorem 3.1 (7)).
Moreover, if p » n_é’%, then the dense model D and the subgraph F', have closely related
distributions of the copies of K, which is made precise in part (ii) of Theorem 3.1. Roughly
speaking, we may think of F' being close to a random subgraph of D whose edges are
sampled independently with probability p.

For mimicking the argument from Section 2 for colourings of K,,, the main obstacle is
that the neighbourhoods in G(n, p) are of order pn, not allowing the iteration rendered
in (2.3). We circumvent this by considering suitable subgraphs Fy, Fy, ..., Fy, of G(n,p)
for L = 2(¢—1)(¢—2)+2 and obtain their dense models Dy, ..., Dy, which yield linear-sized
sets as neighbourhoods in the dense models. Another challenge is that, for transference to
be useful, the dense model has to contain Q(n*) copies of K, so we also need a robust,
counting version of the argument for the case of unbounded colourings of K,.

In the proof of Lemma 2.2 the ordering of the underlying vertex set will be important.
For that, we refine the definition of d.(u, U) for a given edge colouring ¢ and for ¢ € {<, >}

we set
de(u,U) = [NS(u,U)| = [{w e U: p(uw) = c and uo w}|.

In Lemma 2.2 we assume that every sufficiently large set U of vertices of the random graph
has the property that half of its vertices u have a large monochromatic neighbourhood. For

simplicity, in the outline below we shall always assume that, in fact, these vertices u always
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lie before their monochromatic neighbourhood, i.e., d5(u,U) = 40p|U]| for at least |U|/4
vertices.

The subgraphs F; € G(n,p) for i € [L] will be selected in an iterative manner. For the
definition of F}, let V; be those n/4 vertices v such that deiw) (v) = 4dpn for some associated

colour ¢(v). The graph F} is then defined as the union of those edges, i.e.,
E(F)) ={vwe E(G(n,p)): veVi,v <w, and p(vw) = c¢(v)}.

In other words, the colour of each edge e € E(F}) is defined by its starting point min(e).
The transference principle yields a dense model D; of F, and by part (éii) of Theorem 3.1,
for most v € Vi, p - dp, (v) is well approximated by dz (v). Consequently, typically the
neighbourhood of v in D; defines a subset Si(v) of size at least 3dn.

We continue and define F» based on the sets S;(v;) for v; € V4. Again, appealing to the
assumption (2.4) of Lemma 2.2 as described above for U = S;(vy), we obtain |S;(vy)|/4
pairs (v, c) € S1(vy) x IN with

ds (vg, Sy (v1)) = 46p|Si(v1)] = Q(6%pn) . (4.1)

However, the colour ¢ depends on v; and, similarly, as in the definition of F} we shall find
a “large” monochromatic neighbourhood of v, for the definition of F;. On the other hand,
since the degree of v, is close to pn in G(n,p), at most 1/62 different colours might occur
for different choices of v;. We let ¢(vg) be the majority colour and restrict to it for the
definition of Fy. Moreover, for an appropriately chosen subset Vo < [ J{S1(v1): v1 € Vi},

we shall define F5 in such a way that
E(Fy) € {vyw: vy € Vo, vy < w, and p(vow) = c(ve)} .

In particular, the colours of the edges in F, are determined again by their starting point.
For some technical reasons the definition of Fj; is a bit more involved and, for example, we
will impose F» to be bipartite (see Claim 4.5 below for the formal statement). Similar as
before, we obtain a dense model Dy for Fy. Owing to (4.1), the vertices in V5 have Q(§%pn)
neighbours in Fy. Consequently, most vertices in V5 have ©(6%n) neighbours in D,. Those
neighbourhoods yield the linear sized sets Sa(vy), which allows us to iterate the argument
to obtain a subgraph F3 € G(n,p) with all edges colours determined by its starting vertex
and a dense model D3 of F3 with linear sized neighbourhoods.

This way we obtain graphs /' = Fy u--- U Fp, and D = D; u ---u Dy. We shall
show that the dense graph D contains Q(n’) copies of K, by its construction through
“nested neighbourhoods.” Consequently, the transference principle in the form of part (i)
of Theorem 3.1 tells us that the sparse subgraph F' < G(n,p) contains Q(p(g)ne) copies

of K, and by the choice of the F; these copies will be non-strictly min-coloured.
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It remains to analyse the induced vertex colourings of these non-strictly min-coloured
copies of K, in G(n,p). However, those induced vertex colours are not synchronised within
each of the sets Vi,...,Vy, i.e., the edges of F; are not monochromatic and may induce
different colours for the vertices in V;. We address this issue by a more careful selection
of the graphs Fy,..., Fy (see (b) of Claim 4.5 below). More specifically, we distinguish
between two cases. Firstly, if most of the sets V; have a ‘dominant vertex colour’ ¢;,
then one can find a monochromatic or a rainbow subset of the vertex colours ¢; of size
¢ — 1. Any clique in the corresponding ¢-partite subgraph of F' will be monochromatic or
min-coloured. Secondly, assume that there are vertex sets Vi, ..., V,_; (after re-indexing)
have no ‘dominant’ vertex colour. Then a counting argument will be applied to show that a
small proportion of Ky-copies in F}, ..., Fy_; contain distinct vertices u, v with ¢(u) = ¢(v),
and therefore most of the Ky-copies found above will be strictly min-coloured.

