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614 J. Bang-Jensen, B. Reed, M. S
ha
ht, R. �S�amal, B. Toft and U. Wagner1 Minimally Asymmetri
 Oriented GraphsLet G be an oriented graph. Suppose G is asymmetri
, but every vertex-deleted subgraph G� v fails to be asymmetri
. Is it true that G must be K1?Jaroslav Ne�set�ril, Oberwolfa
h seminar, 1988A (di)graph is asymmetri
 if its automorphism group is trivial, that is,
ontains only the identity element. A (di)graph is symmetri
 if it has at leastone non-trivial automorphism. An asymmetri
 (di)graphG isminimally asym-metri
 if G is asymmetri
, but G� v is symmetri
 for every vertex v of G.The problem was posed by Ne�set�ril at several 
onferen
es and a

ordingto W�oj
ik [W�oj96℄ at least as early as during the Oberwolfa
h seminar in1988. It is probably even older than that. At the Oberwolfa
h seminar in1988 Ne�set�ril also 
onje
tured that there are only �nitely many minimallyasymmetri
 undire
ted graphs.In [NS92℄ and [Sab91℄ undire
ted minimally asymmetri
 graphs are stud-ied. It turns out [Sab91℄ that a useful property to use in this 
ontext is thelength � of a longest indu
ed path. It is shown in that paper that there are nominimally asymmetri
 graphs with � � 6 and pre
isely two minimally asym-metri
 graphs with � = 5. In [NS92℄ it is shown that there are exa
tly seven�nite minimal asymmetri
 graphs with � = 4.Clearly, for every minimally asymmetri
 graph G one obtains a minimallyasymmetri
 digraph D by repla
ing ea
h edge of G by a dire
ted 2-
y
le. Anoriented graph is a digraph obtained from a graph by orienting ea
h of itsedges. In parti
ular an oriented 
y
le is obtained form an undire
ted 
y
le inthis way. In [W�oj96℄ W�oj
ik proved the following result. Re
all that a 
y
le issymmetri
 if it has a non-trivial automorphism.Theorem 1.1. Every minimally asymmetri
 digraph 
ontains a symmetri

y
le.This implies in parti
ular that there are no minimally asymmetri
 trees(a fa
t also proved earlier by Ne�set�ril) and that the 
onje
ture holds formany 
lasses of asymmetri
 a
y
li
 digraphs. One example is a transitivetournament. Note that a
y
li
 digraphs may 
ontain symmetri
 
y
les (e.g.1 ! 2  3 ! 4  1 whi
h has a non-trivial automorphism without �x-points) so Theorem 1.1 does not immediately seem to imply that there are nominimally asymmetri
 a
y
li
 digraphs.Referen
es[Ne�s71℄ J. Ne�set�ril, A 
ongruen
e theorem for asymmetri
 trees, Pa
i�
 Journal ofMathemati
s 37, 771{778.



On Six Problems Posed by Jarik Ne�set�ril 615[Ne�s99℄ J. Ne�set�ril, Asymmetri
 graphs and 
olouring problems, Problems presentedat the 6th midsummer 
ombinatorial workshop, Prague 1999.[NS92℄ J. Ne�set�ril and G. Sabidussi, Minimal asymmetri
 graphs of indu
edlength 4, Graphs and Combinatori
s 8 (1992), 343{359.[Sab91℄ G. Sabidussi, Clumps, minimal asymmetri
 graphs, and involutions, J.Combin. Th. Ser. B 53 (1991), 40{79.[W�oj96℄ P. W�oj
ik, On automorphisms of digraphs without symmetri
 
