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1 Why study 4-manifolds?

The grand objective we’ll be working towards this semester is to show that the
category of compact, connected, oriented smooth (CCOS) manifolds is genuinely
different from the category of compact, connected, oriented topological (CCOT)
manifolds. Now, every CCOS manifold is a CCOT manifold with additional
structure, so what I mean by this statement is that:

• There are CCOT manifolds which cannot be obtained by forgetting the
additional structure of some CCOS manifold i.e. they don’t admit any
smooth structure.

• There are CCOT manifolds which can be obtained by forgetting the ad-
ditional structure of more than one non-diffeomorphic CCOS manifolds
i.e. they admit multiple smooth structures.

The distinction between the two categories is obscured if we restrict ourselves to
only dimensions 1, 2, 3, since in these cases, every CCOT manifold does admit
a unique smooth structure up to diffeomorphisms. The fun begins in dimension
4.

In dimension 4, a 2-submanifold generically intersects other 2-submanifolds
in a discrete set of points that, beacause of compactness, are finite in number
and may be counted. If the submanifolds are oriented, then the intersections
may be assigned a sign. Counted with sign, the number of intersection points
depends only on the homology classes of the submanifolds. This allows us to
define for any CCOT 4-manifold X, a Z-valued symmetric bilinear pairing QX
on H2(X;Z). This pairing in Z, called the intersection form, is an invariant of
CCOT manifolds. A natural question to ask is:

Question 1. When can a given symmetric bilinear form over Z be realised as
the intersection form of some CCOT manifold?

For a start, Poincaré duality implies that, firstly, the matrix representing
the bilinear form has to be invertible, and secondly, the inverse also has to have
entries in Z. In other words, the determininant of the matrix needs to be ±1
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i.e. the pairing is unimodular. This turns out to be sufficient. In fact, one can
say something far sronger:

Theorem 2 (Freedman). For every unimodular symmetric bilinear form over
Z, there is a unique simply connected CCOT 4-manifold up to homeomorphisms
which realises it as its intersection form.

This is however not the case for CCOS manifolds. Indeed, one of the results
that we shall hopefully get around to proving in this seminar is:

Theorem 3 (Donaldson). If X is a CCOS 4-manifold with QX definite, then
QX is diagonalisable over Z.

Note that being diagonalisable over Z is stronger than being diagonalisable
over R, which every symmetric bilinear form is. The consequence is that there
exists a wealth of CCOT 4-manifolds which do not admit any smooth structure.

On the other hand, there are CCOT 4-manifolds which admit multiple
smooth structures. To prove this, we could construct simply connected CCOS
manifolds that share the same intersection pairing (and hence are homeomor-
phic, by virtue of Theorem 2) and then showing that they are not diffeomorphic.
Of course, such CCOS manifolds can’t be distinguished by any of the topolog-
ical invariants we know since they are homeomorphic. What is required are a
new kind of invariants that are sensitive to not only the topology of X but its
smooth structure as well.

2 Donaldson invariants

As motivation, it’s instructive to briefly recall a classical result due to De Rham.
Given a CCOS manifold X, one may introduce a Riemannian metric g on it.
This allows us to define a second order differential operator called the Laplacian
∆ : Ω•(X;R) → Ω•(X;R) acting on differential forms on X. A solution α to
∆α = 0 is said to be harmonic. The vector space of such harmonic forms shall
be denoted H•(X, g).

Theorem 4 (De Rham). There is a natural (vector space) isomorphism between
H•(X;R) and H•(X, g).

In particular, dim(H•(X, g)) is independent of g and even the smooth struc-
ture on X. What we have done is introduce some auxiliary structure on X,
namely the Riemannian metric g, use that extra structure to set up a system
of linear PDEs ∆α = 0, and extract topological invariants from the space of
solutions to the system of PDEs. It makes sense to hope that for some more
complicated nonlinear system of PDEs, the space of its solutions would divulge
information about the smooth structure in addition to the topology. This turns
out to be the case.

The auxiliary structure that Donaldson introduced on a CCOS 4-manifold
X consists of the following data:
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• an SU(2)-principal bundle P with connection θ satisfying
∫
X
c2(P ) > 0,

where c2(P ) is the second Chern class of P ,

• a Riemannian metric g on X.