The proof of Lemma 2.2 is based on a more involved application of the transference
principle compared to the proof of Lemma 2.1 in Section 3. In Section 4.2 we review the
required results from [4] and some helpful consequences for the proof of Lemma 2.2 | which

is presented in Section 4.3.

4.2. The transference principle. In this section, we present the prerequisites for the
proof of Lemma 2.2. The statements are written for arbitrary strictly balanced graphs H,
although we shall only employ them for H = K,. For a strictly balanced graph H on at
least three vertices, we can define its 2-density by

[E(H)| -1

V(H)[ -2’

and we note that mqo(K,) = (¢ + 1)/2 appears in the exponents of p = p(n) in the

me(H) =

assumptions of the earlier statements in Sections 1-3. Similarly, below we shall impose that,
for a given strictly balanced graph H on the vertex set [¢] (with ¢ > 3) and a sufficiently
large constant C, p = p(n) = Cn~Y/m2U),

For some (large) integer n, we shall work within the set of functions from [n]® to R,
which naturally corresponds to the set of weighted graphs on the vertex set [n]. Therefore,
we often identify a graph F' on [n] with the indicator function 1z of its edge set and a
dense model d for F is a function 0: [n]® — [0, 1], which is “close” to p~'1; in terms
of its distribution of weighted edges and copies of H. The definitions of edge counts and
vertex degrees extend straightforwardly to functions f: [n]®® — R and for that we set

ef)zz:f(uw), es(U,W) = Z fluw), and dj(v,U) = Z f(uv).

u<w ueU,weW ueU~{v}

With this notation at hand we can define the cut-norm by

Il = = max (o0, 0|
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This norm allows us to compare the edge distributions of two weighted graphs on [n]. In
fact, we will consider weighted graphs f and 9 to be “close,” if ||f — 0|, is “small” (see, e.g.,
Theorem 3.1 (7) and Theorem 4.1 (7) below). Similarly, for a graph H with vertex set [/]

we define its homomorphism density in | by

Au(f) an@ T ),

V1,...,0¢€[n] ijee(H)

where we use the convention f(v;v;) = 0 in case v; = v;. Consequently, for cliques the
quantity Ak, (f) corresponds to the weighted K,-density in § and for f being an unweighted
graph we can recover the notation ky(f) = n* - Ag,(f) from Section 3.

As discussed in the outline for the proof of Lemma 2.2, Theorem 3.1 will be applied in
stages to the subgraphs Fi, ..., F, < G(n,p) to obtain dense models Dy, ..., Dy. In order
to ensure that D = Dy u --- u Dy, is still a useful approximation of F' = Fy u --- U I},
we need a bit more insight into how these dense models are obtained. Informally, Conlon
and Gowers [4] construct a norm || - | on the set of weighted graphs R[M® so that the
following holds: If 1z is the characteristic function of the edges of some F' < G(n,p)
and [p~'1x — 0| is sufficiently small for some dense model d with [0, < 1, then p~1p
and 0 have a “similar” distribution of edges and copies of H. A major contribution of [4]
is precisely finding a norm which is sufficiently weak to allow a dense model which is
arbitrarily close to p~ 1, and sufficiently strong to preserve the relevant properties of F.
However, the norm | - || actually depends on the random graph G(n,p) in the sense that
asymptotically almost surely G' € G(n,p) has the property that there is a norm | - || with
the aforementioned properties for every subgraph F' < G. Theorem 4.1 below is a version
of the transference principle of Conlon and Gowers, which is tailored for our proof of
Lemma 2.2. It is implicit in the work in [4] and in the Appendix we discuss in more detail

how it can be extracted.

Theorem 4.1. For every strictly balanced graph H with V(H) = [{] and every e > 0 there
is some constant C' > 0 such that for p = p(n) with Cn="m2U) < p < 1/C asymptotically
almost surely the following holds for G € G(n,p).

There exists a norm || - | on the set of weighted graphs RM® such that for every F < G,
there is a dense model 5 : [n]® — [0,1] with ||p~' 1p — (1 + )0p|| < € and

(i) for all functions §, 0: [n]® — R with |f — (1 + €)d| < ¢ we have
IF =0, < 2.
(ii) for every function d: [n]® — [0,2(] with [p~*1r — (1 + )0|| < £ we have

Ap(0) < p PEIA L (F) + (40)F - &



CANONICAL COLOURINGS IN RANDOM GRAPHS 17

We emphasise that, while (7) applies to any weighted graph f, part (i) only applies to the
subgraphs F of the random graph. Anyhow, in our intended application we have f = p~'1 .
Theorem 4.1 is closely related to Theorem 3.1 where S and D in Theorem 3.1 take the role
of F and 0 in Theorem 4.1. In fact, applying (i) and (ii) with @ = 0 and f = p~'1p in
Theorem 4.1 implies statements () and (4 ) of Theorem 3.1.