y
les, Com-ment. Math. Univ. Carolinae 37 (1996), 457{467.2 Partition into Indu
ed Mat
hings alias The StrongChromati
 IndexThe edges of a graph G of maximum degree � 
an be partitioned into at most54�2 
olour 
lasses, ea
h of whi
h indu
es a mat
hing.Paul Erd}os and Jaroslav Ne�set�ril, a 
ombinatorialseminar at Charles University, Prague, 1985This 
onje
ture was made by Erd}os and Ne�set�ril at a 
ombinatorial semi-nar at Charles University in Prague in 1985. One year later it was presentedat Colloquium on Irregularities of Partitions in Fert}od, Hungary (see [EN89℄).For every graph H , the 
hromati
 number of H is at most �(H) + 1 and the
hromati
 number of its square is at most �(H)2 + 1. Vizing's theorem tellsus that for line graphs, we 
an improve the �rst result, essentially by a fa
torof 2. The 
onje
ture above suggests that a similar improvement is possible forthe se
ond result.Erd}os and Ne�set�ril had noti
ed that if we take a 
y
le of length �ve andrepla
e ea
h vertex by a stable set of size k, joining two new verti
es pre
iselyif the 
orresponding two verti
es of the �ve 
y
le are adja
ent, then the squareof the line graph of the resultant graph is a 
lique. This shows that the above
onje
ture is tight when � is even. For odd �, Erd}os and Ne�set�ril a
tuallymade the stronger 
onje
ture that the 
hromati
 number of the square of aline graph of maximum degree � is at most 54�2� �2 + 14 , whi
h again is tightbe
ause of a similar example.The 
onje
ture was proven for � = 3 by Andersen [And92℄ and indepen-dently Horak et al [HQT93℄. Cranston [Cra06+℄ proved that the 
hromati
number of the square of a line graph of a graph of maximum degree � = 4 isat most 22, improving on the bound of 23, obtained by Horak [Hor90℄. Notethat this does not quite mat
h the 
onje
tured bound of 20. For larger �, Mol-loy and Reed [MR97℄ showed that there is an " > 0 su
h that the 
hromati
number of the square of the line graph of G is at most (2� ")�(G)2.It is not even known if the 
lique number of the square of the line graphof G is at most 54�(G)2, although Chung et al. [CGTT90℄ did prove that agraph G whose line graph is a 
lique has at most 54�(G)2 edges.



616 J. Bang-Jensen, B. Reed, M. S
ha
ht, R. �S�amal, B. Toft and U. WagnerInspired by the above 
onje
ture, Faudree et al. [FGST90℄ proved that forbipartite G, the 
lique number of the line graph of G is at most �2. K�;�shows that this bound is tight. They 
onje
tured the same bound holds forthe 
hromati
 number ([FGST89℄ see also [BQ93℄).If every edge of G is in 34�(G)2 
y
les of length four, then the square ofthe line graph of G has maximum degree less than 54�(G)2 � 1, so the resultfollows from Brooks' Theorem. Mahdian [Mah00℄ proved that if G has no C4then the square of its line graph has 
hromati
 index o(�(G)2). These two
omplementary results provide strong eviden
e that the 
onje
ture holds, atleast asymptoti
ally. We refer the reader to Mahdian's M.S
. thesis for a fullerdis
ussion of this 
onje
ture, in
luding the origin of the use of the term strongedge 
olouring for a partition into indu
ed mat
hings, and strong 
hromati
index for the 
hromati
 number of the square of the line graph.Referen
es[And92℄ L.D. Andersen, The strong 
hromati
 index of a 
ubi
 graph is at most10, Dis
rete Mathemati
s 108 (1992), 231{252.[BQ93℄ R.A. Brualdi and J. J. Quinn Massey, In
iden
e and strong edge 
olour-ings of graphs, Dis
rete Mathemati
s 122 (1993), 51{58.[CGTT90℄ F.R.K. Chung, A. Gy�arf�as, W. T. Trotter, and Z. Tuza, The maxi-mum number of edges in 2K2-free graphs of bounded degree, Dis
reteMathemati
s 81(1990), 129{135.[Cra06+℄ D. Cranston, A strong edge 
oloring of graphs of maximum degree 4using 22 
olours, submitted (see www.math.uiu
.edu/~
ranston).[EN89℄ P. Erd}os and J. Ne�set�ril, Problem, pp. 162{163 in G. Hal�asz and V.T.S�os (eds.), Irregularities of Partitions, 1989.[FGST89℄ R. J. Faudree, A. Gy�arf�as, R.H. S
help, and Z. Tuza, Indu
ed Mat
hingsin Bipartite Graphs, Dis
rete Mathemati
s 78 (1989), 83{87.[FGST90℄ R. J. Faudree, A. Gy�arf�as, R.H. S
help, and Z. Tuza, The strong 
hro-mati
 index of graphs, Ars Combinatoria 29B (1990), 205{211.[Hor90℄ P. Horak, The strong 
hromati
 index of graphs of maximum degree four,pp. 399{403 in R. Bodendeik (Ed.) Contemporary Methods in Graph The-ory, 1990.[HQT93℄ P. Horak, H. Qing, and W.T. Trotter, Indu
ed mat
hings in 
ubi
 graphs,Journal of Graph Theory 17 (1993), 151{160.[Mah00℄ M. Mahdian, The strong 
hromati
 index of C4-free graphs, RandomStru
tures and Algorithms 17, pp. 357{375, 2000.[MR97℄ M. Molloy and B. Reed, A bound on the strong 
hromati
 index of agraph, Journal of Combinatorial Theory (B) 69 (1997), 103{109.



