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In this article we present several open problems posed (or co-posed) by Jarik
Nesetfil. The choice was guided by two criteria. First, we restricted ourselves
to problems that are simple to state and (therefore) possible to explain to
a non-specialist in the given field. Second, we selected problems that, while
being still open, did stimulate research by other people and have an interesting
development behind them.

Most of the problems seem to be of fundamental nature and central. For all
of them a simple argument might possibly solve them, yet this argument has
eluded many researchers for many years. The inspiration from Jarik Negettil
over the years is much appreciated!
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1 Minimally Asymmetric Oriented Graphs

Let G be an oriented graph. Suppose G is asymmetric, but every vertex-
deleted subgraph G — v fails to be asymmetric. Is it true that G must be K;?

Jaroslav Nesetril, Oberwolfach seminar, 1988

A (di)graph is asymmetric if its automorphism group is trivial, that is,
contains only the identity element. A (di)graph is symmetric if it has at least
one non-trivial automorphism. An asymmetric (di)graph G is minimally asym-
metric if G is asymmetric, but G — v is symmetric for every vertex v of G.

The problem was posed by Nesetfil at several conferences and according
to Wéjcik [W6j96] at least as early as during the Oberwolfach seminar in
1988. It is probably even older than that. At the Oberwolfach seminar in
1988 Nesetiil also conjectured that there are only finitely many minimally
asymmetric undirected graphs.

In [NS92] and [Sab91] undirected minimally asymmetric graphs are stud-
ied. It turns out [Sab91] that a useful property to use in this context is the
length A of a longest induced path. It is shown in that paper that there are no
minimally asymmetric graphs with A > 6 and precisely two minimally asym-
metric graphs with A = 5. In [NS92] it is shown that there are exactly seven
finite minimal asymmetric graphs with A = 4.

Clearly, for every minimally asymmetric graph G one obtains a minimally
asymmetric digraph D by replacing each edge of G by a directed 2-cycle. An
oriented graph is a digraph obtained from a graph by orienting each of its
edges. In particular an oriented cycle is obtained form an undirected cycle in
this way. In [W4j96] Wéjcik proved the following result. Recall that a cycle is
symmetric if it has a non-trivial automorphism.

Theorem 1.1. Every minimally asymmetric digraph contains a symmetric
cycle.

This implies in particular that there are no minimally asymmetric trees
(a fact also proved earlier by Nesetfil) and that the conjecture holds for
many classes of asymmetric acyclic digraphs. One example is a transitive
tournament. Note that acyclic digraphs may contain symmetric cycles (e.g.
1 - 2+ 3 = 4 + 1 which has a non-trivial automorphism without fix-
points) so Theorem 1.1 does not immediately seem to imply that there are no
minimally asymmetric acyclic digraphs.
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2 Partition into Induced Matchings alias The Strong
Chromatic Index

The edges of a graph G of maximum degree A can be partitioned into at most
%AQ colour classes, each of which induces a matching.

Paul Erdés and Jaroslav NeSetril, a combinatorial
seminar at Charles University, Prague, 1985

This conjecture was made by Erdés and Neset#il at a combinatorial semi-
nar at Charles University in Prague in 1985. One year later it was presented
at Colloquium on Irregularities of Partitions in Fertdd, Hungary (see [EN89]).
For every graph H, the chromatic number of H is at most A(H) + 1 and the
chromatic number of its square is at most A(H)? + 1. Vizing’s theorem tells
us that for line graphs, we can improve the first result, essentially by a factor
of 2. The conjecture above suggests that a similar improvement is possible for
the second result.

Erdds and Nesetiil had noticed that if we take a cycle of length five and
replace each vertex by a stable set of size k, joining two new vertices precisely
if the corresponding two vertices of the five cycle are adjacent, then the square
of the line graph of the resultant graph is a clique. This shows that the above
conjecture is tight when A is even. For odd A, Erdés and Nesetfil actually
made the stronger conjecture that the chromatic number of the square of a
line graph of maximum degree A is at most %AQ — % + %, which again is tight
because of a similar example.

