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Our goal for this session is to establish the following two facts about the SW
moduli space Mω and its irreducible part M ∗

ω :

• M ∗
ω is a smooth manifold of dimension c2(V+) for ω generic.

• Mω is sequentially compact, meaning that any sequence of points in Mω

has a convergent subsequence.

We take up the task of proving these one by one.

1 Transversality

We have previously seen in Danu’s talk that if we assume that the SW map fω
is transversal to (0, 0) in the codomain i.e. the cokernel H2

(A,Φ) of its differential

T(A,Φ)fω vanishes whenever (A,Φ) is an SW solution, then M ∗
ω is a smooth

manifold of dimension c2(V+). This assumption isn’t always true. In particular,
it may fail to hold when ω identically vanishes. This is in fact the whole point
of introducing an unphysical parameter like ω into the SW equations, because
what is true is that Danu’s assumption holds for generic choices of ω, so even
if the honest-to-goodness physical SW equations don’t have a smooth moduli
space, a slight perturbation of the same does. This is essentially what we would
like to show in this section.

Let’s try to motivate the precise statements that we’ll be proving. Since we
want to prove something about genericity with respect to ω, it makes sense to
redefine the SW map so that it takes in ω as part of its input in addition to A
and Φ.

Definition 1 (Parametrised SW map). The parametrised SW map

f : Cs × iΩ2
+(X)→ iΩ2

+(X)× Γ(V−)

is given by:

(A,Φ, ω) 7→ fω(A,Φ) = (F+
A − σ(Φ,Φ)− ω,D+

AΦ). (1)

1



Gauge transformations u ∈ G on Cs lift to gauge transformations u × id
on Cs × iΩ2

+(X). Since there is a one-to-one correspondence between gauge
transformations u and their lifts u × id, we will henceforth identify them in
an abuse of notation. In particular, it makes sense to take the quotient (Cs ×
iΩ2

+(X))/G .
Note that we have f ◦ u = f for any gauge transformation u ∈ G , so f

descends to a map

f̃ : (Cs × iΩ2
+(X))/G → iΩ2

+(X)× Γ(V−),

which we shall refer to as the descendant parametrised SW map.
Gauge transformations not only preserve the images of points under f but

also the set of reducible solutions (although, not pointwise). This means that
it also makes sense to take the quotient

(C ∗s × iΩ2
+(X))/G ⊆ (Cs × iΩ2

+(X))/G ,

and define the restriction f̃∗ of f̃ to (C ∗s × iΩ2
+(X))/G .

Definition 2 (Parametrised SW moduli space). The parametrised SW moduli
space M is defined to be the preimage f̃−1(0, 0). In addition, its irreducible
part M ∗ is defined to be f̃∗−1(0, 0).

There is a canonical projection π : M ∗ → iΩ2
+(X) given by [A,Φ, ω] 7→ ω.

In order to retrieve M ∗
ω , one simply has to take the preimage π−1(ω).

Since iΩ2
+(X) is not finite-dimensional, M ∗ can’t be either, given that it

admits a projection onto iΩ2
+(X). However, we know from the implicit function

theorem for Banach manifolds that if a Banach map between two Banach man-
ifolds is Fredholm, then the preimage of any regular value is a manifold with
dimension equal to the (finite) index of the Fredholm map. We aleady know
that iΩ2

+(X) is a Banach manifold and that the preimage of a point ω ∈ iΩ2
+(X)

is the SW moduli space M ∗
ω . So all that remains to show is that M ∗ is Banach

and π is Fredholm.

Proposition 3. The parametrised SW moduli space M ∗ is a Banach manifold.

Proof. We use the implicit function theorem for Banach manifolds, according
to which given a Banach map between two Banach manifolds, the preimage of
regular point, that is a point in the codomain to which the map is transversal,
is either empty or a Banach manifold. The Banach map in this case is the
following:

f̃∗ : (C ∗s × iΩ2
+(X))/G → iΩ2

+(X)× Γ(V−).