On Six Problems Posed by Jarik Ne�set�ril 6173 A Ramsey-type Problem on the IntegersLet k � 3 be �xed. We ask if there exist a Æ > 0 and a set A � N with thefollowing properties:(i) for every integer ` � 2 every �nite partition A1 _[A2 _[ � � � _[A` = A yieldsone partition 
lass 
ontaining a k-AP, i.e., an arithmeti
 progression oflength k and(ii) every �nite subset A0 � A 
ontains a dense subset A00 � A0, jA00j � ÆjA0j
ontaining no k-AP.Paul Erd}os, Jaroslav Ne�set�ril, and Vojt�e
h R�odlin [ENR90℄.\It was in the summer of 1983, when Paul Erd}os 
ame to Pragueand, as usual, des
ribed many new 
onje
tures that he �rst introdu
edJarik and me to the problem of Pisier. We were initially optimisti
as we thought our experien
e with ramsey type 
onstru
tions mightyield some results. However, after several failed attempts we began tosuspe
t that Pisier's problem was beyond the s
ope of our abilities. Still,despite our disapointment, we found the problem very 
ompelling andso, together with Paul Erd}os, we 
onsidered several alternate versionsof the original 
onje
ture. The question presented here is one of thosevariations that, like the original problem, resisted all our e�orts."Vojt�e
h R�odlThis problem is motivated by the well known theorems of van der Waer-den [Wae27℄ and Szemer�edi [Sze75℄. The theorem of van der Waerden [Wae27℄is one of the earliest results in Ramsey theory. It asserts that every �nitepartition of the integers yields one partition 
lass 
ontaining an arithmeti
progression of any �xed length. More pre
isely, for positive integers k and `,we say a set of integers A has the van-der-Waerden-property vdW(k; `) if forevery partition A1 _[A2 _[ � � � _[A` = A there is some i (1 � i � `) su
h that Ai
ontains a k-AP, i.e., an arithmeti
 progression of length k. The theorem ofvan der Waerden 
an then be stated as follows.Theorem 3.1 (van der Waerden (1927)). For all integers k � 3 and ` � 2there exist nvdW = nvdW(k; `) su
h that for every n � nvdW the set [n℄ =f1; 2; : : : ; ng has vdW(k; `).Solving a longstanding standing 
onje
ture of Erd}os and Tur�an [ET36℄ Sze-mer�edi proved the following famous generalization of Theorem 3.1, whi
h stim-ulated a lot of resear
h and today several proofs using tools from quite di-verse areas of mathemati
s are known [Fur77, Gow06+, Gow01, NRS06, RS04,Tao06+b℄ (see also [Tao06+a℄ for a survey of those proofs).Theorem 3.2 (Szemer�edi (1975)). For every integer k � 3 and Æ > 0 thereexist nSz = nSz(k; Æ) su
h that for every n � nSz every subset A � [n℄ withjAj � Æn 
ontains a k-AP.



618 J. Bang-Jensen, B. Reed, M. S
ha
ht, R. �S�amal, B. Toft and U. WagnerSimilarly as above we say a �nite set of integers A has the Szemer�edi-property Sz(k; Æ) if every subset A0 � A with jA0j � ÆjAj 
ontains a k-AP.Then Szemer�edi's theorem asserts that every suÆ
iently large subset of the�rst n integers has Sz(k; Æ). Moreover, sin
e Theorem 3.2 implies Theorem 3.1,it implies, e.g., that every suÆ
iently large arithmeti
 progression A displaysboth properties vdW(k; `) and Sz(k; Æ) and one may wonder if all sets ofintegers admitting the van-der-Waerden-property may have the Szemer�edi-property as well. That would be somewhat surprising and a proof of su
h astatement would give a new proof of Szemer�edi's theorem. Erd}os, Ne�set�ril, andR�odl [ENR06+, ENR90℄ 
onje
tured that this is not true. In other words, they
onje
tured that for �xed k � 3 there exist Æ > 0 and a set A � N whi
h, onone hand, has the van-der-Waerden-property vdW(k; `) for every `, but, onthe other hand, no �nite subset A0 � A has the Szemer�edi-property Sz(k; Æ).For the 
ase k = 3 a related question (motivated by this problem) was 
on-sidered by Davenport, Hindman, and Strauss [DHS02℄.The problem was also motivated by \negative" results 
on
erning problemsrelated to the well known problem of Pisier (see Problem 3.3 below). Supposesome family I of subsets of the integers is given. We 
all the elements I 2 Iindependent sets. For an integer k � 3 let Ik = fI � N: I 
ontains no k-APg.Then showing that no su
h set A with properties (i ) and (ii ) in the statementof the problem exists means to prove the following. For every Æ > 0 andA � N there exist ` su
h that if every �nite subset A0 � A 
ontains anindependent set A00 2 Ik of size jA00j � ÆjA0j, then A = A1 _[A2 _[ : : : _[A` 
anbe partitioned into ` independent sets, i.e., Ai 2 Ik for every i = 1; 2; : : : ; `.This formulation is formally related to Pisier's problem. To state this problemwe say a set I � N is independent if all �nite sums of I are distin
t, i.e., forall �nite, distin
t subsets I1, I2 � IXx2I1 x 6=Xx2I2 xand let IP be the 
olle
tion of all those sets. In [Pis83℄ Pisier asked whetherthe following is true.Problem 3.3 (Pisier (1983)). For every Æ > 0 and A � N there exist ` su
hthat if every �nite subset A0 � A 
ontains an independent set A00 2 IP of sizejA00j � ÆjA0j, then A = A1 _[A2 _[ : : : _[A` 
an be partitioned into ` independentsets, i.e., Ai 2 IP for every i = 1; 2; : : : ; `.The aÆrmative answer of Problem 3.3 would give an arithmeti
 