The conjecture was proven for A = 3 by Andersen [And92] and indepen-
dently Horak et al [HQT93]. Cranston [Cra06*] proved that the chromatic
number of the square of a line graph of a graph of maximum degree A =4 is
at most 22, improving on the bound of 23, obtained by Horak [Hor90]. Note
that this does not quite match the conjectured bound of 20. For larger A, Mol-
loy and Reed [MR97] showed that there is an £ > 0 such that the chromatic
number of the square of the line graph of G is at most (2 — )A(G)?2.

It is not even known if the clique number of the square of the line graph
of G is at most 2A(G)?, although Chung et al. [CGTT90] did prove that a
graph G whose line graph is a clique has at most 2A(G)? edges.
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Inspired by the above conjecture, Faudree et al. [FGST90] proved that for
bipartite G, the clique number of the line graph of G is at most A%. Ka A
shows that this bound is tight. They conjectured the same bound holds for
the chromatic number ([FGST89)] see also [BQ93]).

If every edge of G is in %A(G)2 cycles of length four, then the square of
the line graph of G has maximum degree less than $A(G)? — 1, so the result
follows from Brooks’ Theorem. Mahdian [Mah00] proved that if G has no Cj4
then the square of its line graph has chromatic index o(A(G)?). These two
complementary results provide strong evidence that the conjecture holds, at
least asymptotically. We refer the reader to Mahdian’s M.Sc. thesis for a fuller
discussion of this conjecture, including the origin of the use of the term strong
edge colouring for a partition into induced matchings, and strong chromatic
index for the chromatic number of the square of the line graph.
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3 A Ramsey-type Problem on the Integers

Let k£ > 3 be fixed. We ask if there exist a § > 0 and a set A C N with the
following properties:

(i) for every integer £ > 2 every finite partition A;UA;U---UA; = A yields
one partition class containing a k-AP, i.e., an arithmetic progression of
length £ and

(i) every finite subset A’ C A contains a dense subset A" C A’  |A"| > 0| A4'|
containing no k-AP.

Paul Erdds, Jaroslav Nesetril, and Vojtéch Rddl
in [ENR90].

“It was in the summer of 1983, when Paul Erdds came to Prague
and, as usual, described many new conjectures that he first introduced
Jarik and me to the problem of Pisier. We were initially optimistic
as we thought our experience with ramsey type constructions might
yield some results. However, after several failed attempts we began to
suspect that Pisier’s problem was beyond the scope of our abilities. Still,
despite our disapointment, we found the problem very compelling and
so, together with Paul Erdés, we considered several alternate versions
of the original conjecture. The question presented here is one of those
variations that, like the original problem, resisted all our efforts.”

Vojtéch R6dl

This problem is motivated by the well known theorems of van der Waer-
den [Wae27] and Szemerédi [Sze75]. The theorem of van der Waerden [Wae27]
is one of the earliest results in Ramsey theory. It asserts that every finite
partition of the integers yields one partition class containing an arithmetic
progression of any fixed length. More precisely, for positive integers k£ and /,
we say a set of integers A has the van-der- Waerden-property vdW (k, £) if for
every partition A;UA;U---UA, = A there is some i (1 <4 < £) such that A;
contains a k-AP, i.e., an arithmetic progression of length k. The theorem of
van der Waerden can then be stated as follows.

Theorem 3.1 (van der Waerden (1927)). For all integers k > 3 and { > 2
there exist nyaw = nyaw(k,£) such that for every n > nyaw the set [n] =
{1,2,...,n} has vdW (k, ).

3

Solving a longstanding standing conjecture of Erdés and Turédn [ET36] Sze-
merédi proved the following famous generalization of Theorem 3.1, which stim-
ulated a lot of research and today several proofs using tools from quite di-
verse areas of mathematics are known [Fur77, Gow06", Gow01, NRS06, RS04,
Tao06™b] (see also [Tao06Ta] for a survey of those proofs).

