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1 Preliminaries

We start by recalling some of the background information that we need in this talk.

The input data for Seiberg-Witten (SW) theory is a CCOS Riemannian 4-manifold M ,
equipped with a fixed spinc structure s and a self-dual, imaginary two-form ω. The SW
equations are then equations for (i) a section Φ of the positive spinor bundle V+ and (ii)
a spinc connection A or equivalently a connection Â on the characteristic line bundle Ls.
The space of such variables of the SW equations is called the configuration space, and
is denoted by Cs.

Solutions of the SW equations are the same as zeros of the SW map fω : Cs → iΩ2
+(M)×

Γ(V−). Fixing a point (A,Φ) ∈ Cs, fω(A,Φ) = (F+

Â
−σ(Φ,Φ)−ω,D+

AΦ). Its differential
was computed in the last talk:

T(A,Φ)fω : iΩ1(M)× Γ(V+) iΩ2
+(M)× Γ(V−)

(a, ϕ) (2d+a− σ(Φ, ϕ)− σ(ϕ,Φ), D+
Aϕ+ γ(a)Φ)

There is a natural right action of the gauge group G = L2
6(M,S1) on Cs, and the point

(A,Φ) also defines the orbit map o(A,Φ) : G → Cs which sends u 7→ (A,Φ) · u. We can
also compute the differential in this case, and obtain the map L(A,Φ) : g ∼= iΩ0(M) →
T(A,Φ)Cs = iΩ1(M) × Γ(V+), ξ 7→ (−dξ, ξΦ). The codomain of this map is the domain
of T(A,Φ)fω, so we can compose the maps. If (A,Φ) is a solution to the SW equations—
actually we only need D+

AΦ = 0—the result always vanishes, so the composition defines
a complex, which was discussed in the previous talk:

Theorem 1. For (A,Φ) ∈ Zω, the composition

iΩ0(M) iΩ1(M)× Γ(V+) iΩ2
+(M)× Γ(V−)

L(A,Φ) T(A,Φ)fω

defines an elliptic complex, with Euler characteristic (also known as the index, since it
is the index of L(A,Φ) ⊕ T(A,Φ)fω) 1

4(2χ(M) + 3σ(M)− c2
1(Ls) = −c2(V+)

Remark 2. The last equality can be traced back to the Clifford multiplication isomor-
phism Λ2

+ ⊗ C ∼= End0(V+).

I will spend the first part of this talk continuing this study of the linearized SW equa-
tions.
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2 The Linearized SW Equations (Continued)

2.1 The Cohomology Groups

A first, rather striking, observation is that the index of the elliptic complex is in fact
independent of (A,Φ); it only depends on the spinc structure. This is interesting because
it can be expressed as the alternating sum H0

el −H1
el + H2

el; all summands may a priori
depend on (A,Φ). Let us investigate the individual cohomology groups in some more
detail:

Lemma 3. Let (A,Φ) ∈ Zω. Then

H0
el
∼=

{
0 Φ 6≡ 0

iR Φ ≡ 0

Proof. H0
el = kerL(A,Φ), so its elements must satisfy dξ = 0 and ξΦ = 0. This clearly

implies the claim.

Let’s assume we’re at an irreducible solution, so that H0
el = 0. To understand H1

el and
H2

el, we introduce a local slice for the action G y Cs, near (A,Φ). This is a closed
submanifold S such that a neighborhood of (A,Φ) is diffeomorphic to S × G: You can
construct it by adding to (A,Φ) all sufficiently small tangent vectors orthogonal with
respect to the L2-inner product to L(A,Φ)(g). Then we may restrict fω to S and we see
that

H1
el = ker T(A,Φ)fω/ imL(A,Φ) = ker T(A,Φ)

(
fω
∣∣
S

)
H2

el = coker T(A,Φ)fω = coker T(A,Φ)

(
fω
∣∣
S

)
2.2 Implicit Function Theorem for Banach Manifolds

Now we want to use these observations to study the moduli space of solutions to the
SW equations modulo gauge. In particular, we want to determine its dimension. To
do this, we need an implicit function-type argument. Recall that, in finite-dimensional
differential geometry, the level sets of a smooth map f : M r+m → N r+n of constant rank
r (that is, its differential has constant rank) are submanifolds of codimension r. The
proof proceeds by showing that near a point x0 ∈M with y0 = f(x0) ∈ N , we can write
f with respect to some charts (centered on x0, y0) as f̃(x, y) = (x, ψ(x)) for a smooth
map ψ : Rr → Rn and in fact as f(x, y) = (x, 0) so that with respect to these charts
f−1(y0) = f̃(0, 0) is locally simply given by setting the x-coordinates to zero. These are
compatible charts, showing it’s a submanifold. The case which is most frequently used
is when f is a submersion, i.e. has trivial cokernel.