hara
teriza-tion of Sidon sets in terms of this 
ondition.As pointed out in [ENR06+℄ there are only very few non-trivial notions ofindependent families known, for whi
h the Pisier-type problem was solved inthe aÆrmative way. In [ENR06+℄ a few \negative" examples were shown, i.e.,results whi
h are formally similar to the problem.
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es[DHS02℄ D. Davenport, N. Hindman, and D. Strauss, Triangle free sets and arith-meti
 progressions { two Pisier type problems, Ele
troni
 J. Combina-tori
s 9 (2002), no. #R22, 1{19.[ET36℄ P. Erd}os and P. Tur�an, On some sequen
es of integers, J. London. Math.So
. 11 (1936), 261{264.[ENR06+℄ P. Erd}os, J. Ne�set�ril, and V. R�odl, On 
olorings and independent sets(Pisier type theorems), submitted.[ENR90℄ P. Erd}os, J. Ne�set�ril, and V. R�odl, On Pisier type problems and results(
ombinatorial appli
ations to number theory), Mathemati
s of Ramseytheory, Algorithms Combin., vol. 5, Springer, Berlin, 1990, pp. 214{231.[Fur77℄ H. Furstenberg, Ergodi
 behavior of diagonal measures and a theoremof Szemer�edi on arithmeti
 progressions, J. Analyse Math. 31 (1977),204{256.[Gow06+℄ W.T. Gowers, Hypergraph regularity and the multidimensional Sze-mer�edi theorem, submitted.[Gow01℄ W.T. Gowers, A new proof of Szemer�edi's theorem, Geom. Fun
t. Anal.11 (2001), no. 3, 465{588.[NRS06℄ B. Nagle, V. R�odl, and M. S
ha
ht, The 
ounting lemma for regular k-uniform hypergraphs, Random Stru
tures Algorithms 28 (2006), no. 2,113{179.[Pis83℄ G. Pisier, Arithmeti
 
hara
terizations of Sidon sets, Bull. Amer. Math.So
. (N.S.) 8 (1983), no. 1, 87{89.[RS04℄ V. R�odl and J. Skokan, Regularity lemma for k-uniform hypergraphs,Random Stru
tures Algorithms 25 (2004), no. 1, 1{42.[Sze75℄ E. Szemer�edi, On sets of integers 
ontaining no k elements in arith-meti
 progression, A
ta Arith. 27 (1975), 199{245, Colle
tion of arti
lesin memory of Juri�� Vladimirovi�
 Linnik.[Tao06+a℄ T. Tao, The di
hotomy between stru
ture and randomness, arithmeti
progressions, and the primes, submitted.[Tao06+b℄ T. Tao, A quantitative ergodi
 theory proof of Szemer�edi's theorem,submitted.[Wae27℄ B. L. van der Waerden, Beweis einer Baudets
hen Vermutung, NieuwAr
h. Wisk. 15 (1927), 212{216, German.4 The Pentagon ProblemLet G be a 3-regular graph that 
ontains no 
y
le of length shorter than g. Isit true that for large enough g there is a homomorphism from G to C5?Expli
itly, is there a vertex 
oloring of G by f1; 2; 3; 4; 5g, su
h that 
olors ofadja
ent verti
es di�er by 1 modulo 5? Jaroslav Ne�set�ril in [Ne�s99℄.Apart from being published in [Ne�s99℄, this question was asked by Ne�set�rilat numerous problem sessions. By Brook's theorem any triangle-free 
ubi
 (i.e.