What we need to show is that (0, 0) is a regular value, that is T[A,Φ,ω]f̃
∗ is

surjective for all [̃A,Φ, ω] ∈ f̃∗−1(0, 0). Now, given a representative (A,Φ, ω) of
the gauge equivalence class [A,Φ, ω] ∈ (C ∗s ×iΩ2

+(X))/G , T[A,Φ,ω]f̃
∗ is surjective

if and only if T(A,Φ,ω)f is surjective. In fact, we shall see that T(A,Φ,ω)f is
surjective for all irreducible (A,Φ, ω), not just when f(A,Φ, ω) = 0.
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The way we’ll go about this is to let (η, ψ) ∈ iΩ2
+(X)×Γ(V−) be orthogonal

to the image of the differential T(A,Φ,ω)f with respect to the inner product
induced by the metric g on X, and then show that this necessarily means that
(η, ψ) identically vanishes. Recall that given (a, ϕ, τ) in T(A,Φ,ω)(C

∗
s × iΩ2

+(X)),
the differential T(A,Φ,ω)f acts on it via:

T(A,Φ,ω)f(a, ϕ, τ) = (2d+a− σ(Φ, ϕ)− σ(ϕ,Φ)− τ,D+
Aϕ+ γ(a)Φ). (2)

The inner product of the above with (η, ψ) is then given by:

〈T(A,Φ,ω)f(a, ϕ, τ), (η, ψ)〉 =

∫
X

(
〈2d+a− σ(Φ, ϕ)− σ(ϕ,Φ), η〉

− 〈τ, η〉+ 〈D+
Aϕ+ γ(a)Φ, ψ〉

)
volg.

(3)

The statement that (η, ψ) is orthogonal to the image of T(A,Φ,ω)f then amounts
to saying that the above vanishes for all choices of (a, ϕ, τ). Since τ is arbitrary
and occurs only in the term 〈τ, η〉, η must identically vanish. This implies that
the entire first line on the right vanishes, leaving us with the following equation:∫

X

〈D+
Aϕ+ γ(a)Φ, ψ〉 volg = 0. (4)

We may use the fact that D+
A and D−A are adjoints to rewrite the above as:∫

X

(
〈ϕ,D−Aψ〉+ 〈γ(a)Φ, ψ〉

)
volg = 0. (5)

Now, since ϕ is arbitrary and occurs only in the term 〈ϕ,D−Aψ〉, D
−
Aψ must

identically vanish. This leaves us with:∫
X

〈γ(a)Φ, ψ〉 volg = 0. (6)

Our hypothesis is that (A,Φ, ω) is irreducible, which just means that Φ is not
identically zero. So, there is at least one point, say p ∈ X, such that Φ(p) 6= 0.
Using any trivialisation of the bundle V− over a sufficiently small neighbourhood
U 3 p and any identification thereof with the standard Clifford module over R4,
one may see that the map a(p′) 7→ γ(a(p′))Φ(p′) is a surjection from T ∗p′ (X)
onto the fibre V−,p′ for all p′ ∈ U . In particular one can always choose some
a such that γ(a(p′))Φ(p′) = ψ(p′) for all p′ ∈ U . If we assume that ψ doesn’t
vanish everywhere in U , we may then ensure that 〈γ(a)Φ, ψ〉 is nonnegative
throughout U and positive on some open subset U ′ of U . It follows that if h is
a smooth function with nonempty support contained in U ′, then the integrand∫

X

〈γ(ha)Φ, ψ〉 volg

is strictly positive. This is a contradiction and so our assumption that ψ doesn’t
vanish everywhere in U must have been wrong. An standard property of elliptic
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operators such as D−A tells us that any section in their kernel which identically
vanishes in some open neighbourhood U of X must identically vanish all over
X. We have already shown that ψ is in the kernel of D−A , so ψ must identically
vanish over X.

Proposition 4. The canonical projection π : M ∗ → iΩ2
+(X) is a Fredholm

map of index c2(V+).

Proof. The way we shall prove this is by showing that the kernel and cokernel
of T[A,Φ,ω]π may be respectively identified in a canonical way with the kernel
and cokernel of the restriction of the differential of the descendant SW map

T[A,Φ]f̃
∗
ω : T[A,Φ](C

∗
s /G )→ iΩ2

+(X)× Γ(V−).