It will be convenient to move from the dense weighted graphs 0 back to unweighted
graphs D sampled by the edge weights of 0. The following lemma follows directly from

Chernoft’s inequality and a union bound.

Lemma 4.2. For every ¢ > 0 and any sequence of functions 0: [n]® — [0,1] asymptoti-
cally almost surely we have |1p — |, < e for the random graph D on [n] with every edge

e appearing independently with probability d(e). d

We will also use the following counting lemma comparing the number of subgraphs of two
graphs in terms of the cut-norm. This can be viewed as the global counting lemma for the

weak regularity lemma of Frieze and Kannan [9] and it can be found in [15, Lemma 4.1].
Lemma 4.3. For every graph H and all functions f, 9: [n]® — [0, 1] we have
[Au(f) — Au(d)| < 2¢(H) - [§ — 2], 0

We conclude this section with the following fact that the cut-norm controls most vertex

degrees into given subsets (see, e.g., the deduction of (iii) of Theorem 3.1 from (7)).

Lemma 4.4. For every ¢ > 0 and all functions §, 9: [n]® — [0, 1] with |f — 0|, <  the
following holds. For all U < [n] with |U| > 2¢'/3n, all but at most €'/*n vertices v € [n]

satisfy
dj(v, U) = do(0,U)| < P[]

Proof of Lemma 4.4. Let S be the set of vertices v with d;(v, U) — dy(v,U) = e¥/3|U|. We
have
n?|f -0, > 2 di(v,U) — dy(v,U) = B |U||S| = 26%3n|S]|
vesS
and | S| < e¥3n/2 folllows. Similarly, one can show that there are at most '/3n/2 vertices v
such that dy(v,U) — d;(v,U) = €/3|U] and the claimed bound follows. O

4.3. Proof of Lemma 2.2. Given ¢ > 3 and ¢ > 0, we fix auxiliary constants
S+ v
10 T e

Moreover we fix auxiliary constants ; and e, and the desired C' to satisfy the hierarchy*

L=200-1)(—-2)+2, v= and ¢ = §'00+2,

S U '>vi»>a»e»e » Ot

iHere, x » y means that for a given x, y is taken sufficiently small so that all the following claims hold.
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Assume that G € G(n, p) satisfies the conclusion of Theorem 4.1 and Theorem 3.1 (iv) for
e =¢;. Let || - | denote the norm given by Theorem 4.1. Moreover, we may assume that all
vertices in G have degree (1 + e1)pn, since all these properties hold asymptotically almost
surely.

For the moreover-part of the lemma, we have in addition p = p(n) < n Eoi Jw(n) for
some function w tending to infinity. Similarly as in the proof of Lemma 2.1 this allows us

to assume
|E(G) \ E(Gy)| < ¢pn®. (4.2)

By our choice of ¢, this implies that the crucial assumption (2.4) for G in Lemma 2.2
extends to G at the price of a small change of the constants. Namely, every U < V(GY)

with size |U| = 6°©n satisfies
{ueU: dg,(u,U) = 7.95p|U| for some colour c}| = 0.49|U],

and the proof given below can be carried out in G, as well.
Hence, let us return to the proof in the original graph G. For a comparability sign
o€ {<, >} set

B°(U) ={veU: d.(v,U) = 46p|U| for some colour c} .

The assumption (2.4) implies that for every set U with |U| = §°°n, we have
U U

|B=(U)| = |4 or |B7(U)| = u (4.3)
The condition (4.3) will be iterated to inductively build some structures in G, as detailed
in the following claim. We will build subgraphs F; of G for t € [L], which are non-strictly
min-coloured or max-coloured and relatively dense to G. Moreover, we consider the dense
models D, of those F; given by Theorem 4.1. The hypergraph H is used to keep track of
cliques in [ J, D;. In the statement and proof, we usually identify a hypergraph H with its

set of edges. In particular, |H| is the number of edges in H.

Claim 4.5. For every t € [L] there is a set of vertices V; disjoint from Vi U - U V1 with
Vi| = sab®n, a comparability sign o, € {<, >}, and a colour index 1, € N w {x} such that
the following holds:
(a) Each v e V; is assigned a colour c(v) and there is a graph Fy < G whose edges vu
satisfy ve Vi and ue NJ,(v) ~ (Viu - U V).
(b) If vy € N, then c(v) = ¢, for all v € V,. Otherwise, if 1, = %, then we have
H{ve Vit c(v) = j}| < a|Vi| for every colour j € IN.
(¢) There is a function d;: [n]® — [0, 1] with

lp™ g — (14 21)0] < ey,
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and a graph D; with
|Dy — 0, <7ey and ”Dt — p_l]lFtHD < 9e;.
(d) There is a t-partite t-uniform hypergraph Hy on Vi v - 0V, with
[He| = 10726 V|- V]

and for any (vy,...,v;) € Hy, there is a set S(vy,...,v) disjoint from Vi,...,V,

of size at least 8'n such that for i < t,
NDi(vi) =2 {UZ'+1, . ,Ut} U S(Ul, e ,Ut) .