620 J. Bang-Jensen, B. Reed, M. S
ha
ht, R. �S�amal, B. Toft and U. Wagner3-regular) graph is 3-
olorable. Does a stronger assumption on girth of thegraph imply existen
e of a more restri
ted 
oloring? (The girth of a graph Gis the minimum length of a 
y
le in G.)This problem is motivated by 
omplexity 
onsiderations [GHN00℄ and alsoby exploration of density of the homomorphism order: We write G �h H ifthere is a homomorphism from G to H but not from H to G. It is knownthat whenever G �h H holds and H is not bipartite then there is a graph Ksatisfying G �h K �h H . In other words, the order �h is dense (if we donot 
onsider edgeless graphs). A negative solution to the Pentagon problemwould have the following density 
onsequen
e: for ea
h 
ubi
 graph H forwhi
h C5 �h H holds, there exists a 
ubi
 graph K satisfying C5 �h K �h H(see [Ne�s99℄).If we repla
ed C5 in the statement of the problem by a longer odd 
y
le,we would get a stronger statement. It is known that no su
h strenghthening istrue. This was proved by Kosto
hka, Ne�set�ril, and Smol��kov�a [KNS98℄ for C11(hen
e for all Cl with l � 11), by Wanles and Wormald [WW01℄ for C9, andre
ently by Hatami [Hat05℄ for C7. Ea
h of these results uses probabilisti
arguments (random regular graphs), no 
onstru
tive proof is known.H�aggkvist and Hell [HH93℄ proved that for every integer g there is agraph Ug with odd girth at least g (that is, Ug does not 
ontain odd 
y-
le of length less than g) su
h that every 
ubi
 graph of odd girth at least gmaps homomorphi
ally to Ug. Here, the graph Ug may have large degrees.This leads to a weaker version of the Pentagon problem: Is it true that forevery k there exists a 
ubi
 graph Hk of girth k and an integer g su
h thatevery 
ubi
 graph of girth at least g maps homomorphi
ally to Hk? A par-ti
ular question in this dire
tion: does a high-girth 
ubi
 graph map to thePetersen graph?As an approa
h to this, we mention a result of DeVos and �S�amal [D�S06+℄: a
ubi
 graph of girth at least 17 admits a homomorphism to the Clebs
h graph.In 
ontext of the Pentagon problem, the following reformulation is parti
ularlyappealing: If G is a 
ubi
 graph of girth at least 17, then there is a 
ut-
ontinuous mapping from G to C5; that is, there is a mapping f : E(G) !E(C5) su
h that for any 
ut X � E(C5) the preimage f�1(X) is a 
ut.(Here by 
ut we mean the edge-set of a spanning bipartite subgraph. A morethorough exposition of 
ut-
ontinuous mappings 
an be found in [DNR02℄.)Referen
es[DNR02℄ M. DeVos, J. Ne�set�ril, and A. Raspaud, On 
ow and tension-
ontinuousmaps, KAM-DIMATIA Series 567 (2002).[D�S06+℄ M. DeVos and R. �S�amal, High girth 
ubi
 graphs map to the Clebs
hgraph, submitted.[GHN00℄ A. Gallu

io, P. Hell, and J. Ne�set�ril, The 
omplexity of H-
olouring ofbounded degree graphs, Dis
rete Math. 222 (2000), no. 1{3, 101{109.



On Six Problems Posed by Jarik Ne�set�ril 621[HH93℄ R. H�aggkvist and P. Hell, Universality of A-mote graphs, European J.Combin. 14 (1993), no. 1, 23{27.[Hat05℄ H. Hatami, Random 
ubi
 graphs are not homomorphi
 to the 
y
le ofsize 7, J. Combin. Theory Ser. B 93 (2005), no. 2, 319{325.[KNS98℄ A.V. Kosto
hka, J. Ne�set�ril, and P. Smol��kov�a, Colorings and homomor-phisms of degenerate and bounded degree graphs, Dis
rete Math. 233(2001), no. 1{3, 257{276, Fifth Cze
h-Slovak International Symposiumon Combinatori
s, Graph Theory, Algorithms and Appli
ations, (Prague,1998).[Ne�s99℄ J. Ne�set�ril, Aspe
ts of stru
tural 
ombinatori
s (graph homomorphismsand their use), Taiwanese J. Math. 3 (1999), no. 4, 381{423.[WW01℄ I.M. Wanless and N.C. Wormald, Regular graphs with no homomor-phisms onto 
y
les, J. Combin. Theory Ser. B 82 (2001), no. 1, 155{160.5 Criti
al GraphsDoes every large k-
riti
al graph 
ontain a large (k � 1)-
riti
al subgraph?Jaroslav Ne�set�ril and Vojt�e
h R�odl, International Col-loquium on Finite and In�nite Sets, Keszthely, 1973.\In 1973 Paul Erd}os' 60th birthday was 
elebrated by the Interna-tional Colloquium on Finite and In�nite Sets in Keszthely, Hungary.During the 
onferen
e the parti
ipants had a memorable ex
ursion byboat on Lake Balaton, with Erd}os 
ondu
ting a problem session on-board and the whole 
rowd visiting a vineyard on the northern 
oast. Atthe boat I met two young Cze
hoslovaks, Jaroslav Ne�set�ril and Vojt�e
hR�odl. They had asked Erd}os whether every large k-
riti
al graph al-ways 
ontains a large (k � 1)-
riti
al subgraph. Erd}os obviously likedthe problem, and knowing my interest in 
riti
al graphs [Toft70℄ hethen got us in 
onta
t." Bjarne ToftA k-
hromati
 graph is k-
riti
al if all proper subgraphs are (k � 1)-
olourable. For k = 1, 2 and 3 the k-
riti
al graphs are the 
omplete1-graph K1, the 
omplete 2-graph K2 and the odd 
y
les, respe
tively. Fork = 4 the 
lass of k-
riti
al graphs is already very 
ompli
ated. They arethe forbidden subgraphs for 3-
olourability, and it is an NP-
omplete prob-lem type to de
ide about 3-
olourability, as is well known. Thus for k = 3the answer to the question in the title is obviously NO sin
e 2-
riti
al graphshave only two verti
es and odd 
y
les may be large. However for k = 4 thesituation is less 
lear. It turned out to be not so diÆ
ult to see that the answerfor k = 4 is YES. However, for values of k � 5 the question is still unsettled.