Theorem 3.2 (Szemerédi (1975)). For every integer k > 3 and § > 0 there
exist ng, = ng,(k,d) such that for every n > ng, every subset A C [n] with
|A] > dn contains a k-AP.



618 J. Bang-Jensen, B. Reed, M. Schacht, R. Sdmal, B. Toft and U. Wagner

Similarly as above we say a finite set of integers A has the Szemerédi-
property Sz(k,d) if every subset A" C A with |A'| > §|A| contains a k-AP.
Then Szemerédi’s theorem asserts that every sufficiently large subset of the
first n integers has Sz(k, §). Moreover, since Theorem 3.2 implies Theorem 3.1,
it implies, e.g., that every sufficiently large arithmetic progression A displays
both properties vdW (k,£) and Sz(k,d) and one may wonder if all sets of
integers admitting the van-der-Waerden-property may have the Szemerédi-
property as well. That would be somewhat surprising and a proof of such a
statement would give a new proof of Szemerédi’s theorem. Erdés, Nesettil, and
Rodl [ENRO6T, ENR9OQ] conjectured that this is not true. In other words, they
conjectured that for fixed k£ > 3 there exist § > 0 and a set A C N which, on
one hand, has the van-der-Waerden-property vdW (k, £) for every £, but, on
the other hand, no finite subset A’ C A has the Szemerédi-property Sz(k,d).
For the case k = 3 a related question (motivated by this problem) was con-
sidered by Davenport, Hindman, and Strauss [DHS02].

The problem was also motivated by “negative” results concerning problems
related to the well known problem of Pisier (see Problem 3.3 below). Suppose
some family . of subsets of the integers is given. We call the elements [ € .
independent sets. For an integer k > 3 let .#, = {I C N: I contains no k-AP}.
Then showing that no such set A with properties (i) and (7) in the statement
of the problem exists means to prove the following. For every § > 0 and
A C N there exist £ such that if every finite subset A' C A contains an
independent set A" € 9, of size |A"| > 6| A'|, then A = A{UAU...UAy can
be partitioned into £ independent sets, i.e., A; € Sy for everyi =1,2,... L.
This formulation is formally related to Pisier’s problem. To state this problem
we say a set I C N is independent if all finite sums of I are distinct, i.e., for
all finite, distinct subsets I, I C I

IEEDIE

zely z€ls

and let .#p be the collection of all those sets. In [Pis83] Pisier asked whether
the following is true.

Problem 3.3 (Pisier (1983)). For every 6 > 0 and A C N there exist £ such
that if every finite subset A’ C A contains an independent set A" € #p of size
|A"] > 6|A'], then A = A;UA5U...UA/ can be partitioned into ¢ independent
sets, i.e., A; € Ip for everyi =1,2,..., /(.

The affirmative answer of Problem 3.3 would give an arithmetic characteriza-
tion of Sidon sets in terms of this condition.

As pointed out in [ENRO67] there are only very few non-trivial notions of
independent families known, for which the Pisier-type problem was solved in
the affirmative way. In [ENR06™] a few “negative” examples were shown, i.e.,
results which are formally similar to the problem.
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4 The Pentagon Problem

Let G be a 3-regular graph that contains no cycle of length shorter than g. Is
it true that for large enough g there is a homomorphism from G to C5?
Explicitly, is there a vertex coloring of G by {1,2, 3,4, 5}, such that colors of
adjacent vertices differ by 1 modulo 57

Jaroslav Negetril in [Nes99].

Apart from being published in [Nes99], this question was asked by Neset#il
at numerous problem sessions. By Brook’s theorem any triangle-free cubic (i.e.
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3-regular) graph is 3-colorable. Does a stronger assumption on girth of the
graph imply existence of a more restricted coloring? (The girth of a graph G
is the minimum length of a cycle in G.)