Proof of Claim 4.5. We start the induction with t = 1. Let B = B°'(V(G)) be the set
of n/4 vertices given by (4.3). For v € B, let ¢(v) be a colour in which

defyy (V) = 4dpn.

Moreover, we wish to transfer a bipartite graph Fi. To this end, let each vertex of B be
placed into a set Z; independently at random with probability 1/2, and let V) = V(G) \ Z;.
We may assume that |Z;| = n/10, and each v € Z; satisfies

ety (v, Y1) = 1.50pn (4.4)

as this happens asymptotically almost surely.
If there is a colour j such that |c™*(j) n Z1| = a|Z;], then we set V; = ¢71(j) and ¢, = j.
Otherwise take V; = Z; and set 1); = . Note that in either case,

an
Vil = —.
Vil =5

Let F; be the subgraph of G with
E(F) ={vu:veVi, ueY,, voju, and p(vu) = c(v)}.

Let 15, be the characteristic function of Fj. By Theorem 4.1, there is a weighted graph
0: [n]® — [0,1] with [[p~' 15 — (1 4+ £1)01]| < &1. In particular, [p~ 1z — 0], < 2e;
by Theorem 4.1 (7).

Let 9] = 01]v; x([n]11)- Passing to a restriction of 9, is just a technicality to circumvent
small overlaps between ?q,...,0;, and we will now show that [0; — 9}, < 6¢;. Denote
fi = p~'15,. To bound d; — 0/, notice that, by definition of 9} and since all edges of F} lie
in V1 x ([n] ~ W),

1 2
— leay ([n]) = e (InD)] = — leoy (Vi [n] \ V) = €5, (Va, [ N Vi) < 2[00 = full, < den
Hence e,, ([n]) — ey ([1]) = eo, ([12]) — €5, ([n]) +e5, ([12]) —€a, ([n]) < 6e1n?. Since 0, -0, =0

(pointwise), we have

o1 =341, = 5 (ea, (In]) e ([n) < 1.
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Moreover,
[01 = p7 ], < 8
using the triangle inequality.
Let Dy be a graph sampled from 9}. Asymptotically almost surely, |[1p, — 0}|, < &1 by

Lemma 4.2. Therefore, using the triangle inequality, we may assume that
[p, =01, <71 and  |Ip, —p 'lp| < 9.
Let H; be the set of vertices v € V; with
dp,(v,Y1) = on.

By Lemma 4.4, using (4.4), |[1p, — p '1g|, < 91, and taking &; < &3, we have that
[Hi| = |Vi] —ean = % This completes the case t = 1.

Suppose the Claim holds for 1,2,....,t —1. Let X = [n]~ (V4 u--- U V,_y). For
(v1,...,v4_1) € Hs_1, consider the set S(vy,...,v—1) € X as stated in (d). Specifically,
1S(vy,...,v:1)] = 6 In. Denote & = £(t) := 6. Applying the assumption (4.3), we

obtain a set B°(S(vy,...,v_1)) of order at least %‘ for some ¢ = o(vy,...v;_1) such that
for every v € B°(S(vy,...,v,_1)) and some colour ¢ = ¢(vy,...,v_1,v),

do(v, S(v1, ... 0-1)) = 4dEpn.. (4.5)

The next step is to remove the dependency of ¢ and ¢ on (vq,...,v,—1). Firstly, let H}_,

be a subhypergraph of H;_; of order at least 1|#,_;| such that o(vy,...v,_1) = o for all
(1)1, R ,'Utfl) € Héil.
Now form an auxiliary bipartite graph J with parts H;_, and X x IN as follows: an edge

((v1,v2,...v:-1), (v,c)) in J means that v e S(vy,...,v,—1) and
dot(v,S(v1, ..., v1)) = 46Epn . (4.6)

Since every (vy,...v;_1) € H}_, is contained in at least &n/10 edges in J (one for each
t—1

element of B (vy,...,v,_1)), we have
1 én
> M| >
]2 4 Hea| -

Let X’ < X be the set of vertices v such that some (v, ¢) is incident to an edge of J,
and note that for each v, there are at most (36¢)~! such colours ¢ — this follows from
de(v) = 40&pn and dg(v) < (1 + &1)pn. For each v € X', let ¢(v) be the colour which
maximises the degree of (v,c) in J. Form J' from J by deleting all the vertices (v, ') with
cl # c(v); we have

, 3
|| = [J]- 306 = ;O\Ht_1|5€2n-

Since now each vertex v € X’ is associated with a unique colour ¢(v), we may assume that

one vertex part of J' is just X'.
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We wish the graph F}; to be bipartite, so let us split the set X’ as follows. Let W, < X’
consist of vertices sampled from X’ independently at random with probability 1/2. Let
Y, = X ~ W,. With positive probability,

/ / 3
|JE(H_y), Wi]| = %|/Ht—1|6§2n,
and for each ((vy,...,v1),v) € J' (recalling (4.6)),
d?(sv)(v’}/;f M S(Ulw"vvt—l)) = 1556]777,, (47)

where we used Chernoff bounds and the union bound. Thus we may assume that these
two inequalities are satisfied.