622 J. Bang-Jensen, B. Reed, M. S
ha
ht, R. �S�amal, B. Toft and U. WagnerThe 
ase k = 4Does every large 4-
riti
al graph 
ontain a large odd 
y
le? Or more general:does every large 4-
riti
al graph 
ontain a large 
y
le? The answer to thisse
ond question was �rst given by Kelly and Kelly [KK54℄. Let L(n) denotethe minimum taken over all 4-
riti
al graphs G on n verti
es of the maximumlength of a 
y
le in G (this is 
alled the 
ir
umferen
e of G). Kelly and Kellyproved that indeed L(n) ! 1 for n ! 1. How fast does L(n) tend toin�nity? After subsequent improvements by Dira
 [Dir55℄ and Reid [Reid57℄,Gallai [Gal63℄ obtained the so far best upper bound, namely that there is a
onstant 
 su
h that L(n) < 
 logn. This means that the growth of the lengthof longest 
y
les in 4-
riti
al graphs may be slow. It is seemingly still notknown if this is best possible. The best lower bound is of order of magnitudeplogn, due to Alon, Krivelevi
h and Seymour [AKS00℄. A large 4-
riti
algraph therefore 
ontains a long 
y
le. Sin
e it is 2-
onne
ted and 
ontainsodd 
y
les, it is an easy exer
ise to show that it also must 
ontain a longodd 
y
le. Thus the question of Ne�set�ril and R�odl has answer YES for k = 4.The 
ase k = 4 was solved in a di�erent manner by Voss [Voss77, Voss91℄. Hebased his aÆrmative solution on the theory of bridges with respe
t to 
y
lesin graphs.The 
ases k � 5Toft [Toft74℄ 
hara
terized the 
lass of k-
riti
al graphs in terms of the be-haviour of the (k�1)-
riti
al subgraphs they 
ontain. One easy observation isthat the (k � 1)-
riti
al subgraphs together 
over the whole k-
riti
al graph.In other words: any edge of a k-
riti
al graph is 
ontained in a (k� 1)-
riti
alsubgraph. More generally, given two edges e1 and e2 of a k-
riti
al graph, thereis a (k�1)-
riti
al subgraph 
ontaining e1, but not e2. The proof is simple, yetthis seems to be useful. For example it follows easily from this that a k-
riti
algraph is (k� 1)-edge-
onne
ted, a result �rst obtained in a more 
ompli
atedway by Dira
 [Dir53℄. Another 
onsequen
e of the `distinguishing property'of (k � 1)-
riti
al graphs was obtained by Stiebitz [Sti87℄. He proved that ifall (k� 1)-
riti
al subgraphs of a k-
riti
al graph G are smallest possible, i.e.they are all 
omplete (k� 1)-graphs, then G is also smallest possible, i.e. G isthe 
omplete k-graph. This is related to the problem of Ne�set�ril and R�odl,giving an upper bound for the size of a k-
riti
al graph in terms of its (k�1)-
riti
al subgraphs, in a very spe
ial 
ase. This problem was �rst thought ofby Ne�set�ril and Toft during one of their later en
ounters, when they togethervisited G.A. Dira
 at Aarhus in the mid 1970'ies. This spe
ial 
ase, when allthe (k � 1)-
riti
al subgraphs are 
omplete, has the 
avor of perfe
t graphtheory, but is mu
h, mu
h easier to deal with (the main di�eren
e is that herewe deal with all subgraphs, not just the indu
ed ones). In 
onne
tion withthese results, the following is an interesting question: Given two arbitraryedges e1 and e2 of a k-
riti
al graph with k � 5 is there a (k � 1)-
riti
al
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ontaining both e1 and e2? The answer is not known, even whenthe two edges e1 and e2 form a path of length 2. There seems to be no easyproof|this indi
ates that there may well be 
ounterexamples. An example ofa k-
riti
al graph G, k � 5, without any (k � 1)-
riti
al subgraph 
ontainingtwo given edges e1 and e2 would be extremely interesting. Based on su
h a Gone would be able to get a negative answer to the question of Ne�set�ril andR�odl, using 
opies of G and Haj�os' 
onstru
tion [Haj61℄:Haj�os' 
onstru
tionLet G1 and G2 be disjoint graphs with edges x1y1 and x2y2 respe
tively.Remove x1y1 from G1 and x2y2 from G2, identify x1 and x2 to one newvertex x and join y1 and y2 by a new edge. Use this 
onstru
tion re
ursivelyon q disjoint 
opies G1, G2, . . . , Gq of the above G, with edges e1 and e2,removing edge e2 from the 
opy Gi and edge e1 from the 
opy Gi+1, i = 1,2, . . . , q � 1, identifying two endverti
es from the removed edges and joiningthe two other ends by a new edge. The obtained k-
riti
al graph H is largeif q is large, yet any (k � 1)-
riti
al subgraph of H must be 
ontained withintwo 
onse
utive 
opies of G and hen
e be small (for k � 5).RemarksWe saw in the previous se
tions that an example of a k-
riti
al graph G, k � 5,
ontaining edges e1 and e2 without any (k � 1)-