This problem is motivated by complexity considerations [GHN00] and also
by exploration of density of the homomorphism order: We write G <, H if
there is a homomorphism from G to H but not from H to G. It is known
that whenever G <; H holds and H is not bipartite then there is a graph K
satisfying G <, K <5 H. In other words, the order <y is dense (if we do
not consider edgeless graphs). A negative solution to the Pentagon problem
would have the following density consequence: for each cubic graph H for
which C5 <5, H holds, there exists a cubic graph K satisfying Cs <, K <, H
(see [Neg99]).

If we replaced C5 in the statement of the problem by a longer odd cycle,
we would get a stronger statement. It is known that no such strenghthening is
true. This was proved by Kostochka, Nesettil, and Smolikova [KNS98] for C1;
(hence for all C; with [ > 11), by Wanles and Wormald [WWO01] for Cy, and
recently by Hatami [Hat05] for C7. Each of these results uses probabilistic
arguments (random regular graphs), no constructive proof is known.

Héggkvist and Hell [HH93] proved that for every integer g there is a
graph U, with odd girth at least g (that is, U, does not contain odd cy-
cle of length less than g) such that every cubic graph of odd girth at least g
maps homomorphically to U,. Here, the graph U, may have large degrees.
This leads to a weaker version of the Pentagon problem: Is it true that for
every k there exists a cubic graph Hy of girth £ and an integer g such that
every cubic graph of girth at least ¢ maps homomorphically to Hy? A par-
ticular question in this direction: does a high-girth cubic graph map to the
Petersen graph?

As an approach to this, we mention a result of DeVos and Sdmal [DS061]: a
cubic graph of girth at least 17 admits a homomorphism to the Clebsch graph.
In context of the Pentagon problem, the following reformulation is particularly
appealing: If G is a cubic graph of girth at least 17, then there is a cut-
continuous mapping from G to Cj; that is, there is a mapping f : E(G) —
E(C5) such that for any cut X C FE(Cs) the preimage f~'(X) is a cut.
(Here by cut we mean the edge-set of a spanning bipartite subgraph. A more
thorough exposition of cut-continuous mappings can be found in [DNR02].)

References

[DNRO2] M. DeVos, J. Nesetfil, and A. Raspaud, On flow and tension-continuous
maps, KAM-DIMATIA Series 567 (2002).

[DS06+] M. DeVos and R. Sdmal, High girth cubic graphs map to the Clebsch
graph, submitted.

[GHNO00] A. Galluccio, P. Hell, and J. Negetfil, The complexity of H-colouring of
bounded degree graphs, Discrete Math. 222 (2000), no. 1-3, 101-1009.



On Six Problems Posed by Jarik Nesetril 621

[HH93] R. Higgkvist and P. Hell, Universality of A-mote graphs, European J.
Combin. 14 (1993), no. 1, 23-27.

[Hat05] H. Hatami, Random cubic graphs are not homomorphic to the cycle of
size 7, J. Combin. Theory Ser. B 93 (2005), no. 2, 319-325.

[KNS98] A.V. Kostochka, J. Negetfil, and P. Smolikovd, Colorings and homomor-
phisms of degenerate and bounded degree graphs, Discrete Math. 233
(2001), no. 1-3, 257-276, Fifth Czech-Slovak International Symposium
on Combinatorics, Graph Theory, Algorithms and Applications, (Prague,
1998).

[Nes99] J. Nesetiil, Aspects of structural combinatorics (graph homomorphisms
and their use), Taiwanese J. Math. 3 (1999), no. 4, 381-423.

[WWO01] I.M. Wanless and N.C. Wormald, Regular graphs with no homomor-
phisms onto cycles, J. Combin. Theory Ser. B 82 (2001), no. 1, 155-160.

5 Critical Graphs

Does every large k-critical graph contain a large (k — 1)-critical subgraph?

Jaroslav Nesetril and Vojtéch Raodl, International Col-
loguium on Finite and Infinite Sets, Keszthely, 1973.