Now, let Z; < W, be the set of vertices of degree at least %|”Ht,1|6§2 in J', and let J* be
the induced subgraph of J" on (E(H;_,), Z;). Since the vertices in W, \ Z; were incident

to at most %]Ht_1|552n edges in total, we have
1
T = —|Hia]66%n.
] > o Hea o€

Recalling that J* is a bipartite graph on the vertex sets (E(H;}_,), Z;), we have the lower

bound
1

25

J* 1 1 -
Z,| = ‘7’{ ’1’ > %55% = %5“2“ Up >
tf

Now, to ensure (b), if there is a colour j such that

§*n. (4.8)

Zy; ={ve Z:clv) =7}

contains at least «|Z;| vertices, let V; = Z, ; and set ¢, = j (recalling that o « 6,£7 ' is a
constant). Otherwise, set V; = Z; and ¢y = *. Using the minimum degree of the vertices

from V;, we have

* ! 1
JE(H,_y), V]| = %|Ht—1|5§2|‘/¥|‘

Moreover, |V;| > a|Z;| = 5-aé%n, as required by the claim.
Let F}; be the subgraph of G with

E(F) ={vy:ve Vi,ye Y, vory, and p(vy) = c(v)}.
Recall that if ((v1,...,v1),v;) € J*, then by (4.7),
dr, (v, S(v1, ..., v-1) N Y;) = 1.56Epn = 1.56"pn . (4.9)
Let f; = p~'1p,. By Theorem 4.1, there is a function 9, : [n]® — [0, 1] such that
[fe = (L4 e1)oe] < e

Let 0} = 041V x([n]~(Viu...1)), and let D; be a graph sampled from 0;. By the same argument

as in the induction basis, we may assume that

|Dy — o), <7e; and  |Dy—p Mg, < 9y,
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where D, stands for the indicator function 1p,.

Let H; consist of t-tuples (vy,...,v;) such that v, € Ny« (vq,...,v1) and

dp,(ve, S(vy, ..., v 1) N YY) = 6'n. (4.10)
Using Lemma 4.4 and (4.9), for each (vy,...,v,_1) € H,_;, there are at most eon vertices
vy € Ny<(vy,...,v,_1) violating (4.10) (recalling that 5 > £7), so indeed

[Hel = [T [E(H; ), Vil| = e2n’
1

> -

100

> 10—2t5(t—1)2+2t—1|‘/1| o |‘/t’

= 1076 |Vy|. .. |V4],

[He1|067|Vi|

where we used the inductive hypothesis in the second line.
Finally, we set S(vq,...v;) = Np,(v;) nS(v1,...,v-1)NY; to obtain a set which satisfies
asserting (d) of Claim 4.5. O

For the remainder of the proof, we do not need properties (¢) and (d), but only the
following consequences. We remark that it is crucial that the relative density of K|y -copies
mentioned in (A ) (denoted v) does not depend on «, but only on § and ¢. On the other
hand |V;|/n may depend on a.

For every subset M < [L] below we show

(A) The graph |J,.,, D;i contains at least vn [ [..,, |Vi| copies of K1
(B) If [M| < ¢, then

p () ’AKL;(U F) > AKZ(U Di) ey,

€M €M
We first show that part (d) of Claim 4.5 implies (A ). Fix any (vy,...,v;) € Hy, and
let V74| = S(v1,...,v1), so |Vi,| = d'n. Now, for each vp41 € Vj,,, the vertices
{vitie M} u{vps} form a clique in | J,.,, D;, since Np,(v;) contains v; for j > i by (d).

The number of choices for (v;: i € M) contained in some edge (vy,...,vr) € Hy is at least

-1
il ( [ |%|) > 10724 [T |vil
ie[L]~M ieM
Putting these two bounds together, we obtain at least nd” - 10726 [],_,, |Vi| copies
of K|pr+1, which implies (A4) since L < 2%,
Secondly, we claim that the D; satisfy (B). Let D = ;e Dis 0 = Xcp 03y and
F = ;e Fiy so that 1 = > ., 15, By the triangle inequality and part (¢) of Claim 4.5,
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we have

Hp_l]lp — (1 + 61) 2 0, < el

€M

Hence, by Theorem 4.1 (applied with ¢ = £,¢), and taking e, sufficiently small depending
on €, we have
€2

Aw,(p7'1r) = Ag, () — e > Ak, (0) — 9

Moreover, [0, — Dy, < 7ey for t € [L], so using Lemma 4.3, we have Ak, (0) = Ak, (D) —%.
It follows that

AKZ(p_l]]-F) = AK[(D> — &2,

as required for the proof of (B).
We now complete the proof of Lemma 2.2. Let I’ = [L] be a set of order L/2 such that
is constant on I’ and, without loss of generality, we may assume that ¢; =< for i € I'.