riti
al subgraph 
ontaininge1 and e2 would give the answer NO to the question of Ne�set�ril and R�odl.We know however that the answer is YES for k = 4. The 
ase k = 4 behavesdi�erently, and in fa
t for any 4-
riti
al graph G and any path P of length 2in G, there is an odd 
y
le in G 
ontaining P . This statement follows froman argument of Dira
 [Dir64℄ and was also obtained by Wessel [Wes81℄. Theabove potential 
ounterexamples to the question of Ne�set�ril and R�odl haveseparating sets of size 2. It seems likely that su
h 
ounterexamples exist.However most probably no 
ounterexample is of 
onne
tivity at least 3 (orhigh enough). Is it possible (easy?) to prove that any large k-
riti
al graphof 
onne
tivity at least 3 (or at least 
(k)) 
ontains a large (k � 1)-
riti
alsubgraph? If we instead of just subgraphs ask for indu
ed subgraphs, thenit is not 
lear what to expe
t and what is known and what is not. The bestway to look at this is perhaps to 
onsider vertex-k-
riti
al graphs, i.e. graphsG that are k-
hromati
 and G � x is (k � 1)-
olourable for all verti
es xin G. If all indu
ed vertex-i-
riti
al subgraphs of a vertex-k-
riti
al graph G,k � 4, are smallest possible, i.e. 
omplete i-graphs for all i < k, then G issmall, more pre
isely G is either the 
omplete k-graph or G is an odd 
y
le
omplement (with 2k � 1 verti
es). As observed �rst by Wessel ([Wes77℄, seealso [Toft85℄) this is an equivalent statement to the very deep strong perfe
tgraph 
onje
ture, re
ently proved by Chudnovsky, Robertson, Seymour andThomas [CRST06+℄.
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On Six Problems Posed by Jarik Ne�set�ril 6256 The CLIQUE Problem in Geometri
 Interse
tionGraphsDetermine the 
omputational 
omplexity of the CLIQUE problem restri
tedto interse
tion graphs of straight line segments in the plane.Jan Krato
hv��l and Jaroslav Ne�set�ril in [KN90℄.\This re
olle
tion illustrates Jarik Ne�set�ril's gentle understandingof students' feelings, as well as his ex
ellent instin
t in �nding rewardingproblems. Ba
k in the beginning of the 1980's a group of undergraduatestudents of Charles University in Prague was dis
ussing an urgent mat-ter of sele
ting a resear
h seminar. None of the oÆ
ially o�ered oneswas a winning favorite, and we had just three days to �le our de
ision atthe registrar. The dis
ussion was held during a regular Graph Theoryle
ture of Jarik. Instead of expelling us from the 
lass for disturbing,he qui
kly got himself involved in the dis
usion and on the spot o�eredto 
reate a seminar espe
ially for us. Who 
ould resist su
h a generouso�er? He also suggested a problem to work on. In the following year ortwo we learned a lot about resear
h while working on the problem of
hara
terizing string graphs. Though we did not manage to 
hara
ter-ize these graphs, many side results led to a 
onferen
e presentation andan undergraduate publi
ation. I revived the problem for myself about5 years later when I �nally proved NP-hardness of the re
ognition prob-lem. And when presenting this negative solution to Jarik, we starteddis
ussing the 
omplexity of optimization problems in restri
ted 
lassesof graphs and the CLIQUE question was born." Jan Krato
hv��lAn abstra
t graph G is a K-interse
tion graph, for some 
lass K of sets, ifthe verti
es of G 
an be represented by sets in K su
h that two verti
es in Gare adja
ent i� the 
orresponding sets have a nonempty interse
tion.Interse
tion graphs for various 
lasses of geometri
 obje
ts (e.g., straightline segments, re
tangles, or disks in the plane) have been studied extensively.On the one hand, they have numerous pra
ti
al appli
ations (for instan
e,in frequen
y assignment in 
ellular networks [Hale80, Mal97, AHKMS01℄, orin map labelling [AKS97℄). On the other hand, geometri
 interse
tion graphsprovide a ri
h sour
e of 
lasses of graphs with interesting properties, andof 
hallenging problems that lie at the interfa
e between graph theory andgeometry.De
iding for graph G if it is an interse
tion graph of a 
ertain kind, or
omputing a representation, is often 
omputationally hard. For instan
e, thisre
ognition problem is NP-hard for interse
tion graphs of disks [HK01℄ andof segments [KM94℄, respe
tively. Furthermore, representations may require
oordinates that are exponential in the size of the graph [KM94℄, so it is not
lear if these problems even belong to the 
lass NP; only PSPACE member-ship is known [BK98, KM94℄.