“In 1973 Paul Erdds’ 60th birthday was celebrated by the Interna-
tional Colloquium on Finite and Infinite Sets in Keszthely, Hungary.
During the conference the participants had a memorable excursion by
boat on Lake Balaton, with Erdds conducting a problem session on-
board and the whole crowd visiting a vineyard on the northern coast. At
the boat I met two young Czechoslovaks, Jaroslav Nesetril and Vojtéch
Rodl. They had asked ErdSs whether every large k-critical graph al-
ways contains a large (k — 1)-critical subgraph. Erdés obviously liked
the problem, and knowing my interest in critical graphs [Toft70] he
then got us in contact.”

Bjarne Toft

A k-chromatic graph is k-critical if all proper subgraphs are (k — 1)-
colourable. For k¥ = 1, 2 and 3 the k-critical graphs are the complete
1-graph K, the complete 2-graph K> and the odd cycles, respectively. For
k = 4 the class of k-critical graphs is already very complicated. They are
the forbidden subgraphs for 3-colourability, and it is an NP-complete prob-
lem type to decide about 3-colourability, as is well known. Thus for £ = 3
the answer to the question in the title is obviously NO since 2-critical graphs
have only two vertices and odd cycles may be large. However for k = 4 the
situation is less clear. It turned out to be not so difficult to see that the answer
for k = 4 is YES. However, for values of k£ > 5 the question is still unsettled.
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The case k = 4

Does every large 4-critical graph contain a large odd cycle? Or more general:
does every large 4-critical graph contain a large cycle? The answer to this
second question was first given by Kelly and Kelly [KK54]. Let L(n) denote
the minimum taken over all 4-critical graphs G on n vertices of the maximum
length of a cycle in G (this is called the circumference of G). Kelly and Kelly
proved that indeed L(n) — oc for n — oo. How fast does L(n) tend to
infinity? After subsequent improvements by Dirac [Dir55] and Reid [Reid57],
Gallai [Gal63] obtained the so far best upper bound, namely that there is a
constant ¢ such that L(n) < clogn. This means that the growth of the length
of longest cycles in 4-critical graphs may be slow. It is seemingly still not
known if this is best possible. The best lower bound is of order of magnitude
Vlogn, due to Alon, Krivelevich and Seymour [AKS00]. A large 4-critical
graph therefore contains a long cycle. Since it is 2-connected and contains
odd cycles, it is an easy exercise to show that it also must contain a long
odd cycle. Thus the question of Negetiil and Rédl has answer YES for k = 4.
The case k = 4 was solved in a different manner by Voss [Voss77, Voss91]. He
based his affirmative solution on the theory of bridges with respect to cycles
in graphs.

The cases k> 5

Toft [Toft74] characterized the class of k-critical graphs in terms of the be-
haviour of the (k — 1)-critical subgraphs they contain. One easy observation is
that the (k — 1)-critical subgraphs together cover the whole k-critical graph.
In other words: any edge of a k-critical graph is contained in a (k — 1)-critical
subgraph. More generally, given two edges e; and es of a k-critical graph, there
is a (k—1)-critical subgraph containing ey, but not es. The proof is simple, yet
this seems to be useful. For example it follows easily from this that a k-critical
graph is (k — 1)-edge-connected, a result first obtained in a more complicated
way by Dirac [Dir53]. Another consequence of the ‘distinguishing property’
of (k — 1)-critical graphs was obtained by Stiebitz [Sti87]. He proved that if
all (k — 1)-critical subgraphs of a k-critical graph G are smallest possible, i.e.
they are all complete (k — 1)-graphs, then G is also smallest possible, i.e. G is
the complete k-graph. This is related to the problem of Negetfil and Rodl,
giving an upper bound for the size of a k-critical graph in terms of its (k — 1)-
critical subgraphs, in a very special case. This problem was first thought of
by Nesetiil and Toft during one of their later encounters, when they together
visited G. A. Dirac at Aarhus in the mid 1970’ies. This special case, when all
the (k — 1)-critical subgraphs are complete, has the flavor of perfect graph
theory, but is much, much easier to deal with (the main difference is that here
we deal with all subgraphs, not just the induced ones). In connection with
these results, the following is an interesting question: Given two arbitrary
edges e; and ey of a k-critical graph with k£ > 5 is there a (k — 1)-critical
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subgraph containing both e; and e»? The answer is not known, even when
the two edges e; and e; form a path of length 2. There seems to be no easy
proof—this indicates that there may well be counterexamples. An example of
a k-critical graph G, k > 5, without any (k — 1)-critical subgraph containing
two given edges e; and es would be extremely interesting. Based on such a G
one would be able to get a negative answer to the question of Nesetiil and
R&dL, using copies of G and Hajés’ construction [Haj61]:

Haj6s’ construction

Let G; and Gy be disjoint graphs with edges x;y; and x5y, respectively.
Remove z1y; from G; and z2ys from G, identify x; and zo to one new
vertex x and join y; and y» by a new edge. Use this construction recursively
on ¢ disjoint copies G, Gs, ..., G, of the above G, with edges e; and e,
removing edge e, from the copy G; and edge e; from the copy Giy1, i = 1,
2, ..., g — 1, identifying two endvertices from the removed edges and joining
the two other ends by a new edge. The obtained k-critical graph H is large
if ¢ is large, yet any (k — 1)-critical subgraph of H must be contained within
two consecutive copies of G and hence be small (for k£ > 5).

Remarks

We saw in the previous sections that an example of a k-critical graph G, k > 5,
containing edges e; and e; without any (k — 1)-critical subgraph containing
e; and es would give the answer NO to the question of Negetril and Rodl.
We know however that the answer is YES for k£ = 4. The case k£ = 4 behaves
differently, and in fact for any 4-critical graph G and any path P of length 2
in G, there is an odd cycle in G containing P. This statement follows from
an argument of Dirac [Dir64] and was also obtained by Wessel [Wes81]. The
above potential counterexamples to the question of Negetiil and Rodl have
separating sets of size 2. It seems likely that such counterexamples exist.
However most probably no counterexample is of connectivity at least 3 (or
high enough). Is it possible (easy?) to prove that any large k-critical graph
of connectivity at least 3 (or at least c¢(k)) contains a large (k — 1)-critical
subgraph? If we instead of just subgraphs ask for induced subgraphs, then
it is not clear what to expect and what is known and what is not. The best
way to look at this is perhaps to consider vertex-k-critical graphs, i.e. graphs
G that are k-chromatic and G — = is (k — 1)-colourable for all vertices =
in G. If all induced vertex-i-critical subgraphs of a vertex-k-critical graph G,
k > 4, are smallest possible, i.e. complete i-graphs for all i < k, then G is
small, more precisely G is either the complete k-graph or G is an odd cycle
complement (with 2k — 1 vertices). As observed first by Wessel ([Wes77], see
also [Toft85]) this is an equivalent statement to the very deep strong perfect
graph conjecture, recently proved by Chudnovsky, Robertson, Seymour and
Thomas [CRST06"].
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6 The CLIQUE Problem in Geometric Intersection
Graphs

Determine the computational complexity of the CLIQUE problem restricted
to intersection graphs of straight line segments in the plane.

Jan Kratochvil and Jaroslav Nesetril in [KN90].

“This recollection illustrates Jarik Nesetril’s gentle understanding
of students’ feelings, as well as his excellent instinct in finding rewarding
problems. Back in the beginning of the 1980’s a group of undergraduate
students of Charles University in Prague was discussing an urgent mat-
ter of selecting a research seminar. None of the officially offered ones
was a winning favorite, and we had just three days to file our decision at
the registrar. The discussion was held during a regular Graph Theory
lecture of Jarik. Instead of expelling us from the class for disturbing,
he quickly got himself involved in the discusion and on the spot offered
to create a seminar especially for us. Who could resist such a generous
offer? He also suggested a problem to work on. In the following year or
two we learned a lot about research while working on the problem of
characterizing string graphs. Though we did not manage to character-
ize these graphs, many side results led to a conference presentation and
an undergraduate publication. I revived the problem for myself about
5 years later when I finally proved NP-hardness of the recognition prob-
lem. And when presenting this negative solution to Jarik, we started
discussing the complexity of optimization problems in restricted classes
of graphs and the CLIQUE question was born.”