Moreover, let I < I’ be a set of order ¢ — 1 such that

(7) either ¢); # x for ¢ € I and 1 is constant or injective on I,
(i) or ip; = = for i e I.
Let v
ﬁ—g —, F—LJF and D_QDZ,
and note that ¢ is bounded from below by a constant depending on «,d, ¢, due to the
lower bound on |V;| in Claim 4.5. By assertion (A ), D contains at least vn® copies of K.
Hence, owing to (B) and &5 < %01/19, the graph F' contains at least %Vﬁnep(g) copies of K.

All these copies are non-strictly min-coloured by construction of F' (i.e., p(uv) = ¢(u) for
u < v, uv € F), and now we will use (b) and the choice of I to show that there is actually
a strictly min-coloured or a monochromatic copy. We first show that each copy of K, in F
has exactly one vertex in V; for i € I. Let v; < vy < --- < vy be the vertex set of a K, in F,
and recall the property (a) of Claim 4.5 for F'. Since all the edges in F' have the starting
point in | J,.; Vi, we have that {v1,...,v-1} S ,.; Vi- But each V; is an independent set
in F, so it contains at most one (and hence exactly one) vertex from {vy,...,v,_1}.

If ¢; # = for i € I, any copy of K, in F' is min-coloured (in case v is injective on I) or
monochromatic (in case 1 is constant on I); to see this, recall that by () of Claim 4.5, if
wv € E(F;), o(uv) = ;.

Suppose that 1, = xfori € I. For i, j € I, let K;; be the collection of K-copies containing
vertices v; € V; and v; € V; with ¢(v;) = ¢(v;). We will show that for all i # j € [

1Cij| < 3a9p(2)nt. (4.11)

(This follows easily from Theorem 3.1 (i) when each colour class in V; is of size a|V}|, but

we need to be slightly more careful about smaller vertex classes.)
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Partition the colours in ¢[V;] into clusters 1,...,m with m < 2a~! such that for each
k € |[m], the proportion of vertices in cluster &k in V; lies in [«,2«a]. Note that such a
partition exists since |c[V;]| < a|V;i| by (b) of Claim 4.5. For each cluster k € [m], let (k)
(resp. v(k)) be the proportion of vertices v in V; (resp. V;) such that ¢(v) is in cluster k, so
a < (k) < 2a. By Theorem 3.1 (ii), the number of K,-copies with vertices in cluster k in
both V; and Vj is at most

(B(k)y(k)J + 61)17(2)7% < (2ay(k)Y + el)p(g)né.

Summing over k € [m], corresponding to clusters 1,...,m, and using >, .1 7(k) < 1, we
obtain
1ICij| < Z (2ay(k)9 + sl)p(é)nZ < (200 + 2a_161)p(§>ng.
ke[m]
Taking €1 < a9 implies (4.11).
The bound (4.11) holds for any 4, j, so taking a < v/(8¢(?), we obtain

U &y

i<jel

< 3£2ozi9p(§)ne < :Vﬂp(é)ne.

Recalling that F' contains at least %Vﬁp@ne copies of Ky, it follows that there is a copy
outside J;_je;

This completes the proof of Lemma 2.2. [l

KCij, which is then strictly min-coloured.

Remark 4.6. The fact that K, is a clique was only used to show that each copy of K,
in F' has at most one vertex in each V; for 7 € I. In the concluding remarks, we will discuss

to what extent our proof extends to general graphs H.

§5 CONCLUDING REMARKS

5.1. Thresholds for canonical Ramsey properties for general graphs. Recall that
for an ordered graph H, we defined py as the threshold for the property G(n,p) = (H)
and Theorem 1.3 establishes pg, = n~ 1. The problem of determining the threshold py
for ordered graphs H which are not complete is still open, but there are some partial
results.

Firstly, Alvarado, Kohayakawa, Morris, and Mota [18] studied a closely related problem

~1/m2(C2) Jog n, any colouring

for even cycles Cy,. Their result implies that for p = Cn
of G(n,p) contains a canonical copy of the cycle Cy. However, in their work the ordering
of the random graph G(n,p) is determined after the colouring.

Secondly, for a strictly balanced graph H, our proof guarantees for p » n~1/m2(H) 4
canonical copy of H, but one cannot require a specific vertex ordering of H. This statement

is shown using the following modification of Theorem 4.1, which actually slightly simplifies
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the present proof of Lemma 2.2 for K, as well, but at the expense of introducing some
additional formalism. For a collection of functions f = (fe)ecn, define
fe eeH Z 1_[ fzg Uwuj
Ul,...,Up sjeH
that is, the density of H-copies in which the image of each edge e € H is weighted by f..