626 J. Bang-Jensen, B. Reed, M. S
ha
ht, R. �S�amal, B. Toft and U. WagnerA 
ir
le of questions naturally arising in the appli
ations 
on
ern the
omplexity of 
lassi
al hard problems, su
h as CLIQUE or INDEPENDENTSET, for interse
tion graphs. In some 
ases, many of su
h problems be-
ome tra
table; for instan
e, CLIQUE is polynomially solvable for interse
tiongraphs of equal-radius disks [CCJ90℄, or of segments with a bounded numberof dire
tions [KN90℄. For both results, it is assumed that a suitable form ofgeometri
 representation is provided as part of the input, be
ause re
ognitionremains NP-hard also under the additional assumptions.Even when the problem remains hard, the geometri
 stru
ture might leadto better approximation algorithms. For instan
e, for general graphs, it is hardto approximate the size of a maximum independent set within a fa
tor of n1�"[H�as99℄, for any �xed " > 0. Exa
tly solving INDEPENDENT SET remainsNP-hard in interse
tion graphs of segments [KN90℄ (even if the segments arerestri
ted to 2 dire
tions) and of disks [CCJ90℄ (even if the disks all have thesame radius). However, the problem 
an be approximated in polynomial timewithin a fa
tor of roughly pn for interse
tion graphs of segments [AM04℄,and within (1 + "), for any �xed " > 0, in the 
ase of disks [HMRRRS98,EJS05, Chan03℄. For unit disks, even the assumption that a representation isprovided 
an be avoided [NHK04℄.Among the most tantalizing unsolved problems in this area are the 
om-plexity of the CLIQUE problem for interse
tion graphs of segments and ofdisks, respe
tively. For segments, the question was �rst posed by Krato
hv��land Ne�set�ril in 1990, while for disk graphs, it seems to be folklore. We remarkthat the above-mentioned algorithm for equal-radius disks breaks down assoon as two radii are allowed, while for the 
ase of segments with a boundednumber d of dire
tions, the runtime of the algorithm depends exponentiallyon d. As for results in the opposite dire
tion, every 
omplement of a pla-nar graph 
an be represented as an interse
tion graph of 
onvex polygons inthe plane [KK98℄. It follows that CLIQUE is NP-hard for su
h graphs, be-
ause INDEPENDENT SET is hard for planar graphs. The polygons used inthe representation are of non
onstant 
omplexity. There are results for twotypes of geometri
 obje
ts of 
onstant 
omplexity. The �rst type are interse
-tion graphs of angles [MP92℄, where an angle 
onsist of one horizontal andone verti
al segment sharing a 
ommon endpoint. If all the angles are \up-per" ones, say, then CLIQUE is polynomially solvable, but if opposite anglesare allowed, then the problem is NP-hard. The se
ond type are interse
tiongraphs of ellipses [AW05℄. For these, CLIQUE is NP-hard. In fa
t, for suÆ-
iently small Æ > 0, even approximation within (1+ Æ) is hard. Moreover, this
ontinues to hold even if for all ellipses, the ratio between the two prin
ipalradii is required to be any given 
onstant �, 1 < � <1. However, the \limit
ases" of 
ir
les (\� = 1") and of segments (\� = 1"), respe
tively, remainopen.
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