Danu’s already done the hard work of showing that this is Fredholm with index
c2(V+). Since that just means that the dimensions of the kernel and cokernel
are finite and their difference is c2(V+), it would immediately follow that π is
Fredholm with index c2(V+) as well.

The tangent space T[A,Φ,ω]M
∗ consists equivalence classes [a, ϕ, τ ] of triples

(a, ϕ, τ) ∈ T[A,Φ,ω](C
∗
s × iΩ2

+(X))

modulo tangent vectors to the orbits of G i.e. triples of the form (−i dξ, iξΦ, 0)
with ξ ∈ C∞(X), such that (a, ϕ, τ) lies in the kernel of the differential T(A,Φ,ω)f

∗.
In other words, the following has to hold:

2d+a− σ(Φ, ϕ)− σ(ϕ,Φ)− τ = 0, D+
Aϕ+ γ(a)Φ = 0. (7)

The differential T[A,Φ,ω]π is given by [a, ϕ, τ ] 7→ τ , so an element [a, ϕ, τ ] ∈
T[A,Φ,ω]M

∗ lies in its kernel if and only if τ = 0. Elements [a, ϕ, 0] kernel of
T[A,Φ,ω]π therefore satisfy:

2d+a− σ(Φ, ϕ)− σ(ϕ,Φ) = 0, D+
Aϕ+ γ(a)Φ = 0. (8)

But this is precisely the necessary and sufficient condition for [a, ϕ] being in the
kernel of T

[A,Φ]f̃∗ω
. So, there is a canonical identification:

ker T[A,Φ,ω]π ∼= ker T[A,Φ]f
∗
ω, via [a, ϕ, 0]↔ [a, ϕ]. (9)

Next, we consider the cokernel. The image of T[A,Φ,ω]π just consists of 2-forms
τ ∈ iΩ2

+(X) which can be written as:

τ = 2d+a− σ(Φ, ϕ)− σ(ϕ,Φ). (10)

Meanwhile, the image of T[A,Φ]f
∗
ω consists of elements of the form

(2d+a− σ(Φ, ϕ)− σ(ϕ,Φ), D+
Aϕ+ γ(a)Φ).
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In the proof of Proposition 3, we saw that the differential T(A,Φ,ω)f is surjecive
whenever Φ is not identically zero. In particular, this means that given any
section η of V−, we can always find a and ϕ such that:

ψ = D+
Aϕ+ γ(a)Φ. (11)

So, the image of T[A,Φ]f
∗
ω is really just im T[A,Φ,ω]π × Γ(V−), giving us:

coker T[A,Φ]f
∗
ω := (iΩ2

+(X)× Γ(V−))/im T[A,Φ]f
∗
ω

= (iΩ2
+(X)× Γ(V−))/(im T[A,Φ,ω]π × Γ(V−))

∼= iΩ2
+(X)/im T[A,Φ,ω]π =: coker T[A,Φ,ω]π.

(12)

As a straightforward corollary of the above two results, we have:

Theorem 5 (Transversality). M ∗
ω is a smooth manifold of dimension c2(V+)

for ω a generic element of iΩ2
+(X).

Proof. Now that we know π : M ∗ → iΩ2
+(X) is Fredholm with index c2(V−), it

follows by the implicit function theorem for Banach manifolds that the preimage
M ∗

ω = π−1(ω) is a smooth manifold of finite dimension c2(V−) whenever ω ∈
iΩ2

+(X) is a regular value. The theorem then follows from ageneralisation of
Sard’s theorem to Banach manifolds which says that the regular values of any
Banach map is generic.

What we have really shown is that even if (0, 0) is not a regular value of the
map f̃∗ω, (τ, 0) is, for a generic choice of τ in iΩ2

+(X). The reason we couldn’t
directly use Sard’s theorem to argue this is that although τ is generic, (τ, 0)
isn’t generic in iΩ2

+(X)× Γ(V−).