A small modification of Corollary 3.7 in [4] (which appears in [5, page 17] in order to prove
Theorem 3.1) implies that if ||fo — ?.|| = o(1) for e € E(H), then

‘AT((fe)eeH) - AT((ae)eeH” = 0(1) :

Hence, our proof can be carried out with the following modification. Assume that we
have found our desired set of ¢ — 1 indices I, and that ¢; =< for i € I; we may relabel
so that I = [¢ — 1]. Then we can define f;; = F; for ij € E(H) with ¢ < j. Now, any
embedding f: H — G generated by the proof has the property that for ij € E(H) with
i <7, C(i)¢(j) lies in Fj;, so its colour is determined by min(¢(4), (7))

Returning to the issue of vertex ordering, when a pair ij is not an edge of H, the proof
does not guarantee that (i) < ((j).

5.2. Canonical colourings in random hypergraphs. Furthermore, it would be in-
teresting to investigate extensions of Theorem 1.3 to k-uniform hypergraphs for & > 3.
Namely, in their original work Erdés and Rado [7] established a canonical Ramsey theorem
for k-uniform hypergraphs. However, their proof for k-uniform hypergraphs used Ramsey’s
theorem for 2k-uniform hypergraphs and this seems to be an obstacle for transferring it
to random hypergraphs at the right threshold. Hence, for transferring their result to the
random setting, it seems necessary to start with a proof which avoids the use of hypergraphs

with larger uniformity. Such proofs can be found in [23,28].

APPENDIX A. TRANSFERENCE

The purpose of this Appendix is to help the reader verify how Theorem 4.1 follow from
the proof of Conlon and Gowers [4]. For an informal discussion of the Conlon-Gowers
approach, we also refer the interested reader to [5, Section 3].

First we informally outline the proof of Theorem 9.3 from [4], which corresponds to our
Theorem 3.1. Then we state the formal claims that we need from [4], and show how they
are applied to deduce Theorem 4.1. The proof of this theorem is entirely contained in [4],
but some elements which we use (the norm ||-|| and the dense model ?) are only defined
within Theorem 4.5 in [4].

The statements whose proofs we would like to expound are Theorem 9.3, and its
corresponding deterministic result, Theorem 4.10. Unfortunately, these two proofs are not

actually spelled out in [4]. Instead, the authors prove Theorem 9.1 and Theorem 4.5, which
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are Szemerédi-type results for random sets, and say that the proofs of Theorem 9.3 and
Theorem 4.10 are ‘much the same’. Moreover, their setting is much more general — they
work with random subsets of a set X, which for us is just the set of edges of a complete
graph K. In particular, for us, | X| = (g)

Theorem 9.3 from [4] states that asymptotically almost surely, any subgraph F' of G(n, p)
with p = Cn~Y™2() can be approximated by a dense model D which asymptotically
matches the edge distribution and the number of H-copies in F.

As mentioned, instead of graphs, we work with functions from [n]® to R, or weighted
graphs. For a random graph G € G(n,p), the associated measure of G is defined as
= g = p'1g. Given an m-tuple of functions p = (p1,.. ., fim) € RM® (which will
later be taken as the associated measures of m independent copies of G(n,p.)), Conlon
and Gowers introduce the set of (u, 1)-basic anti-uniform functions ®,,,, which have the
key property that the number of H-copies in a weighted graph f < m™(u1 + -+ + fi,) can

be bounded in terms of the inner products

max {|(f, )| p € Dy} -

The norm || is defined as

[§] = max {|<f, @)]: p € @uat v {lIfll-},

where the term |f||, is just appended to ensure that ||-|| also controls the edge distribution
of a weighted graph. This corresponds to Definitions 3.6 and 4.9 from [4].

One caveat in this description is that |-| only controls the number of H-copies under
certain deterministic conditions on i, ..., i,. In the context of graphs, these condi-
tions, denoted (P0)—(P3’) in [4, Section 4], imply the property that the corresponding
random graphs have a sufficiently homogeneous edges distribution, which is a well-known
necessary condition for all similar counting results in sparse random graphs. To prove The-
orem 3.1, Conlon and Gowers show three statements. Firstly, asymptotically almost surely,
the associated measures jiy, ..., fi,, of G(n,p,) with p, = Cn=Ym2(H) satisfy (P0O)—(P3').
Secondly, assuming (P0)—(P3'), for any f < m™'(u1 + -+ + ) there is a dense model
2: [n]® — [0, 1] with

[F—(+e)p)<e.
Thirdly, again assuming (P0)—(P3'), 9 is a useful approximation for § in our context, since ||-||
controls the edge distribution and the number of H-copies in f and 0. We have decided not
to state properties (P0)—(P3') since this would require reproducing large sections of [4] and
introducing additional concepts.