The connection θ pulls back via local sections to locally define su(2)-valued
1-forms A. It is a basic result in differential geometry that the curvature FA
locally defined as FA := dA+A∧A is independent of the choice of local sections
and is a globally defined su(2)-valued 2-form on X.

Meanwhile, a metric g on any CCOS manifold of dimension n induces a
signed involution ∗ : Ω•(X;R)→ Ωn−•(X;R) called the Hodge star. To define it,
we may choose a local oriented orthonomal basis of 1-forms αi. Then Ωk(X;R)
is spanned by elements of the form απ(1) ∧ · · · ∧ απ(k) for some permutation π
of {1, 2, . . . , n}. The action of the Hodge star is given by:

απ(1) ∧ · · · ∧ απ(k) 7→ sgn(π)απ(k+1) ∧ · · · ∧ απ(n),

where sgn(π) is ±1 depending on whether the permutation π is even or odd.
The map ∗ may not seem well-defined since we can’t unambiguously know π
from just π(1), . . . , π(k), but it actually is, thanks to the alternating property
of the wedge product.

In the case of 4-manifolds, ∗ induces an involution on su(2)-valued 2-forms,
giving us an eigendecomposition of Ω2(X; su(2)) to a self-dual part Ω2

+(X; su(2)
belonging to eigenvalue +1 and an anti-self-dual part Ω2

−(X; su(2) belonging to
eigenvalue −1. In particular, the curvature FA admits a decomposition FA =
F+
A + F−A into self-dual and anti-self-dual parts.

The nonlinear analogue of the Laplace equation that Donaldson considered
is the anti-self-dual Yang–Mills equation:

F+
A = 0. (1)

This should be viewed as a system of coupled nonlinear PDEs to be solved for
A.

Donaldson showed that for generic choices of g, the space M of isomorphism
classes of solutions A to (1), known as the instanton moduli space, is an oriented
smooth manifold of finite dimension equipped with certain canonical differential
forms τi. These may be integrated over M—∫

M

τ1 ∧ · · · ∧ τk (2)

—to yield rational invariants for smooth structures, the so-called Donaldson
invariants.

Unfortunately, the expression in (2) is not well-defined, since the instanton
moduli space M is not compact and the integrand might blow up near the
“ends” of M . In fact, these “ends” arise due to the curvature FA becoming
arbitrarily concentrated at a finite set of points in X and so may be naturally
identified with copies of X itself, one for each point of curvature concentration.
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The issue with noncompactness can be fixed by means of a delicate regular-
isation procedure whereby M is first truncated to M ′ by introducing a cutoff
boundary ∂M ′ and then appropriate counterterms coming from integrals on
the boundary ∂M ′ are incorprated into (2) so that the result doesn’t depend on
how we truncate. This is enough to prove statements like Theorem 3 but quite
painful to keep track of in practice. There is however a simpler way.

3 What physics has to offer

Donaldson invariants carry a natural interpretation in terms of physics. As
Witten discovered, Donaldson theory is secretly a twisted version of N = 2
supersymmetric SU(2) Yang–Mills theory—the correspondence between the two
formulations is summarised in the table below:

Donaldson theory Witten’s TQFT

X spacetime

A SU(2) gauge field

M space of susy field configurations

τi physical observables Oi∫
M

localised path integral∫
M
τ1 ∧ · · · ∧ τk correlators 〈O1 · · ·Ok〉

This is all pretty neat but as things stand so far, it doesn’t really help. A rose
by any other name smells just as sweet and an integral over some noncompact
space by any other name is just as tricky to define and compute. However,
recasting Donaldson theory as a quantum field theory opens up the possibility
of using certain powerful tools from physics, such as renormalisation group flow
and S-duality.

The basic idea behind renormalisation group flow is that physical models are
typically meaningful only above a certain cutoff length scale and if we try making
predictions about what will happen when we probe using pulses of wavelengths
shorter than this cutoff, we will get nonsensical answers. For instance, the field
amplitude at some point as predicted by the model may become infinite. We
should therefore model reality not by a single QFT but by a whole family of
them parametrised by the length cutoff above which we wish to probe. The
family thus interpolates between the limiting QFT we get as we zoom infinitely
inwards, i.e. the ultraviolet (UV) theory, and the one we get as we zoom infinitely
outwards, i.e. the infrared (IR) theory.