2 Compactness

Next we turn to the question of compactness of the SW moduli space M . Since
points in Mω are gauge equivalence classes of SW solutions (A,Φ) ∈ Zω, this
boils down to the following statement:

Theorem 6 (Compactness). Let (Ai,Φi) be a sequence of C∞ SW solutions.
Then there exists a sequence of C∞ gauge transformations ui such that there is
a subsequence of ui(Ai,Φi) that converges in the C∞ topology to a C∞ Seiberg–
Witten solution (A,Φ).

Note that (Ai,Φi) and ui don’t need to be C∞; all we want are that
ui(Ai,Φi) are C∞ solutions.

Recall that this was the key deficiency with Donaldson theory: the curvature
of the nonabelian gauge field could blow up at a point, and so the moduli space
failed to be compact. To prove that this is not the case with Seiberg–Witten
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theory, we run the argument in reverse. That is, very roughly speaking we
first argue that the only way the SW moduli space could fail to be compact, is
if k-th order derivatives of a sequence of solutions blew up at some point, for
some value of k, and then we show that this can’t in fact happen (up to gauge
transformations, that is).

In order to make this precise, we have first clarify what we mean when we
say that the k-th order derivative blows up. The formalism of Sobolev norms
and Sobolev spaces is the natural setting for formulating this idea. Recall that
the Lpk Sobolev norm on some vector bundle E → X equipped with a connection
∇ is given by:

‖s‖Lp
k

=

(∫
X

(|s|p + |∇s|p + · · ·+ |∇ks|p) volg

)1/p

. (13)

The norm depends on the choice of connection but the Banach space completion
of Γ(E) with respect to it does not. This is the Sobolev space Lpk(E).

What we mean when we say that the k-th derivative blows up is that the Lpk
norm is unbounded. The relationship to compactness is given by the following
deep theorem:

Theorem 7 (Sobolev embedding). Let X be a compact n-manifold. Then:

• There exists an embedding Lpj+m(E) ⊂ Cj(E) if mp ≥ n.

• The embedding is compact if mp > n.

In fact, we will only be needing the following corollary obtained by setting
n = 4, p = 2, m = 3, and j = k − 3 for some k ≥ 3:

Corollary 8. Let X be a compact 4-manifold and k ≥ 3. Then there exists
a compact embedding L2

k(E) ⊂ Ck−3(E). Hence, every bounded sequence in
L2
k(E) has a convergent subsequence in Ck−3(E).

In particular this means that if X ⊂ C∞(E) is closed subset satisfying
a (possibly k-dependent) bound with respect to an L2

k norm for every integer
k ≥ 3, then X is sequentially compact.

In order to apply this to the SW story, we need to first address what we
mean by L2

k norms in this case. The issue is that the connections Ai don’t form
sections of a vector bundle but instead an affine space modeled on the space
of sections of a vector bundle. This matter is easily resolved by fixing some
connection A0 and considering the differences ai := Ai − A0 which are indeed
sections of a vector bundle. The SW equations may be rewritten in terms of
a := A−A0 as follows:

D+
A0

Φ = −γ(a)Φ, 2d+a = σ(Φ,Φ) + ω0, (14)

where the self-dual part is as usual and F+
A0

has been absorbed into ω0. Gauge
transformations, parametrised by ξ ∈ C∞(M), are meanwhile given by:

(a,Φ) 7→ (a− i dξ, eiξΦ). (15)
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In particular, a changes by an exact form. Since any differential form can be
uniquely written as the sum of an exact and a coclosed form, we can always fix
the gauge so that a is coclosed. Thus we have the gauge-fixed SW equations:

D+
A0

Φ = −γ(a)Φ, 2d+a = σ(Φ,Φ) + ω0, d∗a = 0. (16)

Thus, in order to prove Theorem 6, that is, Mω is sequentially compact, it is
sufficient to show the following:

Proposition 9. There exist constants ck, c
′
k, depending only on (X, g) and an

integer k ≥ 3, such that solutions (a,Φ) to the gauge-fixed SW equations (22)
admit the following bounds for any integer k ≥ 3:

‖a‖L2
k
≤ ck, ‖Φ‖L2

k
≤ c′k. (17)

In order to show this, we will break up this result into the following more
manageable chunks:

• Given that a and Φ admit L2
3 bounds depending on (X, g), they also admit

L2
k bounds depending on (X, g) and k for any integer k ≥ 3.