These three statements imply that asymptotically almost surely, any such function
f < m t(uy + -+ + pn) has a suitable dense model. To reach the same conclusion for

subgraphs of G(n,p), a small additional step is needed (cf. Proof of Theorem 9.1 in [4]).
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Given m independent samples of G(n,p,) with p, = Cn=/"2U) let G be the union
of Uy, Us,...,U,. Then G is distributed as G(n,p) with p = 1 — (1 — p,)™, which is
slightly smaller than p,m. Thus the hypothesis f < p~!'1¢ does not quite imply that
f<m™p g, + -+ 1y,) =m (- + .. ). Still, since p = p,m(1 + o(1)), this
caveat can be resolved by slightly rescaling f, which we do at the start of the proof. We
remark that this strategy of exposing G(n,p) in m copies (for a large constant m) is used
in [4] in order to be able to (define and) verify properties (P0)—(P3').

Now we formally state the claims which are used for deducing Theorem 4.1, and where
they can be found in [4]. Say that i, ..., u, satisfy the property P(n, A,d, m) if they
satisfy properties (P0)—(P3') stated in [4, Section 4]. The following statement® can be
found in the proof of Theorem 9.1 in [4].

Lemma A.1l. Given n, A\, d, m, there is C such that for p, = Cn~Y™2H) the following
holds. If Uy, ..., Uy € G(n,p.) are mutually independent and p; = p; 1y, is the associated
measure of U; fori € [m], then pq, ..., iy satisfy P(n, \,d, m) asymptotically almost surely.

The following lemma can be deduced from the proof of Theorem 4.5 in [4]. (In their
proof, the dense model 0’ is denoted by ¢g. The existence of ¢ is in the fourth sentence of

the proof, and the final display on page 391 corresponds to (ii).)

Lemma A.2. Given ¢ > 0, there are sufficiently small constants n,A\ > 0 and large
integers d, m such that if pi1, ..., pm satisfy P(n,\,d,m) and f <m™ (g + ... ), then
the following holds.

(i) There is': [n]® — R with0 <0’ < 1 and | f — (1 +/4)0| < &.

(1) If 0: [n]® — R is a function with 0 <0 < 1 and |f — (1 + &)d| < &, then

Au(f) > Au(d) — 4| E(H)| - <.
Now we can deduce our desired result.

Proof outline for Theorem 4.1. Given € > 0, let n,\,d and m be as required for the
conclusion of Lemma A.2 to hold. The random graph G will be sampled in m rounds — that
is, we set p, = Cn~Y™2H) and p =1 — (1 — p,)™ = (1 — £/4) p,m for sufficiently large n.
Following the notation of Conlon and Gowers, let Uy, ..., U,, be m mutually independent
random graphs sampled independently with edge probability p,, where C' is a sufficiently
large constant. Our random graph G with edge probability p will then be sampled by
taking the union of Uy, ..., U, which indeed has the claimed distribution. For i € [m],
let u; = p;'1y, be the associated measure of U;, and define p = m™ (uy + -+ + fim)-
Assume that (1;)ie[n satisfy the property P = P(n, A, d, m). By Lemma A.1, this occurs

asymptotically almost surely.

§Speciﬁcally7 this claim is the first sentence of their proof of 9.1.
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We will apply Lemma A.2 to deduce the existence of 9 and part (7). Let F' be a
subgraph of G, s0 0 < 1r < 1 < Xc(,, Lu;- Define
C14e/d

f=p'lp and f= e ? 1p. (A.1)

We claim that f < u. Indeed, recalling that p = (1 — £/4) p,m, and hence

_1'1+5/4
1+¢

< (mp,)7,

for large n, we have

14+¢e/4 _ 14+¢e/4 _ _ _
f= 1+/p111F< 1+/p1211m<(mp*)121Ui=m12ui=u
€ € ic[m] ic[m] ic[m]

Thus we can apply the above-mentioned claims.
Lemma A.2 (i) applied to f = f gives a function 0 = 0" such that |f— (14 &/4)0x| <

Multiplying by 1}:; 1

£
5

and recalling (A.1), we obtain
If = (1 +e)r] <,

as required.
To see (i), take ® with |[p™'1r — (1 + £)9]| < & and 0 < 0 < 2¢. We have

1r  (1+¢) <& ocp
20p 20 20

We may apply Lemma A.2 (i7) with f = ;LTZ < 1 and 9 replaced by 3; <1 to obtain

1p 0
Ag|l— | =2Ag| = | —4|EH)|  ¢.
n (5) =t () - ) <

Using the fact that Ay (af') = alPEIA () for any constant o = 0 and any §': [n]® — R,
it follows that

p AL (F) = Ap(0) — 4¢|H|(20) P > Ay (0) — 42(20),

as required.
Statement (7) follows from d < 1, the definition of | - |, and the triangle inequality. That
is,

IF =0l < [f = (T + )l + Jedl, < [f = (1 +€)of, +& < 2¢. u
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