(Why not just work with the UV theory, you might ask, since, in principle, it
contains all the information we could hope to get? Because that is like simulating
the behaviour of individual molecules to solve fluid dynamics problems. Not
only is it computationally intractable, but we may not have access to initial
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data fine-grained enough to make the model work in the first place. And even
if we could do all that, at the end of the day, what each individual molecule is
doing is not something we care about when the question is “Is this plane going
to fly?”)

In a topologically twisted QFT (TQFT), the correlators of the physical ob-
servables don’t depend on the metric, so one could in principle compute them in
the UV or in the IR; the answer would be the same. Donaldson–Witten theory
has the additional property that it is “asymptotically free.” This means that
the physicists’ usual strategy of perturbative analysis is reliable in the “weakly
coupled” UV regime but not in the “strongly coupled” IR . Indeed, this was
what made it possible to show that Donaldson invariants coincided with the
correlators in the TQFT that Witten defined. On the other hand, the fact that
the IR theory is strongly coupled made it hard to say anything about it at first
glance.

This is where S-duality comes in. S-duality is a supersymmetric generalisa-
tion of the electric-magnetic duality of Maxwell theory, which exchanges electric
charges quantised in units of the fundamental electric coupling e with magnetic
monopoles quantised in units of the fundamental magnetic coupling g ∼ 1/e.
Note that when the electric coupling is strong (i.e. e� 1), the magnetic coupling
is weak (i.e. g � 1), and vice versa. A similar statement holds for S-duality in
general, which in fact stands for strong-weak duality.

Seiberg and Witten discovered that the strongly coupled IR limit of twisted
N = 2 supersymmetric SU(2) Yang–Mills theory is dual to a weakly coupled
theory of a U(1) gauge field coupled to a monopole on X equipped with the
following auxiliary structure:

• a Riemannian metric g,

• an imaginary-valued 2-form ω self-dual with respect to g.

The dynamics of these gauge fields is described by the Seiberg–Witten equations:

D+

Â
Φ = 0,

F+

Â
= σ(Φ,Φ) + ω.

(3)

For sake of completeness, here is a list of what all the letters stand for, presented
without explanation:

• Â is the U(1) gauge field,

• Φ is the monopole, which is a left-handed Weyl spinor,

• F+

Â
is the self-dual part of the curvature FÂ := dÂ,

• D+

Â
is the Dirac operator on left-handed Weyl spinors induced by A,

• σ is a certain sesquilinear form on the left-handed Weyl spinor bundle
taking values in the space of self-dual 2-forms.
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The upshot of all this is that the curvature concentration problem that
plagued Donaldson theory is now no longer there. So, the space of isomorphism
classes of solutions (Â,Φ) of (3) is compact and in fact, for generic choices of
(g, ω), a CCOS manifold itself. Which means that we can do integration on
it and compute Donaldson invariants of any CCOS 4-manifold of our choice
without having to resort to technical acrobatics!

4 Plan of the seminar

We shall adopt an ahistorical approach in our seminar and take the Seiberg–
Witten equations as god-given (which is tehnically true). There will be 13
sessions in all, excluding the organisational meetings today and at the end,
when we’ll be soliciting feedback from all the participants before voting on the
topic of next semester. The rough distribution of the content shall be:

• Session 1 : recalling background material from differential topology that
we’ll be needing for the rest of the seminar.

• Sessions 2-6 : setting up the Seiberg–Witten equations and making sense
of the various entities that enter the equations.

• Sessions 6-10 : defining and proving that the moduli space of solutions
of the Seiberg–Witten equations is actually a CCOS manifold of finite
dimension.

• Sessions 11-13 : using Seiberg–Witten theory to deduce interesting things
about 4-manifolds in general and in specific examples.

In particular, most of the things I mentioned today do not really feature in
the plan. In case you are interested in knowing more about Donaldson theory
proper and the physical context behind Seiberg–Witten theory, please consult
the additional references on the seminar homepage:

https://www.math.uni-hamburg.de/home/saha/phd-ws2018.html
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