• Given that a and Φ admit L2 and L∞ (i.e. pointwise) bounds depending
on (X, g), they also admit L2

3 bounds depending on (X, g).

• Any a and Φ satisfying the gauge-fixed SW equations admit L2 and L∞

(i.e. pointwise) bounds depending on (X, g).

(The rationale behind this split shall become evident in a moment.)
In addition, we shall be using without proof the following results from

Sobolev and elliptic theory:

Lemma 10 (Sobolev multiplication above the borderline). Let X be a compact
n-manifold, E1, E2, E be smooth inner product bundles on it. Then any C∞(X)-
bilinear map M : Γ(E1)×Γ(E2)→ Γ(E) satisfies the following estimates for all
s1 ∈ Lpj (E1) and s2 ∈ Lqk(E2) and some fixed constants cp,qj,k :

‖M(s1, s2)‖Lq
k
≤ cp,qj,k‖s1‖Lp

j
‖s2‖Lq

k
, (18)

whenever the following inequalities hold:

n < pj, 0 ≤ k ≤ j,
1

p
− 1

q
≤ j − k

n
.

(19)

Remark 11. A Sobolev norm Lpj is said to be below, at, or above the borderline
depending on whether j/n− 1/p is negative, zero, or positive.
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Lemma 12 (Elliptic estimate). Let X be a compact manifold and E,E′ be
smooth inner product bundles over it. Then any elliptic linear differential op-
erator P : Γ(E) → Γ(E′) of order l satisfies the following estimates for all
s ∈ L2

k+l(E) and some fixed constants cpk:

‖s‖Lp
k+l
≤ cpk(‖Ps‖Lp

k
+ ‖s‖Lp). (20)

When s is L2-orthogonal to ker P , the estimates can be improved to:

‖s‖Lp
k+l
≤ cpk‖Ps‖Lp

k
. (21)

Let’s now turn to proving the results we have broken up Proposition 9 into.

Proposition 13. Given that a and Φ admit L2
3 bounds depending on (X, g),

they also admit L2
k bounds depending on (X, g) and k for any integer k ≥ 3.

Proof. The trick is to rewrite the gauge-fixed SW equations in the following
form:

D+
A0

Φ = −γ(a)Φ, 2(d+ + d∗−)a = σ(Φ,Φ) + ω0, d∗a = 0. (22)

Here, the second equation is to be understood as an equality on the exterior
algebra of forms Ω•(X), which is just the direct sum of all the Ωi(X). The point
of this is that D+

A0
and d+ + d∗− are elliptic linear differential operators.

Setting
n = 4, p = q = 2, j = k ≥ 3,

in the Sobolev multiplication lemma and applying it to the C∞(X)-bilinear map

Ω1(X)× Γ(V+)→ Γ(V−), (a,Φ) 7→ −γ(a)Φ,

tells us that if a and Φ admit L2
k bounds, then so does −γ(a)Φ. Meanwhile,

applying the lemma to the C∞(X)-bilinear map

Γ(V+)× Γ(V+)→ Ω•(X), (Ψ,Φ) 7→ σ(Ψ,Φ),

tells us that if Φ (and hence, Φ) admits an L2
k bound, then so does σ(Φ,Φ).

The gauge-fixed SW equations then imply the existence of L2
k bounds on D+

A0
Φ

and (d+ + d∗−)a. Finally, we may use elliptic estimates on D+
A0

and d+ + d∗−

to obtain L2
k+1 bounds on a and Φ. The result to be proved then follows by

induction.

Now we see the rationale behind splitting Proposition 9. The above argu-
ment works only for k ≥ 3, since the case k < 3 is beyond the jurisdiction of
Sobolev multiplication above the borderline.

[to be wrapped up]
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