In the infinite-dimensional setting there is an analog, at least in the case where the
infinite-dimensional spaces are locally modeled on a Banach space, and the map f is
Fredholm, i.e. its differential has finite dimensional kernel and cokernel.

Again, one may write f(x, y) = (x, ψ(x)); the map ψ is then called a Kuranishi map.
As in the finite-dimensional case, the situation where there is no cokernel (i.e. T f is
surjective) leads to the level set being a submanifold of dimension ker T f .

Let us apply this in our situation. Recall that we had a local slice S for the G-action on
Cs, and the restricted SW map

(
fω)
∣∣
S

: S → iΩ2
+(M) × Γ(V−). This map is Fredholm,
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and a neighborhood of [A,Φ] ∈ Mω equals (fω
∣∣
S

)−1(0). Since H1
el = ker(fω

∣∣
S

) and
H2

el = coker(fω
∣∣
S

), the Kuranishi map is ψ : H1
el → H2

el. In particular, if T f is surjective,
i.e. H2

el vanishes, we see:

Proposition 4. Assuming H0
el = 0 and H2

el = 0, a neighborhood of [A,Φ] ∈ Mω is a
smooth, manifold of dimension H1

el = 1
4(c2

1(Ls − (2χ(M) + 3σ(M)) = dimexpMω.

This justifies the name “expected dimension”.

In the reducible case, things are a little more complicated:

Proposition 5. If H0
el
∼= R and H2

el = 0, a neighborhood of [A,Φ] ∈ Mω is the quotient
of a smooth manifold of dimension dimexpMω + 1 by a U(1)-action.

Proof. There is still the Kuranishi map ψ : H1
el → 0. The constant gauge transformations

act on Cs and iω2
+(M)× Γ(V−) and the former descends to H1

el. We now have

1− dimH1
el =

1

4
((2χ(M) + 3σ(M))− c2

1(Ls))

and thus dimH1
el = 1 + dimexpMω, which one still has to quotient by U(1).

3 Structure of the Gauge Group

We want to split the gauge group up into some simpler parts which we can treat more
or less independently.

Proposition 6. [M,S1] ∼= H1(M ;Z)

Proof. Homotopy classes of maps correspond bijectively to maps π1(M)→ Z ∼= π1(S1).
Clearly f ' g =⇒ f∗ = g∗. Conversely, if f∗ = g∗, then using the multiplication in S1

clearly the map (f−1 ·g)∗ has trivial image, hence f−1 ·g lifts to R and is null-homotopic.
This induces a homotopy f ' g. Now Z is Abelian, hence maps π1(M)→ Z are elements
of Hom(H1(M ;Z),Z) ∼= H1(M ;Z).

Note that this isomorphism maps [f ]  f∗  f∗µ, where µ is a fixed generator of
H1(S1;Z). This suggests the following definition:

Definition 7. The degree of a map M → S1 is the map

deg : G H1(M ;Z)

u u∗µ

Corollary 8. u ∈ G is nullhomotopic if and only if deg u = 0, if and only if u = eif for
some f : M → R. .

Definition 9. We say u ∈ G0 if deg u = 0.

Corollary 10. G0 is the connected component of 1 ∈ G and G/G0
∼= H1(M ;Z) ∼= Zb1(M).

Now we consider another subdivision of G0 into two parts. Consider the following sub-
groups:

(i) U(1) = eic for c constant.
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(ii) G⊥ := {eif | f ∈ L2
6(M),

∫
M f volg = 0}.

Proposition 11. U(1)× G⊥ ∼= G0, the isomorphism being given by (eic, eif ) 7→ ei(c+f).

Proof. Let h = eif ∈ G0, and set λh = exp
(

i
volM

∫
M f volg

)
; it is well-defined since if

f ′ = f + 2πik then the integrals over M differ by multiples of 2πi volM . Then the
inverse of our isomorphism is given by h 7→ (λh, λ

−1
h h).

We now want to rewrite the quotient G/G0 in a simpler way, using one more subgroup:

Definition 12. A map u : M → S1 is called harmonic if α = udu−1 is a harmonic form.
We write u ∈ Gh.

Gh is indeed a subgroup of G, as is easily checked. Since 0 = d2(uu−1) = 2(du)(du−1) =
2dα, u ∈ Gh if and only if d∗α = 0.

Proposition 13. For any u ∈ G there is a unique, up to constant, fu : M → R such that
ue−ifu is harmonic.

To prove it, we have to quote the following result:

Theorem 14. There exists a “Green’s operator” for ∆, given byG : Ωk(M)→ (Hk(M))⊥,
which maps α to the unique ω ∈ (Hk(M))⊥ with ∆ω = α−H(α), where H : Ωk(M)→
Hk(M) is the orthogonal projection.

Note that ∆G = id−H = G∆ and HG = GH.
Proof of Proposition. Set β = udu−1 and f = iG(d∗β).
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