Jan Kratochvil

An abstract graph G is a K-intersection graph, for some class K of sets, if
the vertices of G can be represented by sets in I such that two vertices in GG
are adjacent iff the corresponding sets have a nonempty intersection.

Intersection graphs for various classes of geometric objects (e.g., straight
line segments, rectangles, or disks in the plane) have been studied extensively.
On the one hand, they have numerous practical applications (for instance,
in frequency assignment in cellular networks [Hale80, Mal97, AHKMSO01], or
in map labelling [AKS97]). On the other hand, geometric intersection graphs
provide a rich source of classes of graphs with interesting properties, and
of challenging problems that lie at the interface between graph theory and
geometry.

Deciding for graph G if it is an intersection graph of a certain kind, or
computing a representation, is often computationally hard. For instance, this
recognition problem is A"P-hard for intersection graphs of disks [HK01] and
of segments [KM94], respectively. Furthermore, representations may require
coordinates that are exponential in the size of the graph [KM94], so it is not
clear if these problems even belong to the class N'P; only PSP.ACE member-
ship is known [BK98, KM94].
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A circle of questions naturally arising in the applications concern the
complexity of classical hard problems, such as CLIQUE or INDEPENDENT
SET, for intersection graphs. In some cases, many of such problems be-
come tractable; for instance, CLIQUE is polynomially solvable for intersection
graphs of equal-radius disks [CCJ90], or of segments with a bounded number
of directions [KN90]. For both results, it is assumed that a suitable form of
geometric representation is provided as part of the input, because recognition
remains N 'P-hard also under the additional assumptions.

Even when the problem remains hard, the geometric structure might lead
to better approximation algorithms. For instance, for general graphs, it is hard
to approximate the size of a maximum independent set within a factor of n' ¢
[Has99], for any fixed e > 0. Exactly solving INDEPENDENT SET remains
N'P-hard in intersection graphs of segments [KN90] (even if the segments are
restricted to 2 directions) and of disks [CCJ90] (even if the disks all have the
same radius). However, the problem can be approximated in polynomial time
within a factor of roughly /n for intersection graphs of segments [AMO04],
and within (1 + ¢), for any fixed ¢ > 0, in the case of disks [HMRRRS98,
EJS05, Chan03]. For unit disks, even the assumption that a representation is
provided can be avoided [NHK04].

Among the most tantalizing unsolved problems in this area are the com-
plexity of the CLIQUE problem for intersection graphs of segments and of
disks, respectively. For segments, the question was first posed by Kratochvil
and Neset#il in 1990, while for disk graphs, it seems to be folklore. We remark
that the above-mentioned algorithm for equal-radius disks breaks down as
soon as two radii are allowed, while for the case of segments with a bounded
number d of directions, the runtime of the algorithm depends exponentially
on d. As for results in the opposite direction, every complement of a pla-
nar graph can be represented as an intersection graph of convex polygons in
the plane [KK98]. It follows that CLIQUE is N'P-hard for such graphs, be-
cause INDEPENDENT SET is hard for planar graphs. The polygons used in
the representation are of nonconstant complexity. There are results for two
types of geometric objects of constant complexity. The first type are intersec-
tion graphs of angles [MP92], where an angle consist of one horizontal and
one vertical segment sharing a common endpoint. If all the angles are “up-
per” ones, say, then CLIQUE is polynomially solvable, but if opposite angles
are allowed, then the problem is A"P-hard. The second type are intersection
graphs of ellipses [AWO05]. For these, CLIQUE is N'P-hard. In fact, for suffi-
ciently small § > 0, even approximation within (1+ 4) is hard. Moreover, this
continues to hold even if for all ellipses, the ratio between the two principal
radii is required to be any given constant p, 1 < p < co. However, the “limit
cases” of circles (“p = 1”7) and of segments (“p = 00”), respectively, remain
open.
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